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ABSTRACT

Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Granulocytes are a cat-
egory of white blood cells, comprising mainly basophils, neutrophils, and eosinophils, and participate in various inflammatory
reactions and defense against pathogens. Here, we investigated the role of human blood granulocytes in the dissemination of
HIV-1. These cells were found to express a variety of HIV-1 attachment factors (HAFs). Basophils expressed HAFs dendritic cell
(DC)-specific intercellular adhesion molecule 3 (ICAM3)-grabbing nonintegrin (DC-SIGN), DC immunoreceptor (DCIR), hepa-
ran sulfate proteoglycan (HSPG), and �4�7 integrin and mediated the most efficient capture of HIV-1 on the cell surface. Neu-
trophils were found to express DCIR and demonstrated limited efficiency of viral capture. Eosinophils expressed �4�7 integrin
but exhibited little or no virus-binding capacity. Intriguingly, following direct contact with CD4� T cells, viruses harbored on
the surface of basophils were transferred to T cells. The contact between basophils and CD4� T cells and formation of infectious
synapses appeared necessary for efficient HIV-1 spread. In HIV-1-infected individuals, the frequency of basophils remained
fairly stable over the course of disease, regardless of CD4� T depletion or the emergence of AIDS-associated opportunistic infec-
tions. Collectively, our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemina-
tion. Thus, strategies designed to prevent basophil-mediated viral capture and transfer may be developed into a new form of
therapy.

IMPORTANCE

Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Here, we demonstrated
that human blood-circulating granulocytes, particularly basophils, can capture HIV-1 and mediate viral trans-infection of CD4�

T cells. The expression of a variety of HIV-1 attachment factors, such as the C-type lectins, etc., facilitates viral capture and trans-
fer. Intriguingly, the frequency of basophils in patients with different levels of CD4� T counts remains fairly stable during the
course of disease. Our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemina-
tion. We suggest that strategies designed to prevent basophil-mediated viral capture and transfer may be a new direction for the
development of anti-HIV therapy.

Granulocytes are a category of white blood cells (WBCs) char-
acterized by the presence of lobulated nuclei and secretory

granules in their cytoplasm. Blood-circulating granulocytes com-
prise mainly neutrophils, basophils, and eosinophils. Neutrophils
make up the majority (50% to 60%) of circulating WBCs; baso-
phils constitute only 0.5% to 1% and eosinophils less than 6%.
Granulocytes are differentiated from bone marrow hematopoietic
stem cells; they normally circulate in the bloodstream and are
recruited to peripheral tissue under certain pathological condi-
tions (1–5). Granulocytes participate in various inflammatory re-
actions. Basophils and eosinophils are known to modulate allergic
disorders and autoimmune diseases (6–11).

Granulocytes play crucial roles in combating invading patho-
gens. The expression by human granulocytes of a broad range of
pattern recognition receptors suggests that they play a role in var-
ious forms of host innate immunity (12–14), and evidence is
mounting that granulocytes are essential to the regulation of host
adaptive immunity (6, 15, 16). Activated granulocytes release var-
ious intracellular granule proteins or cytokines to suppress or di-
rectly kill invading microbes and parasites (17–24) or to recruit
other host immune cells to combat pathogens. Neutrophils are
“professional” phagocytes that rapidly engulf and degrade invad-

ers or form extracellular traps to kill extracellular pathogens (23).
Eosinophils have been described as capable of modulating the
functions of other immune cells (16, 25).

The interplays between granulocytes and HIV-1 and their con-
tribution to HIV-1 disease progression remain elusive. The ma-
jority of peripheral blood neutrophils do not express CD4 mole-
cules on their surface. Previous work showed that 4 of 51 (7.8%)
HIV-1-infected individuals and 3 of 25 (12%) uninfected individ-
uals had CD4 expression on their peripheral blood neutrophils
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(26); moreover, HIV-1 infection does not alter CD4 expression
levels (26). Neutrophils are capable of releasing defensins and
other antimicrobial peptides that suppress HIV-1 replication (27,
28). HIV-1 infection induces apoptosis and functional impair-
ment of neutrophils, compromising their capacity for phagocyto-
sis, oxidative burst, bacterial killing, etc. As a result, neutrophils in
AIDS patients are unable to control opportunistic pathogens (29–
32). HIV-1 virions can induce basophil degranulation, and HIV-1
gp120 can activate basophils isolated from healthy human donors
to release histamine, cysteinyl leukotrienes, and the Th2 cytokines

interleukin (IL)-4, IL-5, IL-10, and IL-13 (33). In some studies,
the HIV-1 Tat accessory protein was also shown to induce the
release of IL-4 and IL-13 from basophils of healthy donors (34,
35). The shift from Th1 cytokine production to Th2 cytokine pro-
duction, partially caused by the HIV-1-induced degranulation of
basophils, is believed to contribute to the creation of an allergy-
like Th2 bias in HIV-1-infected adults and children (34, 36, 37). A
recent study showed that eosinophil-secreted neurotoxin sup-
presses infection by HIV-1 and other single-stranded RNA viruses
(38). Further elucidation of the interaction between HIV-1 and

FIG 1 Expression of HIV-1 receptors and attachment factors by granulocytes. (A) Enrichment of granulocytes from peripheral blood of healthy donors. (B)
Phenotype of purified basophils analyzed by immunostaining with specific antibodies and detected using flow cytometry. SSC, side-scattered light. (C) Visual-
ization of basophils under TEM. (D) Expression of HIV-1 (co)receptors and attachment factors analyzed by immunostaining with specific antibodies and
detected using flow cytometry. The positive percentage for immunostaining is noted, and results from one donor representative of six are shown.
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FIG 2 The binding of HIV-1 or gp120 on granulocytes. (A) Procedures for granulocyte enrichment and the HIV-1-binding assay. (B and C) Detection of HIV-1
VLP binding on granulocytes by flow cytometry. VLPs containing Gag-GFP were incubated with granulocytes at 4°C, and VLPs and �Env were used as the
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granulocytes may help to increase the understanding of HIV-1/
AIDS pathogenesis.

Cell-associated HIV-1 infection has been proposed to play a
pivotal role in HIV-1 spread (39–43). Dendritic cells (DCs) pro-
vide one of the best described cell models for understanding cell-
mediated HIV-1 capture and dissemination (39, 42–45). The vag-
inal and rectal routes are the most frequent areas for HIV-1
mucosal or sexual infection, and these submucosa-located DCs
are among the early targets for virus and subsequently contribute
to the spread of HIV-1 infection to CD4� T cells (42, 43, 46–49).
Both infectious particles captured during HIV-1 exposure and
newly synthesized progeny virions could be transferred by DCs to
T cells (39, 42, 50). Several host cellular HIV-1 attachment factors
(HAFs) for mediating HIV-1 capture through interactions with
glycosphingolipids in the virus lipid bilayer have been identified.
These HAFs include the C-type lectin receptors DC-specific inter-
cellular adhesion molecule 3 (ICAM3)-grabbing nonintegrin
(DC-SIGN), langerin, DC immunoreceptor (DCIR; also known
as CLEC4A), mannose receptor, and heparan sulfate proteoglycan
(HSPG) molecules and �4�7 integrins (39, 42, 45, 51–55). Viruses
could be transferred via the infectious synapses formed between
DC and CD4� T target cells or via the exosome secretion pathway
(39, 41, 47, 56, 57). Lipopolysaccharide (LPS)-matured DCs sig-
nificantly facilitated HIV-1 endocytosis and efficiently concen-
trated HIV-1 at the infectious synapses and thereby enhanced viral
transmission (39, 41). C-type lectin receptor sialic acid-binding
Ig-like lectin-1 (Siglec-1; also known as CD169) expressed on
LPS-matured DCs, which could be induced by type 1 interferon
for expression, was recently shown to mediate HIV-1 capture and
spread (58).

In this study, we demonstrated that blood-circulating granu-
locytes, particularly basophils, can capture HIV-1 particles and
transfer them to CD4� T cells for robust infection. Additionally,
the various HAFs expressed on cell surfaces mediated viral bind-
ing and transfer. We also found that blood basophil frequencies
are similar in patients at different stages of HIV infection; thus,
blocking the capacity of the basophils for capturing and transfer-
ring virus to T cells may form a new therapeutic strategy.

MATERIALS AND METHODS
Ethics statement. The blood samples and clinical data were collected
from HIV-1-infected individuals and healthy donors by licensed physi-
cians at The Third People’s Hospital in Kunming, Yunnan, China. The
study was approved by the Medical Ethics Review Committee of The
Third People’s Hospital, and signed informed consent was obtained from
each of the participants.

Cell culture. A Ficoll-Paque density gradient medium was used to
separate peripheral blood mononuclear cells (PBMCs) from fresh buffy
coats collected from healthy donors. Basophils were negatively selected
from PBMCs using Basophil Isolation kit II (Miltenyi Biotec) and main-

tained in RPMI 1640 medium in the presence of 10 ng/ml of recombinant
human IL-3 (rhIL-3). Blood constituents containing a mixture of eryth-
rocytes and granulocytes were harvested and then added to dextran 2000
at a concentration of 6% to aggregate and deplete the erythrocytes. Neu-
trophils and eosinophils were further separated using anti-CD16 anti-
body-coated magnetic beads (Miltenyi Biotec) as described in previous
studies (59, 60). Neutrophils were maintained in RPMI 1640 medium
supplemented with 100 ng/ml of granulocyte-macrophage colony-stim-
ulating factor (GM-CSF), and eosinophils were maintained in RPMI 1640
medium supplemented with 20 ng/ml of rhIL-3 and 20 ng/ml of GM-CSF.
CD14� monocytes were isolated from PBMCs using anti-CD14 antibody-
coated magnetic beads (Miltenyi Biotec) and treated with 50 ng/ml of
GM-CSF and rhIL-4 for 5 days to generate dendritic cells, as described in
previous studies (41, 61). Primary CD4� T lymphocytes were purified
from PBMCs using anti-CD4 antibody-coated magnetic beads (Miltenyi
Biotec). The Hut/CCR5 CD4� T-lymphocyte cell line was generously
provided by Li Wu (The Ohio State University, USA) (41). All cytokines
were purchased from R&D Systems.

HIV-1 stocks. Pseudotyped single-cycle-infectious HIV stocks were
generated via calcium-phosphate cotransfection of HEK293T cells with
pLAI-�Env–Luc and plasmids expressing JRFL (CCR5-tropic) or HXB2
(CXCR4-tropic) HIV envelope proteins (Env), as described previously
(41). HIV-like particles (VLPs) was generated by cotransfecting HEK293T
cells with a plasmid containing Gag-green fluorescent protein (Gag-GFP)
and plasmids expressing JRFL, HXB2, and CNE3 (CCR5-tropic) HIV
envelope proteins as reported previously (62). The plasmid expressing
CNE3 envelope protein, cloned from an HIV-1 isolate circulating in
China (63), was provided by Lin-Qi Zhang (Tsinghua University, China).
The replication-competent HIV-1-AD8 (CCR5-tropic) virus was pro-
duced by transfection with the pNLAD8 vector containing HIV-1 proviral
DNA. Cell-free supernatant was harvested, filtered, and titrated using a
p24gag capture enzyme-linked immunosorbent assay (ELISA).

Flow cytometry. Cells were stained with specific monoclonal antibod-
ies (MAbs) or isotype-matched IgG controls. The staining was performed
using MAbs directed against the following human molecules (clone num-
bers and sources are given in parentheses): peridinin chlorophyll protein
(PerCP)-Cy5.5-CD123 (6H6; eBioscience); allophycocyanin (APC)-
BDCA2 (AC144; MACS); phycoerythrin (PE)-CD203c (NP4D6; Bielefeld);
APC-FcεR1� (AER-37; eBioscience); APC-CD15 (VIMC6; MACS); PE-
CD125 (A14; BD); PE-CD4 (L3T4; eBioscience); APC-CXCR4 (12G5; BD
Pharmingen); APC-Cy7-CCR5 (2D7; BD Pharmingen); PE–DC-SIGN
(eB-h209; eBioscience); and fluorescein-DCIR (50586; R&D Systems).
Purified unlabeled antibodies directed against human DC-SIGN (120507;
Abcam), HSPG (A7L6; Abcam), �4 (EPR1355Y; Abcam), and �7
(EP5948; Abcam) were used in some of the experiments, and secondary
anti-mouse IgG-fluorescein isothiocyanate (FITC) or anti-rat IgG-FITC
was used for detection. In the appropriate experiments, human IgE pro-
tein (ab90392; Abcam) was used first, followed by PE-conjugated anti-
human IgE antibodies (MHE-18; Biolegend). The stained cells were ana-
lyzed using a Fortessa flow cytometer (BD Pharmingen) with FlowJo 7.6.1
software.

HIV-Gag-GFP/VLP or gp120 binding assay. The granulocytes or
monocyte-derived dendritic cells (MDDCs) were incubated with the
VLPs (40 ng p24gag) for 1 h at 4°C and then washed. The amount of

control to detect nonspecific binding. Trypsin was used to treat the cells for 5 min at room temperature to remove surface-bound VLPs. The percentage of
GFP-positive cells is labeled, and the results for at least four donors are summarized and analyzed in panel C. *, P � 0.05; **, P � 0.01; **, P � 0.001 (representing
statistically significant differences in a paired t test). Bas, basophils; Neu, neutrophils; Eos, eosinophils. (D) Association of HIV-1 VLPs with basophils at 37°C.
(E) CD125 expression upon trypsin treatment. The whole-blood cells were treated with 0.25% trypsin (W/Trypsin) for 5 min at room temperature or left
untreated (W/O Trypsin), and then CD125 was immunostained with specific antibodies, followed by the secondary antibodies, the population of granulocytes
was gated, and the CD125 level on either eosinophils or neutrophils was analyzed using flow cytometry. FSC, forward scatter; FSC-H, forward-scattered light
height. (F) Confocal microscopy was used to observe the basophil-mediated uptake of HIV-Gag-GFP/JRFL VLP. (G) The basophil-mediated uptake of
HIV-1-AD8 was visualized by TEM. (H) Binding of gp120 on basophils. The recombinant gp120 of HIV-1 JRFL or HXB2 was added to purified basophils, which
were then immunostained with anti-gp120 antibodies, followed by secondary antibodies. The cells were examined using flow cytometry. Positive percentages for
immunostaining are noted, and results from one donor representative of four are shown.
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Gag-GFP associated with the cells was quantified by flow cytometry, and
the mean fluorescence intensity was calculated. The cells were treated with
0.25% trypsin (without EDTA) (Invitrogen) for 5 min at room tempera-
ture to remove VLPs bound to the cell surface. The viral particle bound to
cell surface was also visualized using confocal microscopy and transmis-
sion electron microscopy (TEM) as described below. To perform the
HIV-1 gp120 binding assay, the cells were incubated with 5 �g/ml gp120
(JRFL or HXB2) (eEnzyme) in adherent buffer (1 mM CaCl2, 2 mM
MgCl2, 5% bovine serum albumin [BSA], pH 7.4) for 1 h at 4°C. The cells
were then fixed with 4% paraformaldehyde (PFA) (Sigma-Aldrich) for 10
to 20 min and stained with goat anti-gp120 antibodies (SAB3500463;
Sigma-Aldrich). Subsequently, the cells were stained with FITC-conju-
gated secondary anti-goat antibodies (sc-2356; Santa Cruz Biotechnol-
ogy).

HIV-1 transmission and enhancement assay. The HIV-1 transmis-
sion assay was performed using a luciferase reporter system as previously
described (41). In brief, the donor cells (2 � 105) were loaded with pseu-
dotyped, single-cycle-infectious, luciferase-containing HIV-luc/JRFL or
HIV-luc/HXB2 (10 ng p24gag) reporter virus, separately, for 2 h at 37°C,
washed thoroughly, and then cocultured with Hut/CCR5 (2 � 105) cells
for 3 days or with phytohemagglutinin (PHA)-P-stimulated primary
CD4� T cells (2 � 105) for 5 days. Enhancement assays were performed as
previously described (56, 64); briefly, HIV-luc/JRFL (1 or 4 ng p24gag) (i)
was loaded to basophils (2 � 105) for 2 h and the pulsed basophils were
cocultured with Hut/CCR5 cells for an additional 2 days or (ii) was added
directly to Hut/CCR5 cells for 2 days of infection. A commercially avail-
able kit (Promega) was used to analyze viral infection by measuring lucif-
erase activity in the cell lysate.

To perform the transmission blocking assay, some of the donor cells
were treated prior to viral inoculation with 10 �g/ml of anti-HSPG MAbs
(A7L6; Abcam), anti-DC-SIGN antibodies (120507; Abcam), and anti-
DCIR antibodies (216110; R&D), or with 20 �g/ml of mannan, for 1 h at
4°C. The others were treated with 10 mM EGTA during viral inoculation.
In some of the experiments, 0.25% trypsin was used to treat the cells for 5
min at room temperature to remove cell surface-bound viruses before
coculturing. As displayed in the figures and described previously (41),
transwell plates with a 0.4-�m-pore-size membrane were used to separate
the donor cells from the target cells.

Confocal microscopy. The granulocytes were incubated with 40 ng
p24gag HIV-Gag-GFP/JRFL VLP for 1 h and then seeded onto poly-L-
lysine-coated microscope slides (PolyScience). The cells were fixed
with 4% PFA for 10 min at room temperature and immunostained
with purified MAbs (1 �g/ml) against human DC-SIGN (120507; Ab-
cam), DCIR (216110; R&D), HSPG (A7L6; Abcam), �4 (EPR1355Y;
Abcam), or �7 (EP5948; Abcam), and the secondary antibody Alexa
546-labeled goat anti-mouse IgG (Invitrogen) (1 �g/ml) was used for
immunostaining. The nuclei were stained with DAPI (4=,6-diamidino-
2-phenylindole).

To enable the formation of infectious synapses, the virus-loaded gran-
ulocytes were first cocultured with Hut/CCR5 cells for 30 min in polysty-
rene tubes at 37°C before being seeded on slides. The cells were then fixed
with 4% PFA for 10 min or 2 h at room temperature. Purified MAbs
against human FcεR1� (9E1; Abcam), �-tubulin (clone SAP.4G5; Sigma-
Aldrich), DC-SIGN (120507; Abcam), and CD4 (clone Q4120; Sigma-
Aldrich) were added first, and then the secondary antibodies Alexa 546-
labeled goat anti-mouse IgG or Alexa 350-labeled goat anti-mouse IgG
(Invitrogen) (1 �g/ml) were used for immunostaining. All of the slides
were mounted in a fluorescent mounting medium (Dako) and observed
under a laser scanning confocal microscope (Leica SP5).

TEM. The use of transmission electron microscopy (TEM) to visu-
alize the interactions between HIV-1 and host cells has been described
in a previous publication (41). Briefly, granulocytes were pulsed with
replication-competent HIV-1-AD8 (5 ng p24gag), and the virus-loaded
granulocytes were cocultured with Hut/CCR5 cells for 1 h before fix-

ation. Thin sections were examined using a Jeol JEM-1230 TEM oper-
ating at 100 kV.

Statistical analysis. SigmaStat software was used to perform paired
and unpaired t tests to analyze statistically significant differences.

RESULTS
Blood-circulating granulocytes express HAFs. The buffy coats
collected from the healthy donors were separated using a Fi-
coll-Paque density gradient medium, and a layer of PBMCs was
harvested, along with the constituents containing a mixture of
erythrocytes and granulocytes (Fig. 1A). Basophils were en-
riched directly from the PBMCs by negative isolation, using
Basophil Isolation kit II. During this process, T cells, NK cells,
B cells, monocytes, dendritic cells, erythroid cells, platelets,
neutrophils, and eosinophils were depleted by a cocktail of
biotin-conjugated antibodies against CD3, CD4, CD7, CD14,
CD15, CD16, CD36, CD45RA, HLA-DR, and CD235a followed
by anti-biotin antibody-coated magnetic beads. More than
98% of the basophils isolated presented a CD123� CD203c�

BDCA2	 cell phenotype and expressed the FcεR1 high-affinity
IgE receptor (Fig. 1B). The basophils were also shown by TEM
to exhibit phenotypes with polylobed nuclei and condensed
chromatin patterns (Fig. 1C). The constituents containing
erythrocytes and granulocytes were added to dextran to aggre-
gate and deplete the erythrocytes. The remaining granulocytes
were distinguished by immunostaining with anti-CD125 anti-
bodies, as eosinophils, unlike neutrophils, express a high level
of CD125 on the cell surface (65) (Fig. 1A).

First, the expression of HIV-1 (co)receptors was measured.
The three types of granulocyte were immunostained with specific
antibodies and detected by flow cytometry. The eosinophils were
gated as CD125� granulocytes and the neutrophils as CD125	

granulocytes. None of the granulocytes collected from the tested
donors were observed to express the CD4 molecule. All of the
granulocytes expressed CCR5, but only the basophils expressed
CXCR4 (Fig. 1D).

In addition to entry receptors, viruses subvert a wide variety of
molecules expressed on the cell surface as viral attachment recep-
tors, such as HSPG, lectins, integrins, scavenger receptors, sialic
acids, and glycolipids and other carbohydrate moieties (66–71).
HSPG molecules, �4�7 integrins, and the C-type lectins of DC-
SIGN, DCIR, and mannose receptors have been shown to bind
with HIV-1 gp120 (39, 51–55). We found that the basophils ex-
pressed multiple HAFs, such as DC-SIGN, DCIR, HSPG, and
�4�7 integrin. The CD125	 neutrophil granulocytes expressed
DCIR, and the CD125� eosinophils expressed �4�7 integrin (Fig.
1D). Together, these data demonstrate that granulocytes express a
variety of HAFs on their surface.

Basophils efficiently capture HIV-1 particles on the cell sur-
face, whereas neutrophils perform viral capture less efficiently.
As multiple HAFs are expressed on granulocytes, it is impor-
tant to measure which ones mediate viral binding. Purified
basophils and a mixture of eosinophil and neutrophil granulo-
cytes were incubated with VLPs containing HIV-Gag-GFP. The
VLPs were pseudotyped with envelope proteins of JRFL, HXB2,
or CNE3, and the VLPs/�Env that did not incorporate HIV-1
envelope proteins were used to monitor nonspecific binding
(Fig. 2A). At 4°C, basophils were the most efficient cells for VLP
capture; neutrophils bound fewer VLPs, and eosinophils dis-
played little capacity for VLP binding (Fig. 2B and C). No bind-
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ing was observed with the VLP/�Env, indicating that the bind-
ing was envelope dependent (Fig. 2B). The majority of the cell-
associated VLPs could be removed by trypsin digestion at 4°C
(Fig. 2B), and when the temperature was shifted to 37°C to
enable endocytosis, trypsin digestion also removed the major-
ity of the basophil-captured VLPs (Fig. 2D). These findings
demonstrate that the VLPs were bound preferentially to the cell
surface. Trypsin treatment could remove some molecules from
the cell surface (41) but did not alter the proportions of
CD125-positive and -negative cells, as shown in Fig. 2E.

Confocal microscopy was used to observe the binding of
VLPs to the cell surface of basophils (Fig. 2F), and replication-
competent HIV-1-AD8 was used to visualize the binding of
virus to basophils under TEM (Fig. 2G). Condensed chromatin

of the basophils was observed (Fig. 2G). To confirm that the
basophil-mediated VLP binding was envelope dependent, we
examined the binding of recombinant HIV-1 gp120 protein to
basophils. Both HIV-1 JRFL-derived gp120 glycoprotein and
HXB2-derived gp120 glycoprotein were found to bind to baso-
phils (Fig. 2H).

Collectively, these data demonstrate that basophils were re-
sponsible for the most efficient capture of HIV-1 particles on
the cell surface and that this process was HIV-1 envelope de-
pendent.

The HIV-1 bound on basophils whose spread was mediated
by HAFs could trans-infect CD4� T cells. We found that granu-
locytes express a variety of HAFs on the cell surface (Fig. 1D) and
that basophils are responsible for the most efficient capture of

FIG 3 The colocalization of HIV-VLP with HAFs. Purified basophils were incubated with HIV-Gag-GFP/JRFL VLP (40 ng p24gag) for 1 h at 4°C and seeded on
poly-L-lysine-coated microscope slides. Cells were fixed and immunostained with specific antibodies against human DC-SIGN, HSPG, DCIR, and �4 or �7
integrin followed by secondary Alexa 546-labeled goat anti-mouse IgG antibodies. Nuclei were detected with DAPI, and cells were observed by confocal
microscopy. Bar, 5 �m. DIC, differential interference contrast.
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FIG 4 Granulocyte-mediated HIV-1 transmission. (A) Basophil-mediated HIV-1 transmission to CD4� T cells. The purified basophils were incubated with
single-cycle-infectious HIV-luc/JRFL or HXB2 for 2 h. The virus-loaded basophils were then washed and cocultured with and without Hut/CCR5 cells for 3
days. The cells were lysed to measure luciferase activity and thereby quantify HIV-1 infection. (B) Summary of data collected on basophil-mediated HIV-1
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HIV-1 particles (Fig. 2B and C). Next, we observed the overlay of
HIV-VLP with HAFs under a confocal microscope. Colocaliza-
tions of HIV-VLPs with all tested HAFs were observed on baso-
phils (Fig. 3), indicating the role of HAFs in viral capture.

To investigate whether basophils are capable of transferring
surface-bound viruses to CD4� T cells, purified basophils were
pulsed with pseudotyped single-cycle HIV-luc/JRFL or HIV-luc/
HXB2 viruses and then cocultured with CD4� T cell Hut/CCR5
for 3 days. The infection caused by the transfer of HIV-1 to the
Hut/CCR5 cells was monitored by measuring luciferase activity.
Basophils were found to transfer HIV-1 to the cocultured Hut/
CCR5 cells, leading to robust infection (Fig. 4A and B), although
HIV-1 spread was mediated less effectively by the basophils than by
the autologous MDDCs (Fig. 4B), and, as expected, no obvious viral
replication was observed in the basophils (Fig. 4A and B). We also
performed an enhancement assay to show significantly increased vi-
ral infection mediated by cell-associated HIV-1 compared with cell-
free viruses (Fig. 4C). Additionally, the PHA-activated primary
CD4� T cells were used as the target cells to demonstrate the viral
transmission mediated by basophils (Fig. 4D).

Treating the virus-harbored basophils with trypsin before
coculturing them with the T cells was found to significantly di-
minish HIV-1 transmission (Fig. 4E), suggesting that surface-
bound HIV-1 particles play the greatest role in viral transfer. The
incubation of basophils with mannan or antibodies against HSPG,
DC-SIGN, or DCIR before viral inoculation was found to signifi-
cantly diminish basophil-mediated HIV-1 transmission (Fig. 4F,
G, and H), demonstrating that these HAFs mediate viral spread.
The binding of glycoprotein mediated by HSPG and C-type lectin
can be blocked by prior treatment with mannan (55, 72, 73). We
found that prior treatment with mannan almost completely erad-
icated basophil-mediated HIV-1 transmission (Fig. 4F and G),
indicating that HSPG, DC-SIGN, and DCIR molecules might
have the most prominent roles in HIV-1 capture and spread. As
glycoprotein capture by C-type lectins is Ca2� dependent (45), the
addition of EGTA to chelate Ca2� ions during viral inoculation
with basophils impaired gp120 capture, leading to diminished vi-
ral transmission (Fig. 4F and G).

The capacity of neutrophils and eosinophils to mediate HIV-1
trans-infection was also investigated. Neutrophils were found to be
much less frequently involved than basophils in HIV-1 binding, and
eosinophils showed little or no capacity to bind HIV-1 (Fig. 2B and
C). CD125	 neutrophils exhibited the CD16� phenotype, whereas
CD125� eosinophils exhibited the CD16	 phenotype. Therefore,
neutrophils and eosinophils could be separated using anti-CD16�

antibody-coated magnetic microbeads (Fig. 4I). The purity was con-
firmed by flow cytometry, as the CD16� granulocyte population
showed a neutrophil phenotype of CD125	 CD15� FcεR1	 and the
CD16	 granulocyte population presented an eosinophil phenotype
of CD125� CD15�/	 FcεR1� (Fig. 4J and K). The HIV-1 spread

mediated by neutrophils or eosinophils was much less extensive than
that mediated by basophils (Fig. 4L), which might have been due to
the much lower level of viral binding on neutrophils and eosinophils
(Fig. 2B and C). Together, these data demonstrate that human blood-
circulating basophils can mediate HIV-1 trans-infection of CD4� T
cells through viral attachment factor-dependent viral binding on the
cell surface.

Contact between basophils and T cells and formation of the
infectious synapses facilitate viral trans-infection. To determine
whether viral transfer requires direct contact between basophils
and CD4� T cells, a transwell culture plate with a 0.4-�m-pore-
size membrane was used to separate the virus-loaded basophils
from the Hut/CCR5 target cells. The basophil-mediated transmis-
sion of both HIV-luc/HXB2 and HIV-luc/JRFL ceased in the
transwell assay (Fig. 5A), suggesting that contact between baso-
phils and CD4� T cells is required for viral transfer.

In the study of DC-mediated HIV-1 trans-infection of T cells,
the infectious synapses formed between DCs and T cells appear to
be crucial in viral trans-infection (39, 41, 56). The recruitment of
HIV-1 to the basophil-CD4� T cell contact sites that form infec-
tious synapses was also visualized using confocal microscopy. The
Vpr-GFPs incorporating replication-competent HIV-1-AD8 vi-
ruses were found to be recruited to the basophil-CD4� T cell
contact sites (Fig. 5B and C). The infectious synapses were also
observed under TEM, and the basophils were characterized by the
presence of typical cytoplasmic granules (Fig. 5D). Numerous
HIV-1-AD8 viruses were observed at the basophil-CD4� T cell
contact sites (Fig. 5D).

Analysis of infectious synapses between DCs and T cells have
revealed the recruitment of HIV-1 receptors and coreceptors to
conjugate sites (56); we also observed that CD4 molecules on T
cells were recruited to the interface upon which the basophils con-
centrated viral particles (Fig. 5E). Moreover, the DC-SIGN recep-
tor and even the FcεR1 receptor on the basophils were recruited to
conjugate sites (Fig. 5C and F).

Together, these data suggest that direct contact between baso-
phils and CD4� T cells and the formation of infectious synapses
facilitate viral trans-infection where HIV-1 particles, viral recep-
tors, and the virus-loaded HAFs have been concentrated.

The basophil frequency remained fairly stable during disease
progression. To determine the effect of AIDS disease progression
on granulocyte frequency, the complete blood counts of HIV-1
individuals with or without opportunistic infections were ana-
lyzed. As expected, patients with opportunistic pathogens dis-
played a significant reduction in levels of CD4� and CD8� T
lymphocytes and a heightened level of viral load compared with
HIV-1-infected individuals without opportunistic infections (Fig.
6A). HIV-1 infection was found to profoundly deplete the lym-
phocyte subpopulation, and this decline in lymphocyte count was
exacerbated in patients with opportunistic infections (Fig. 6B).

transmission from seven donors and comparison with data on autologous MDDCs. (C) Enhancement assay. HIV-luc/JRFL-pulsed basophils were cocultured
with Hut/CCR5 cells, or the same amounts of cell-free viruses were added directly to T cells, and viral infection was measured as described above after 2 days of
culture. (D) PHA-P-activated primary CD4� T cells were used as the target cells to investigate basophil-mediated trans-infection by HIV-luc/HXB2. Results from
two donors are shown. (E) Treating virus-loaded basophils with trypsin before coculture impairs HIV-1 transmission. (F, G, and H) Treatment with specific
antibodies or mannan before viral inoculation and addition of EGTA during viral incubation diminish basophil-mediated HIV-1 transmission. (I) Procedure for
the separation of neutrophils and eosinophils, using anti-CD16 antibody-coated magnetic beads. (J and K) Immunostaining with specific antibodies to identify
the phenotypes of the neutrophils and the eosinophils by detection using flow cytometry. (L) Comparison of levels of HIV-1 transmission mediated by different
types of granulocyte; results from one donor representative of seven are shown. cps, counts per second. *, P � 0.05; **, P � 0.01; **, P � 0.001 (representing
statistically significant differences in a paired t test).
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HIV-1 infection and the acquisition of opportunistic pathogens
had no obvious effects on basophil count (Fig. 6B), whereas a
trend toward reduced numbers of eosinophils and neutrophils
was seen in HIV-1-infected individuals compared with uninfected
donors (Fig. 6B). Neutrophil death induced by HIV-1 infection
has been reported previously (31, 32). However, counts of neutro-
phils showed an upward trend in patients upon their acquiring
opportunistic infections (Fig. 6B). This accumulation of neutro-
phils may reflect the body’s response to invading opportunistic
pathogens.

The plasma CD4� T lymphocyte count was usually used to
characterize disease progression. A significant increase in viral
load and the progressive depletion of lymphocytes were observed
in accompaniment with disease progression (Fig. 6C and D),
whereas the frequencies of all three types of granulocytes re-

mained fairly stable in patients with different levels of CD4� T cell
counts (Fig. 6E). Taken together, these patient analyses revealed
that the count of blood-circulating granulocytes, particularly of
basophils, remains fairly stable during disease progression.

DISCUSSION

In this study, we investigated the role of peripheral blood granu-
locytes in HIV-1 dissemination. We demonstrated that circulating
basophils can capture HIV-1 particles and mediate viral trans-
infection of encountered CD4� T cells and that HAFs expressed
on the cell surface mediate viral binding and transfer; that neutro-
phils can also capture HIV-1 particles and transfer them to T cells
but do so less efficiently than basophils; and that eosinophils rarely
if ever bind HIV-1 particles. Granulocyte cell counts, particularly
those of basophils, were found to remain fairly stable during

FIG 5 Infectious synapses formed between basophils and CD4� T cells appear necessary for HIV-1 trans-infection. (A) The separation of virus-loaded
basophils from T cells terminates HIV-1 transmission. Transwell plates with 0.4-�m-pore-size membranes were used to separate the basophils from
Hut/CCR5 cells, and viral infection was assessed. ***, P � 0.001 (representing statistically significant differences in a paired t test). Mock, the coculture
of virus-unloaded basophils with Hut/CCR5. Results represent one experiment representative of four repeats. (B, C, E, and F) The recruitment of viruses,
HAF, or viral receptor to conjugate sites. The basophils were incubated with HIV-1 Vpr-GFP/AD8 or HIV-Gag-GFP/JRFL (40 ng p24gag) for 2 h at 37°C
and cocultured with Hut/CCR5 cells for 30 min. Cells were fixed and immunostained first with specific antibodies and subsequently with the secondary
antibodies. The nuclei were labeled with DAPI. Bar, 2 �m. (D) Formation of infectious synapses between basophils and CD4� T cells visualized under
TEM. Replication-competent HIV-1-AD8 viruses in 5-ng p24gag amounts were cultured with basophils for 2 h at 37°C. The virus-loaded basophils were
then washed and cocultured with Hut/CCR5 for 30 min. Cells were fixed, sectioned, and visualized by TEM. Empty arrows indicate HIV-1 recruited to the
contact sites, and the white arrow indicates endocytosed viral particles. Bar, 0.5 �m.
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FIG 6 Analysis of granulocyte frequency in HIV-1-infected individuals. The blood counts of HIV-1-infected individuals and uninfected healthy donors were
analyzed. (A and B) Lymphocyte and granulocyte counts of patients with or without the emergence of AIDS-associated pathogens compared with those of
uninfected donors. Plasma viral load was also analyzed. Opport., opportunistic infections; Non-Opport., nonopportunistic infections. (C, D, and E) Plasma viral
load (C), lymphocyte counts (D), and granulocyte counts (E) in patients with a range of CD4� T counts. *, P � 0.05; **, P � 0.01; **, P � 0.001 (representing
statistically significant differences in a paired t test).
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HIV-1 disease progression. This finding might suggest that gran-
ulocytes, particularly basophils, provide a stable cellular base for
progressively capturing and thus spreading viruses.

The three types of granulocytes under study expressed one or
several types of HAFs known to be responsible for HIV-1 capture
and spread. Some viral attachment factors have greater binding
affinity with gp120 than others (72), and some are better able to
distinguish gp120 from other HIV-1 subtypes (54). DCIR dis-
played a lower binding affinity than DC-SIGN with gp120 (74),
which may explain the much lower frequency of viral capture
mediated by DCIR-expressing neutrophils than was mediated by
DC-SIGN- and other HAF-expressing basophils. Activated �4�7
integrins have been shown to recognize different subtypes of
HIV-1 gp120. The engagement of �4�7 by gp120 may rapidly
activate leukocyte function-associated antigen 1 on CD4� T cells,
facilitating the formation of cell-cell conjugation and viral spread
(54). We also found that both basophils and eosinophils expressed
�4�7 integrins. The naive stimulated eosinophils isolated in this
study may have remained in the inactive form of �4�7 het-
erodimers, preventing them from performing HIV-1 binding.
These viral attachment factors provide a feasible target of inter-
ventions to combat viral transmission. In a recent report, the ad-
ministration of anti-�4�7 monoclonal antibodies in rhesus ma-
caques prior to and during acute infection by SIVmac251 was
found to block viral mucosal transmission and maintain CD4� T
cell counts in both blood and gut-associated lymphoid tissue (75).

Surface-bound HIV-1 particles were found to account for the
granulocyte-mediated transfer of HIV-1. The formation of infec-
tious synapses to which numerous intact viral particles and viral
receptors can be recruited is an efficient means of mediating viral
transmission and thus occurs widely in host cells (56, 76, 77).
Basophils can function as antigen-presenting cells, and allergen-
stimulated basophils were found to upregulate major histocom-
patibility complex (MHC) class II expression and form immuno-
logical synapses with T cells to induce a Th2 response (6, 78–80).

Neutrophils, the most abundant WBCs, have been shown to
interact in various ways with HIV-1 (27, 30, 81–83). In this report,
we provide further evidence that neutrophils are capable of bind-
ing, transferring, and thus spreading HIV-1, although they do so
less efficiently than basophils. Neutrophil-mediated HIV-1 bind-
ing and transmission can be enhanced by tumor necrosis factor
alpha (TNF-�) stimulation (84).

Our analysis of HIV-1-infected individuals revealed that the
basophil cell count remains fairly stable during disease progres-
sion. Therefore, basophils might provide a stable cellular base for
progressive viral capture and spread. HIV-1 proteins gp120 and
Tat have been reported to induce the degranulation of basophils
and thus the release of chemokines and cytokines, contributing to
the creation of an allergy-like Th2 bias in AIDS patients (34, 35).
Further elucidation of the role of HIV-1 in modulating the release
and de novo synthesis of various intracellular granules and cyto-
kines from basophils and of the effect of HIV-1 on basophil func-
tions such as phagocytosis would increase understanding of
HIV-1 pathogenesis.

Taken together, our results offer novel insights into the roles of
peripheral blood granulocytes, particularly basophils, in HIV-1
dissemination. Our findings suggest that blocking cell-associated
HIV-1 transmission to combat viral spread is an important strat-
egy of anti-HIV therapy.
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