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Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the
vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the
treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aerugi-
nosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo
antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced
to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results

obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.

Bacteriophages, or phages, are bacterial viruses that were dis-
covered almost a century ago (1, 2). These viruses are consid-
ered to be among the most ubiquitous and diversified organisms
on Earth and are believed to exist wherever their hosts thrive (3—
6). According to their life cycles, phages can be distributed into
two classes: virulent phages (strictly lytic) and temperate phages
(7). Lytic phages adsorb to the host cell surface, inject and replicate
their DNA, and then induce host cell lysis, resulting in the release
of progeny phages that can start another round of infection (7).
Temperate phages generally integrate their genome into the host
chromosome or sometimes maintain it as a plasmid which is
transmitted, by cell division, to the daughter cells (7, 8). For ther-
apeutic purposes, only lytic phages are of interest.

The use of phages as antimicrobial agents was proposed in 1917
by Félix d’Hérelle, and the early results reported were promising
(2,9, 10). However, after the arrival of the golden era of antibiot-
ics, together with the scientific controversy regarding the use of
phages due to poorly controlled trials, the interest in phage ther-
apy decreased sharply (11). Antibiotics were cheap and extremely
effective against bacterial diseases and thus were considered the
perfect solution to fight bacterial diseases. Consequently, follow-
ing World War II, phage therapy was abandoned in the Western
world but kept being used in Poland and the Soviet Union (11—
13). The inadequate use of antibiotics has significantly increased
the emergence of multidrug-resistant (MDR) bacteria, and new
alternative strategies for antibiotherapy are highly desired by the
worldwide scientific community (14-16). Consequently, a re-
newed interest was given to phages and they have been again come
to be considered a good option for the treatment of bacterial in-
fections (17-20).

Bacteriophages specific for the Pseudomonas genus were first
described in the middle of the 20th century (21, 22), and there are
currently (27 January 2015) 137 completely sequenced Pseudomo-
nas phage genomes found in public databases. Since Pseudomonas
aeruginosa is one of the most problematic opportunistic patho-
gens involved in hospital-acquired infections (23-26), large frac-
tions of the phage application studies and genome sequencing
projects have been focused on this bacterium (3, 5, 27-33).

This review gathers information about the huge diversity of P.
aeruginosa phages, and it further describes in vitro and in vivo
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phage therapy studies designed to defeat this problematic bacte-
rium that have been reported throughout the years.

OVERVIEW OF P. AERUGINOSA CLINICAL IMPACT:
VIRULENCE FACTORS AND ANTIMICROBIAL RESISTANCE

P. aeruginosa is a Gram-negative opportunistic bacterial pathogen
frequently present in diverse environments such as water, soil, and
plants (34, 35) that is able to infect different organisms, including
plants, animals, and humans (34, 36, 37). This opportunistic bac-
terium is one of the most common causes of health care-associ-
ated diseases, including pneumonia, bloodstream infections, uri-
nary tract infections, and surgical site infections, especially in
patients with compromised host defenses (34, 35, 37, 38). Most of
the infections caused by P. aeruginosa are strikingly difficult to
treat using conventional antibiotic therapies, since this microor-
ganism displays high intrinsic resistance to a wide range of antibi-
otics, including aminoglycosides, fluoroquinolones, and B-lac-
tams (37), which results in significant morbidity and mortality
rates (35). According to the U.S. Centers for Disease Control and
Prevention, it is estimated that 51,000 health care-associated P.
aeruginosa infections occur each year in the United States alone
(38). About 13% of these infections are multidrug resistant, with
roughly 400 deaths per year attributed to such infections (38). In
addition to possessing intrinsic resistance mechanisms (37, 39,
40), P. aeruginosa also has other mechanisms that confer resis-
tance to antibiotics (Fig. 1). For instance, this bacterium quickly
develops acquired resistance as a consequence of mutations or
through acquisition of antibiotic resistance genes (37, 39). Fur-
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FIG 1 P. aeruginosa resistance mechanisms.

thermore, the inadequate use of antibiotics or exposure to differ-
ent environmental conditions or stresses has induced the devel-
opment of adaptive resistance (37, 41).

P. aeruginosa possesses an arsenal of virulence factors enabling
it to invade host cells and circumvent host defenses (35, 42). These
mechanisms of virulence include secreted factors such as pro-
teases, elastase, pyocyanin, exotoxin A, phospholipase C, and ex-
oenzyme S and also cell-associated factors such as lipopolysaccha-
ride (LPS), flagella, and pili (35, 43). Many of these virulence
factors are controlled by a cell-cell communication mechanism
known as quorum sensing (QS), which allows bacteria to produce
these factors in a cell density-dependent manner (35, 43, 44).

P. aeruginosa also has an ability to adhere to surfaces, such as
those of medical devices or epithelial cells, and to form biofilms
consisting of microbial communities embedded in a matrix of
extracellular polymeric substances (EPS) (45-49). Biofilms are
frequently associated with chronic infections, since their structure
confers protection of bacterial cells from antimicrobial agents
(50).

All of these virulence factors and resistance mechanisms con-
tribute to increased P. aeruginosa pathogenicity, resulting in infec-
tions that are consequently very hard to treat (23, 37, 39).

P. AERUGINOSA BACTERIOPHAGES

To date, 94.2% of the 137 known phages targeting the Pseudomo-
nas genus have been found to belong to the Caudovirales order
(see Table SI in the supplemental material), which comprises
three families of double-stranded DNA (dsDNA) phages differing
in the characteristics of the phage tail: Podoviridae, with a short
and noncontractile tail; Myoviridae, with a long and contractile
tail, and Siphoviridae, with along and noncontractile tail (3, 5,51).
So far, only 8 nontailed Pseudomonas phage species have been
sequenced: 2 belonging to the Inoviridae family (single-stranded
DNA [ssDNA] phages) (52, 53), 2 belonging to the Leviviridae
family (ssRNA phages) (54, 55), and 4 belonging to the Cystoviri-
dae family (dsRNA phages) (56-58).

According to the data collected, 85% of the sequenced Pseu-
domonas genus phages belonging to the Caudovirales order are
specific for the P. aeruginosa species (Fig. 2A) and the clear major-
ity (approximately 60%) of these are lytic phages whereas 21.8%
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are temperate and 18.2% are unclassified (see Table S1 in the
supplemental material). Among the P. aeruginosa lytic phages,
41% belong to the Myoviridae family and 38% belong to the Podo-
viridae family, and the least representative family is the Siphoviri-
dae (20%). Only 1% of the lytic P. aeruginosa phages are nonclas-
sified (Fig. 2B). The genome size distribution of P. aeruginosa lytic
phages by family is fairly divergent (Fig. 2C), with Myoviridae
phages comprising genome sizes ranging from 64.1 kb to 309.2 kb
whereas the Podoviridae and Siphoviridae phage genomes are
much smaller and are in the ranges of 41.6 to 74.9 kb and 34.5 to
61.1 kb, respectively. P. aeruginosa lytic phages have been isolated
from different sources all over the world (Fig. 2D and E); never-
theless, it seems that sewage, including hospital and wastewater
treatment plant sewage, is the best choice for their isolation
(56%).

IN VITRO PHAGE TRIALS

Many in vitro studies have been conducted in recent years to eval-
uate the potential of phages against P. aeruginosa clinical isolates,
including multidrug-resistant (MDR) strains, in planktonic cul-
tures or even biofilms.

Fu etal. studied the effect of lytic phages in the prevention of P.
aeruginosa biofilm formation in hydrogel-coated catheters. For
this, they pretreated catheters with Myoviridae phage M4 for 2 h
prior to bacterial inoculation and observed a 2.8-log reduction in
the number of viable cells compared with control (untreated)
catheters after 24 h of biofilm formation. However, a regrowth of
biofilms in phage-treated catheters was observed at between 24
and 48 h of biofilm formation. The phage-resistant biofilm iso-
lates were recovered from the pretreated catheters, and, in accor-
dance with their susceptibility profiles with respect to other
phages, a cocktail of five phages was developed. The pretreatment
of catheters with this cocktail resulted in a 3-log reduction of bio-
film cell populations after 48 h, compared with untreated cathe-
ters (32).

Pires et al. used a broad-host-range phage for P. aeruginosa
biofilm control (59). Although significant reductions in the num-
ber of viable cells were observed after 6 h of biofilm treatment, a
resurgence in the number of biofilm cells was observed after 24 h
of biofilm infection, indicating the emergence of phage-resistant
phenotypes (59).

A different approach for the treatment of bacterial infections is
the combination of phages with other antimicrobials. Recently,
Torres-Barceld et al. reported treatment using a combination of
Podoviridae phage LUZ7 and streptomycin against P. aeruginosa
PAO1. An exponential-growth culture of P. aeruginosa was chal-
lenged with either single or combined treatments, and the bacte-
rial population density was tracked over 70 h. The combined ther-
apy revealed a positive synergism resulting in a bacterial density
lower than that seen after the addition of each single treatment
(60).

Knezevic et al. also studied the antimicrobial efficacy of therapy
consisting of P. aeruginosa-specific phages belonging to the Podo-
viridae and Siphoviridae families combined with subinhibitory
concentrations of gentamicin (an aminoglycoside), ceftriaxone (a
cephalosporin), ciprofloxacin (a quinolone), and polymyxin B (a
polypeptide) (61). In their work, the effectiveness of the combined
treatment was determined by the time-kill curve method and only
the combination of the ceftriaxone with one of the phages used in
the study revealed a synergistic effect (61). Another work reported
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a treatment consisting of lytic RNA phages combined with chlo-
rine against P. aeruginosa biofilms that resulted in enhanced effi-
cacy in the reduction of biofilm formation and biofilm eradication
using the combined therapy compared with the use of each ther-
apy alone (62).

The combination of two or more phages with different host
ranges in a single suspension—a phage cocktail—has been re-
ported to be more effective than the use of a single phage alone
(63-65). Accordingly, Hall et al. studied the effect of using one,
two, or four phages, either sequentially or simultaneously, against
P. aeruginosa PAO1 planktonic cultures (66). Multiphage therapy
was revealed to be more efficient in reducing the bacterial density,
and simultaneous application of phages was consistently equal or
superior to sequential application with respect to efficacy (66).

CLINICAL TRIALS OF PHAGES IN ANIMAL MODELS

The efficacy and safety of phage therapy have been analyzed using
in vivo animal models. Most of the P. aeruginosa phage therapy
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clinical animal trials that have been reported in the last decade
were conducted in mouse models and have shown extremely en-
couraging results (Table 1).

Opverall, phage therapy has significantly contributed to control
and even prevention of P. aeruginosa infections in vivo (Table 1).
Regarding the clinical trials in mouse models, most of the reported
cases showed survival rates that ranged between 80% and 100%
after phage treatment, and intraperitoneal or intranasal adminis-
tration seemed to be the most efficient route of administration.

The great potential of phage therapy was also observed in cat-
fish and dogs, since phages were able to successfully treat ulcer-
ative lesions and chronic otitis, respectively. Phages were also able
to increase the life span of both P. aeruginosa-infected wax moth
larvae and P. aeruginosa-infected Drosophila melanogaster. Over-
all, the in vivo studies (Table 1) have demonstrated that broad-
host-range phage cocktails potentiate the efficacy of phage therapy
to control P. aeruginosa infections.
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TABLE 1 Summary of the most relevant studies with targeted P. aeruginosa phage therapy in animal models”

Phage(s) (taxonomy)

Procedure

Result(s)

Reference

Mouse
KPP12 (Myoviridae)

ONH-4 (Myoviridae) and
@OMR299-2 (Podoviridae)

P3_CHA (Myoviridae)

PA1Q (Siphoviridae)

PAK-P1 (Myoviridae)

MPK1 (Myoviridae) and
MPKG6 (Podoviridae)

Cocktail of 3 phages: ATCC
12175-B1, ATCC 14203-
B1, and ATCC 14205-B1

KPP10 (Myoviridae)

Catfish
MBL (Podoviridae)

Wax moth larvae
14/1 (Myoviridae); KZ
(Myoviridae); PNM
(Podoviridae); PT7
(Myoviridae)

Dog
NA

Phage at an MOI of 100 was applied in the corneal
surface of mice 30 min after infection, and the
eyes were examined 1, 3, and 5 days after phage
application

A phage mix suspension with an MOI of 10 was
administered intranasally 2 h after infection

Two doses of phage (MOI of 1 and MOI of 10)
were applied intranasally 2 h after the onset of
infection in the case of curative treatment or 4
days before infection in the case of preventive
treatment

Phages were administered via intraperitoneal
route in normal mice (MOI of 1, 10, and 100)
and neutropenic mice (MOI of 10)

Phages were applied intranasally 2 h after bacterial
infection onset (MOI of 0.1, 1, and 10), with
expts performed for up to 12 days, or phages
were used as a preventive treatment 24 h before
infection (MOI of 10), with expts carried out
during 16 days

Two different doses of phages (MOI of 1 and 10)
were tested by administration through i.m. and
1.p. routes after 6 to 12 h postinfection

A phage cocktail containing 1 X 10® PFU of each
phage was administered i.m., i.p., or s.c.

To evaluate the efficacy of phages against gut-
derived sepsis, 1 X 10'° PFU was orally
administered to each mice 1 day before, 1 day
after, or 6 days after P. aeruginosa inoculation

A phage suspension (10" PFU/ml) was applied on
the infected skin lesion with a cotton swab

Phages were applied by injection in the abdomen
and three treatments were tested: phage ¢KZ
applied alone, all phages applied sequentially,
and all phages applied simultaneously in a
cocktail

Dogs with chronic otitis were treated with a single
dose of a phage cocktail (6 phages), containing
1 X 10° PFU of each phage, by direct
application into the external auditory canal

The treated mice showed only slight corneal opacities on
day 1 which gradually faded by day 5 after treatment;
the infected control mice had most of the corneas
perforated on day 5

The use of the two phages together was able to reduce P.
aeruginosa levels by at least 3 to 4 log units from murine
lungs in 6 h

The curative phage treatment allowed over 95% survival of
mice, and the preventive treatment resulted in 100%
survival in the 16 days of the expt

Immunocompetent mice treated with phage achieved 80%
to 100% survival rates, and no viable bacteria were
found in organ samples after 48 h of the phage
treatment; phage treatment was inefficient in
neutropenic mice infected with P. aeruginosa PAO1
even though it was able to extend their lives for 12 h

100% of the mice treated with an MOI of 10 survived until
the end of the expt; in the preventive treatment, 100%
of pretreated mice survived until the end of the expt,
whereas 100% of untreated mice died within 2 days

The survival rate of mice achieved after 48 h of treatment
with MK1 phage was up to 80% for i.m. administration
or 100% for i.p. administration; the results with phage
MKG6 were significantly lower (about 20% for i.m. and
70% for i.p.)

A single dose of phage cocktail significantly decreased the
mortality of thermally injured P. aeruginosa-infected
mice from 6% survival without treatment to 22% to
87% survival with treatment, depending on the route of
administration

Phage significantly protected mice from mortality,
achieving a survival rate of 66.7% for the phage-treated
group (1 day after infection) vs 0% for the control
group; mice treated with phage also had lower numbers
of viable P. aeruginosa cells in their blood, liver, and
spleen

Phage therapy effectively cured the ulcerative lesions in
infected fish after 8—10 days of treatment, with a 7-fold
reduction of the lesion compared with untreated fish

Phage therapy increased the life span of infected wax moth
larvae: the avg time to death increased from 12.67 h to
26.67 h, 27.33 h, and 33.33 h, respectively, for larvae
treated with ¢KZ, the multiphage sequence, and the
phage cocktail; high phage/bacterium ratios completely
cleared otherwise-lethal infections

48 h after treatment, the clinical score and P. aeruginosa
counts of all isolates from ears significantly decreased
(mean score decrease, 30.1%; mean count decrease,
67%)

67

68

31

69

30

70

29

33

28

66

71
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TABLE 1 (Continued)

Minireview

Phage(s) (taxonomy) Procedure Result(s) Reference
NA A dog with P. aeruginosa chronic bilateral otitis Before phage treatment, the ears were similarly 72
externa was treated with 400 PFU of phage erythematous, with copious discharge; 27 h after
instilled into the right auditory canal treatment, the right ear was dry and did not appear
inflamed, while the left ear (not treated) remained
unchanged; the left ear was then also treated with phage,
which dramatically improved its condition
Drosophila melanogaster
MPKI1 (Myoviridae) and The antibacterial efficacy of phages administered ~ Both phages significantly delayed the PAO1-induced 70

MPKG6 (Podoviridae) by feeding at a concn of 5 X 107 PFU was

evaluated in Drosophila melanogaster systemic

infection

killing, although MPK1 persisted longer than MPK6 in
uninfected D. melanogaster tissue samples

“ MOI, multiplicity of infection; NA, information not available; i.m., intramuscular; i.p., intraperitoneal; s.c., subcutaneous.

CLINICAL TRIALS OF PHAGES IN HUMAN PATIENTS

The therapeutic use of phages started in Paris in 1919 when
d’Herelle used oral phage preparations to treat bacterial dysentery
(73). Patients treated with a single dose of phage preparation
started to recover within 24 h of treatment (11, 20). Later,
d’Herelle also introduced treatment with intravenous phage for
invasive infections (74). However, the first report about the use of
phages to treat bacterial infections in humans was published in
1921 by Bruynoghe and Maisin (9). In that study, phages were
administered by injection to treat staphylococcal skin disease and
clinical improvements were clearly visible within 24 to 48 h (9).
Following those early reports, many other studies have shown that
phages can be used successfully for therapeutic purposes (75, 76).

Even after the arrival of antibiotics, phage therapy continued to
be extensively used to treat bacterial infections in eastern Europe
and the former Soviet Union, and the Eliava Institute in Tbilisi
(Georgia) was one of the crucial centers (11, 77). The increasing
problem of bacterial resistance to antibiotics revitalized interest in
phage therapy, and many clinical trials in humans have been con-
ducted (72, 78-82).

The use of phages against P. aeruginosa has also been examined
in clinical trials. For instance, the efficacy and safety of a therapeu-
tic phage preparation (Biophage-PA) were reported by Wright et
al. (82). According to those authors, 12 patients with antibiotic-
resistant P. aeruginosa chronic otitis who were treated with a single
dose of phage preparation and followed at 7, 21, and 42 days after
treatment (82) showed significant clinical improvements com-
pared to 12 placebo group individuals. Furthermore, no related
side effects or local systemic toxicities were observed, which high-
lights the safety of phage therapy (82).

Previously, Sivera Marza et al. reported the successful topical
use of phage to treat a burn patient who had been colonized by P.
aeruginosa months after skin grafts had been applied (72). In this
case, the purified phage preparation, adsorbed to filter paper discs,
was placed in the patient’s colonized burned areas, and 3 days
later, P. aeruginosa was no further isolated, resulting in a subse-
quent successful grafting (72).

Merabishvili et al. described a quality-controlled small-scale
production of a phage cocktail (BFC-1) for use in human clinical
practice (83). The cocktail was designed to treat P. aeruginosa and
Staphylococcus aureus burn wound infections, and the quality con-
trol parameters of the phage cocktail, such as stability, pyrogenic-
ity, sterility, and cytotoxicity, were evaluated (83). The BFC-1
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phage cocktail was then topically applied in the wounds of nine
acute burn patients with MDR P. aeruginosa and/or S. aureus burn
wound colonization (84). Although that study did not enable any
conclusion regarding the efficacy of the phage cocktail, no adverse
effects or clinical abnormalities were observed after phage appli-
cation (84).

CURRENT CHALLENGES FACED BY PHAGE THERAPY

Despite the remarkable positive results obtained by phage therapy,
there are still some major concerns regarding the use of phages in
clinical practice. The fast development of bacterial resistance to
phage, the immune response that induces the production of anti-
bodies neutralizing phage action, and the safety concerns regard-
ing phage preparations that might contain bacterial endo- and
exotoxins, as well as the limited spectrum of activity, are some of
the major drawbacks of phage therapy that limit its broad appli-
cation. Some of these bottlenecks are already being addressed by
the introduction of molecular biology techniques that enable the
genetic engineering of phage genomes. For example, phages have
been genetically engineered to enhance their performance against
biofilms (85), to improve antibiotic activity (86, 87), and to ex-
pand their host ranges (88—91). The use of well-defined and puri-
fied phage preparations is also crucial for therapeutic applications
and for regulatory approval (83, 92). Furthermore, a deep under-
standing of the phage-host interaction, phage diversity, phage dy-
namics, and genome function is crucial for a better understanding
of the limitations of phage therapy and for designing new strate-
gies to overcome it.

CONCLUDING REMARKS

The continuous development of antibiotic-resistant bacteria, to-
gether with the current low rate of antibiotic discovery, urgently
demands novel and effective strategies to combat bacterial infec-
tions. The huge diversity of phages, the easy discovery of new ones,
their low-cost production, and their effectiveness against the tar-
get bacteria make them a very attractive alternative option to an-
tibiotics.

The in vitro and animal model studies reported to date are good
indicators that phages effectively constitute a powerful tool to
fight P. aeruginosa infections. Early work in human patients also
showed promising results. Furthermore, phages can be used in
combination with antibiotics or other antimicrobials for im-
proved performance.
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