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Abstract: This paper shows how dynamic heart rate measurements that are 
typically obtained from sensors mounted near to the heart can also be 
obtained from video sequences. In this study, two experiments are carried 
out where a video camera captures the facial images of the seven subjects. 
The first experiment involves the measurement of subjects’ increasing heart 
rates (79 to 150 beats per minute (BPM)) while cycling whereas the second 
involves falling heart beats (153 to 88 BPM). In this study, independent 
component analysis (ICA) is combined with mutual information to ensure 
accuracy is not compromised in the use of short video duration. While both 
experiments are going on measures of heartbeat using the Polar heart rate 
monitor is also taken to compare with the findings of the proposed method. 
Overall experimental results show the proposed method can be used to 
measure dynamic heart rates where the root mean square error (RMSE) and 
the correlation coefficient are 1.88 BPM and 0.99 respectively. 
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1. Introduction 

Heart rates and heart rate variations are widely analysed especially in sports and medicines 
[1,2]. Electrocardiography (ECG) signals from ECG based machine are extracted to monitor 
human’s physiological signals including heart rate (HR) and heart rate variability (HRV) [3–
5]. There are some other methods used to estimate the heart rates, as described in [6–8]. 
However, these methods generally require expensive specialized machines. 

Human heart rate can also be estimated from the plethysmographic signals since the heart 
rate has the same frequency as the cardiac cycle. Previous studies [9,10] showed the 
relationship of the intensity of the reflected light from the trans-illuminated tissue and the 
change in blood volume. This measurement of blood volume pulses (BVP) through reflected 
light intensity variations is known as photoplethysmography (PPG). 

Similarly, BVP can also be obtained from video sequences. Poh et al. developed a method 
for measuring multiple physiological parameters using a basic webcam [11,12]. The blood 
volume pulse (BVP) signals were recovered from the facial region of the subjects. 
Independent component analysis (ICA) was used to separate the sources from the colour 
channels in the video recordings. In contrast to correlation-based transformation such as 
Principal Component Analysis (PCA), ICA does not only de-correlate the signals, but also 
reduces higher-order statistical dependencies [13,14]. The red, green, and blue (RGB) 
components in the video recordings are actually the sensors or mixture of the reflected 
plethysmographic signals and other sources (as well as the artefacts). 

For the video-based heart rate measurements and monitoring, the BVP is the independent 
source signal of interest. The colour components of the facial images captured by the video 
recorder, particularly, the RGB, vary in accordance to the heart rate variation, since the 
changes in blood volume alter the light intensity reflected from facial tissue. Hence, heart rate 
readings can be estimated from the video sequences. 
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In addition to the method using ICA, Pursche et al. concluded that centre of the face 
region provides better information compared to the other parts of the face region [15]. They 
concluded that the power-spectrum-analysis algorithm can also give similar results compared 
to the peak-detection algorithm. 

On the other hand, Xu et al. [16] designed a simplified mathematical model for images of 
human skin to obtain the BVP signals. They developed a model for pigment concentration in 
human skin, and used it to estimate the heart rate. They computed the heart rate readings from 
video recordings lasting from 45s to 90s. The subjects are required to keep still during the 
recording. Their heart rates do not vary much. 

Previous works focus more on the heart rate computation from longer video duration 
which is reliable for heart rates that do not vary much. However, for heart rates of subjects 
that vary while not at rest, then the techniques used in [11,12] need to be changed. We have 
developed a technique that reflects the dynamic heart rate variations using short time Fourier 
transform [17] and filter bank [18]. The methods developed in [17] and [18] require a longer 
video duration for accurate readings, which is not practical in many situations where short 
video duration is required to give heart rate readings. 

In the previous research [12,16], the focus was not on dynamic heart rate measurements 
and hence the need did not arise in their work to get the shortest video duration. However, in 
applications that need dynamic heart rates, it is then essential to use the shortest video 
duration that gives accurate heart rate readings. Hence, two conditions have to be satisfied for 
dynamic heart rate measurements: minimum video duration and accurate heart rate 
estimation. 

In this paper, a method is proposed to measure instantaneous heart rate that varies 
dynamically from short video sequences. The challenge in using short video sequences is that 
the ICA sources may not have sufficient independence among them. Without determining the 
independence of the sources, there is a possibility of the heart rate signal combining with 
other signals to render an inaccurate reading. Hence in this paper, mutual information [19] is 
used to determine the independence of the sources to obtain an accurate reading. It is found 
that the value of mutual information of the ICA sources will be converging when the ICA 
sources are sufficiently independent. Beyond this video duration, any further computation of 
mutual information does not change the accuracy of the heart rate readings. Hence, the 
earliest point of mutual information value for the video duration is identified when it begins 
converging. 

In Section 2, the related works of Poh et al. and Xu et al. in estimating the heart rate from 
video sequences is reviewed. The proposed method comprising ICA and mutual information 
for estimating the dynamic heart rates from video sequences is presented in Section 3. The 
results obtained from the proposed method for dynamic heart rate variations of subjects 
performing cycling activity are shown and analysed in Section 4. Section 5 gives the 
conclusion of the study. 

2. Related works 

There are several approaches used in determining the heart rates from video sequences. This 
section deals in detail with two studies we deem to be of particular relevance to our own 
study. Poh et al. [12] exploit the relationship between pixel intensities and heart rates by 
recovering the BVP signals from the RGB components. On the other hand, Xu et al. [16] 
designed a model for images of facial skin, without any blind source separation algorithm, to 
exploit the relationship between pixel intensities and heart rate pulses. Both methods are 
tested on subjects who keep still during the video recordings causing the heart rates not to 
vary much. 

2.1 BVP recovery using blind source separation 

In [11] and [12], blind source separation (BSS) is used to recover the independent source 
signals (including BVP signal) from a set of sensor observations (RGB pixel intensities). 
Independent Component Analysis (ICA) is used to recover the BVP signals. 
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This is how the method works. Assume that there are n linear mixtures (sensors) x1, …, xn 
of n independent components 

 1 1 2 2 ... , for all ,j j j jn nx a s a s a s j= + + +   (1) 

and each mixture xj as well as the independent component sk is a random variable, instead of a 
proper time signal. Let x denotes the mixture x1, …, xn, s denotes s1, …, sn, and A denotes the 
aij, then Eq. (1) can be written as 

 .=x As  (2) 
The statistical model in Eq. (2) is known as independent component analysis. It describes 

how the observed sensors xi are generated by a process of mixing the components si. The 
mixing matrix A is unknown but can be estimated. The independent components can be 
obtained by the computing the inverse of mixing matrix A, denoted by W. Hence, 

 =s Wx  (3) 

Using this method, ICA sources were recovered from the RGB components obtained from 60-
second video intervals. The source with the highest peak in the frequency domain was 
selected as the BVP signal. Next from the selected source, the inter-beat intervals (IBI) which 
were the intervals between two subsequent BVP peaks were obtained from 60-second video 

interval. The mean of the inter-beat intervals ( IBI ) was calculated and the heart rate (HR) for 
the particular video interval was computed using 

 60 /HR IBI=  (4) 

2.2 Estimation of heart rate pulses from video 

Unlike the method used in [11,12], Xu et al. developed a simplified mathematical model to 
predict human heart rates from video frames based on the absorbance of the lights by the skin. 
The skin absorbance A at wavelength λ, as in defined in [16] is 

 0( ) ( ) ( ) ( ),m m h hA v c v c Aλ λ λ λ= + +  (5) 

where cm and ch represent the pigment concentration for melanin and hemoglobin 
respectively, v is the product of pigment extinction coefficient and the mean path length of 
photons in the skin layer. A0 denotes the baseline skin absorbance and the residual pigment 
contribution. 

Since the spectral function of the camera sensor can be considered as a delta function 
[20,21], the colour components can be then expressed in log space as 

 0

0

log { ( ) ( ) ( )} log ( ),

log { ( ) ( ) ( )} log ( ),
R m m h h

G m m h h

P v R c v R c A R kE R

P v G c v G c A G kE G

= − + + +
= − + + +

 (6) 

where R and G represent the red and green components of the image. k is a constant for the 
camera gain while E is the power of the transmitted light and incident light respectively. 

A series of signals that can be used for the heart rate estimation is formed as: 

 
2 1 1

1 2 1
( ) [log( ), ... , log( )].

n n
R G R G

n n
R G R G

P P P P
y n

P P P P

−

−

⋅ ⋅
=

⋅ ⋅
 (7) 

To obtain the heart rate, Eq. (7) is transformed into frequency domain, and the highest 
peak in the frequency domain is selected as the corresponding heart rate for the selected video 
interval. 

3. Proposed method 

In this section, the proposed model to estimate the dynamic heart rate measurements is 
discussed together with how the independence of the ICA sources is established. The earliest 

#237346 Received 13 Apr 2015; revised 10 Jun 2015; accepted 10 Jun 2015; published 12 Jun 2015 
(C) 2015 OSA 1 Jul 2015 | Vol. 6, No. 7 | DOI:10.1364/BOE.6.002466 | BIOMEDICAL OPTICS EXPRESS 2469 



sign of the independence of the ICA sources determined from the mutual information 
establishes the minimum video duration which gives the most accurate heart rate estimation is 
elaborated. The significance of the video duration and its relationship to the accuracy of the 
heart rate estimation is also discussed. 

3.1 Workflow of the proposed method 

In order to compute the instantaneous heart rate of a subject at n-th second instant, 50 frames 
of raw images (equivalent to 2 seconds) before the instant were used. The block diagram of 
the proposed model for dynamic heart rate measurement is illustrated in Fig. 1. 

After the ROI of each frame was identified, the mean of pixel values for red (R), green 
(G) and blue (B) components were computed separately, where 

µR: the mean of all pixel values for R component 

µG: the mean of all pixel values for G component 

µB: the mean of all pixel values for B component 
The respective µR, µG, and µB of all these 50 continuous frames were calculated. 

Therefore, at n-th second instant, a set of three raw sensors R(n), G(n), B(n) were formed. 
Each raw sensor consisted of 50 elements. The set of raw sensors were then detrended using 
algorithm developed by Tarvainen et al. [22]. The ICA model developed by Cardosa and 
Souloumiac [23,24] was then used to separate one set of 3 independent sources from the set 
of sensors. The set of ICA sources were bandpass filtered (128-point Hamming window, 0.6-
4 Hz), and the mutual information was applied to obtain the independence of the ICA sources. 

The entire process was repeated by increasing the number of previous frames, one-by-one 
until it fulfilled the criterion. The criterion was based on the convergence of the curve fitting 
coefficients. It is described in details in Section 3.2. 

Once it fulfilled the criterion, the process was stopped. The number of frames (or video 
duration) at this point was chosen as the video duration needed for computing the 
instantaneous heart rate reading n-th second time instant. The respective sources were 
considered independent to each other. The source that had the highest peak in the frequency 
domain was chosen as the BVP or heart rate sources. The corresponding frequency was 
considered as the instantaneous heart rate at n-th second time instant. 
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Fig. 1. Flow chart of the proposed method. 

3.2 Criterion determining the independence of the ICA sources 

One of the criteria or requirements to use the ICA is that the sources must be independent of 
each other. ICA itself will separate the sources by maximizing the statistical independence 
among the given sensor signals. In this paper, mutual information is used to measure the 
mutual dependence (and independence) of the ICA sources. 

In this study, three ICA sources, i.e. S1, S2, and S3, are separated from each set of Red(R), 
Blue(B) and Green(G) sensors. The normalized mutual information of any two source Sp and 
Sq, In (Sp ;Sq) is expressed as 

 
( ; )

( ; ) ,
( ) ( )

p q
n p q

p q

I S S
I S S

H S H S
=  (8) 

where I(Sp; Sq) is the mutual information of the sources Sp and Sq while H(Sp) and H(Sq) are 
the respective entropies of the sources Sp and Sq. 

The mutual information I(Sp; Sq) can be expressed in terms of their entropy: 

 ( ; ) ( ) ( ) ( , ).p q p q p qI S S H S H S H S S= + −  (9) 
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The entropy H(S) of a source S can be computed from 

 ( ) ( ) log ( ),
s S

H S p s p s
∈

= −  (10) 

while the joint entropy H(Sp,Sq) of the sources Sp and Sq can be computed from 

 ( , ) ( , ) log ( , ),
p p q q

p q p q p q
s S s S

H S S p s s p s s
∈ ∈

= −    (11) 

where p(sp,sq) is the joint probability density function of the sources Sp and Sq. 
The normalized mutual information gives zero if both sources are totally independent of 

each other and unity if both sources are totally dependent on each other. Since there are three 
ICA sources, hence their normalized mutual information is averaged and it is expressed as 

 1 2 1 3 2 3
1 2 3

( ; ) ( ; ) ( ; )
( ; ; ) .

3
n n nI S S I S S I S S

C S S S
+ +

=  (12) 

The relationship of C(S1;S2;S3) and video duration for estimating the instantaneous heart 
rate reading at a particular instant is shown in Fig. 2. It indicates that the value of C(S1;S2;S3) 
decreases as the video duration (or number of video frames) increases. A best fit curve is used 
to represent the function C(S1;S2;S3). In this study, the best fit curve to represent the function 
of mutual information with the video duration is given as 

 1 2 3( ; ; ) ,b
tC S S S at=  (13) 

where t is the video duration used, a and b are the coefficients of the function. 
The confident intervals for the fitted coefficients are set at 95%. The coefficients change 

drastically at the beginning, but remain almost constant when the video duration exceeds a 
specific duration and the mutual information value changes very little after this duration. The 
stopping criterion is set as when the difference of coefficient values for 2 continuous video 
frames is smaller than 2 × 10−4. Once the stopping criterion is met, the corresponding video 
duration is identified as the video duration to compute the instantaneous heart rate at that 
particular instant. 

As an example, Fig. 2 shows that different time intervals give different value mutual 
information and hence different heart rate readings. In this case, the actual heart rate reading 
of the subject obtained from Polar Heart Rate Monitor is 93 BPM. Now consider point A in 
Fig. 2 which indicates the corresponding value of C(S1;S2;S3) when the video duration is 2.2 
seconds. Notice at this point, the mutual information gives a high value indicating the ICA 
sources are not independent. The heart rate computed based on these ICA sources is 173.46 
BPM. As the video duration increases, correspondingly C(S1;S2;S3) too decreases. This trend 
continues till the stopping criterion is met. As can be seen in Fig. 2, the criterion is satisfied at 
point B (video duration for this case is 6.88s). The heart rate reading computed at this point is 
93.88 BPM, which is closer to the actual reading. Even if the video duration is extended 
longer than the necessary duration, the C(S1;S2;S3) doesn’t vary much. However, the heart 
rate accuracy drops further if longer video duration is taken after the stopping criterion is met. 
For example, consider point C where the video duration is 10.8 seconds and the ICA sources 
are still independent to each other but it gives a less accurate heart rate reading when 
compared to point B. The computed heart rate is 95.51 BPM. The details of the heart rate 
accuracies at different points (hence different durations) are discussed in Section 3.3. 
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Fig. 2. The relationship between the averaged normalized mutual information C(S1;S2;S3) and 
the video duration and the respective computed heart rates. The actual heart rate is 93 BPM. 

3.3 Significance of the minimum video duration 

In this sub-section, the significance of the video duration and its relationship to the accuracy 
of the heart rate estimation is presented. The significance of the independent sources and how 
they relate to the accuracy of the heart rates is shown in Fig. 3, Fig. 4 and Fig. 5. Figure 3 
shows the separated ICA sources for point A (at 2.2 s) in the frequency domain. As can be 
seen in Fig. 3, the highest peak is observed at S3 and the corresponding frequency is 173.46 
BPM. The actual heart rate reading obtained from the Polar heart rate monitor for the 
particular instant discussed in Fig. 2 is 93 BPM. As pointed out earlier in Section 3.2, the ICA 
sources are not independent and hence the computed heart rate reading is inaccurate. 

Figure 4 shows the separated ICA sources for point B (at 6.88 s) in frequency domain. At 
this point, the stopping criterion is met. As shown in Fig. 4, the highest peak is significantly 
seen at S3 and the corresponding frequency is 93.88 BPM. The computed reading is closer to 
the actual heart rate reading. For the video duration that is beyond point B, the accuracy of the 
computed heart rate readings decreases. This is shown in Fig. 5. In this figure, point C (10.8 
s), the highest peak in the frequency domain is observed at S3 and the corresponding 
frequency is 95.51 BPM. For dynamic heart rate measurements, a shorter video duration is 
preferred as it would allow a more frequent update of heart rate measurements. 
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Fig. 3. The frequency domain of the ICA sources when video duration at point A is selected. 

 

Fig. 4. The frequency domain of the ICA sources when video duration at point B is selected. 

 

Fig. 5. The frequency domain of the ICA sources when video duration at point C is selected. 
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Figure 6 shows how the errors of the computed heart rate readings vary at different video 
intervals. It shows the error bars of the heart rate errors for subjects tested in the experiments. 
As can be seen from Fig. 6, the error rates are considerably high if the video duration is less 
than 4 seconds. Even though the mean errors from 4 seconds to 5.5 seconds are relatively as 
close to the mean error of the proposed method, however, the standard deviation of the errors 
for the proposed method is much smaller when compared with those from 4.5 seconds to 5.5 
seconds. This explains the need to determine the earliest sign of the independence of the ICA 
sources which corresponds to the minimum video duration that gives accurate heart rate 
estimation for all readings. Table 1 summarizes the video durations for all readings to 
estimate the heart rates of each subject using the proposed method. 

 

Fig. 6. Comparison of the mean square and standard deviation of the heart rate errors for the 
proposed variable video intervals and fixed video intervals. t represents the video interval. 

4. Experimental study 

In this section, the experimental setup and two experiments that relate to dynamic heart rate 
variation are discussed. Heart rate variation can be either increasing or decreasing. This study 
consists of both cases. In the first experiment, the heart rates of the subjects were increasing, 
ranging from 79 to 150 BPM, while in the second experiment, the heart rates of the subjects 
are decreasing, ranging from 153 to 88 BPM. In addition to the dynamic heart rate 
experiments, a sub-section is included to show that the proposed method can also be used for 
subjects while at rest. 

4.1 Experimental setup 

All experiments were set up under office fluorescent lights with indirect sunlight as the source 
of illumination. The lighting background was homogeneous and had no significant changes or 
variation. All the data were processed and analyzed offline using MATLAB R2013a. 

A Handycam Camcorder (Sony HDR-PJ580V) with resolution of 1440 × 1080 pixels was 
used with 25 frames were sampled every second for video recording purpose. All videos were 
recorded in 24-bit RGB (with 8 bits per channel). The video camera was fixed at a position 
with a distance of about 0.60 m from the subject’s face. In this paper, the Region of Interest 
(ROI) is fixed at the area below eyes and above the upper lip of mouth in a video frame. As 
what concluded by Pursche et al. [15], this region gives better accuracy compared to other 
facial regions. The face region was detected by using the model described in [25,26]. 
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Table 1. Summary of the video durations for all heart rate readings of each subject using 
the proposed method 

Experiment Subject 
Video Duration (sec) 

Mean (sec) Standard Deviation (sec) 
Minimum Maximum 

1 

1 3.88 7.52 5.35 0.83 

2 3.76 7.56 5.56 0.91 

3 3.76 6.80 5.47 0.68 

4 3.80 7.32 5.63 0.90 

5 3.64 7.36 5.37 0.85 

6 3.76 7.48 5.26 0.89 

7 3.72 7.32 5.49 0.88 

2 

1 3.76 7.56 5.51 0.91 

2 3.72 6.80 5.17 0.68 

3 3.60 7.12 5.45 0.80 

4 3.64 7.16 5.29 0.78 

5 3.84 7.56 5.47 0.80 

6 3.96 7.20 5.42 0.76 

7 3.52 7.04 5.42 0.78 

All subjects were asked to wear the Polar chest strap before doing the experiments. In the 
first experiment, seven subjects were asked to cycle at different speeds for three minutes and 
significant changes of the subjects’ heart rates were observed after the first two minutes. The 
heart rate readings were taken in the last one minute for every subject. An increasing heart 
rate variation was observed for every subject. Video was recorded while the subjects were 
cycling where their faces had minimum movement. 

In the second experiment, seven subjects were asked to cycle at fast speed to raise their 
heart rates to a certain high level. Once this was achieved, then the subjects were asked to rest 
for one minute and their heart rates were observed and computed from video recorded during 
this rest period. The subjects did not move during the video recording. 60 consecutive heart 
rate readings (sampled at each second) were computed for every subject. 

The instantaneous heart rates of all subjects for both experiments were computed based on 
the detailed algorithm proposed in Section 3. For reference, all instantaneous heart rates of the 
subjects were measured using Polar Heart Rate Monitor – Polar Team2 Pro. Polar Team2 
transmitter set records and transmits the subjects’ ECG signals to its base station. The heart 
rate was sampled and computed by measuring at least one ECG signal waveform, as 
described in the patents described in [27,28]. A comparative study was done between the 
actual readings obtained from Polar Team2 Pro and those computed readings from the 
proposed method. 

4.2 First experiment: observed heart rates varying from low to high 

In the first experiment, seven subjects’ heart rates were measured while cycling and they 
varied from 79 BPM to 150 BPM. The video duration needed for each instantaneous heart 
rate reading computed using the proposed method varied from 3.64 to 7.52 seconds with a 
mean value of 5.45 seconds. A total of 420 instantaneous heart rate readings were obtained 
from the experiment. A comparison of the computed and actual readings of the subjects in 
this experiment is shown in Fig. 7. The root mean square error is 1.97 BPM while the Pearson 
correlation coefficient is 0.99. 
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The details of the heart rate variations of the seven subjects and their corresponding 
RMSE are shown in Table 2. From Table 2, the highest and lowest RMS errors are 2.92 and 
1.64 BPM respectively. In addition to this, the performance of the proposed algorithm is 
evaluated using the Bland Altman plot, as shown in Fig. 8. The Bland Altman plot is used to 
quantify the agreement between two methods of measurements [29]. The 95% limits of 
agreement, estimated by mean difference ± 1.96 standard deviation of the difference, provide 
an interval within which 95% of the differences between the measurements by the two 
methods. It can be seen from Fig. 8 that the Bland Altman plot quantifies the agreement 
between the actual heart rate readings obtained from the Polar Heart Rate Monitor and the 
computed heart rate readings using the proposed method. As can be seen, most of the 
computed readings are located inside the blue boundary lines that satisfying the 95% limits of 
agreement. However, there are some readings located out of the boundary lines and this is 
probably due to some motion artifacts. 

 

Fig. 7. Comparison of actual heart rate readings and computer heart rate readings in the first 
experiment. 

Table 2. Summary of heart rate readings results in the second experiment 

Subject 
Heart Rate Readings(BPM)

RMSE (BPM) 
Highest Lowest

1 91 104 2.01
2 101 136 1.76

3 104 120  2.03  
4 93 150 1.64
5 110 129 1.67
6 110 140 2.33
7 79 96 2.28
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Fig. 8. Bland-Altman Plot for all computed heart rate readings for the first experiments. 

4.3 Second experiment: observed heart rates varying from high to low 

In the second experiment, the seven subjects’ heart rates varied from 153 BPM to 88 BPM. A 
total of 420 instantaneous heart rate readings were obtained from this experiment. The video 
duration needed for each instantaneous heart rate reading computed using the proposed 
method varied from 3.52 to 7.56 seconds with a mean value of 5.39 seconds. Figure 9 shows 
the comparison of the computed and actual heart rate readings of the seven subjects. The root 
mean square error is 1.77 BPM while the Pearson correlation coefficient is 0.99. Table 3 
shows the details of the heart rate variations of the seven subjects and their corresponding 
RMSE. Just as in the first experiment, the highest and the lowest high rate RMS errors are 
less than 3 BPM. 

The Bland Altman plot as shown in Fig. 10 indicates that a smaller number of computed 
heart rate readings are located outside the 95% limit of agreement interval. The accuracy of 
computed heart rate readings in this experiment is better than the accuracy of the readings in 
the first experiment. This may be because the subjects in the second experiment did not move 
as they were not cycling. 

 

Fig. 9. Comparison of actual heart rate readings and computer heart rate readings in the second 
experiment. 
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Table 3. Summary of heart rate readings results in the second experiment 

Subject 
Heart Rate Readings(BPM)

RMSE (BPM) 
Highest Lowest

1 108 88 1.97
2 150 114 1.49

3 105 98  2.14  
4 153 119 1.73
5 153 127 1.58
6 141 127 1.57
7 146 129 1.82

 

Fig. 10. Bland-Altman Plot for all computed heart rate readings for the second experiments. 

4.4 Heart rates estimation for subjects at rest using proposed method 

In addition to the dynamic heart rate measurements, the proposed method can also be used for 
subjects whose heart rates are almost constant (non-dynamic). To do that, subjects were at 
rest for one minute and their measured and computed heart rate readings are shown in Fig. 11. 
The root mean square error is 1.54 BPM while the Pearson correlation coefficient is 0.98. 

 

Fig. 11. Comparison of actual heart rate readings and computer heart rate readings for subjects 
at rest. 

#237346 Received 13 Apr 2015; revised 10 Jun 2015; accepted 10 Jun 2015; published 12 Jun 2015 
(C) 2015 OSA 1 Jul 2015 | Vol. 6, No. 7 | DOI:10.1364/BOE.6.002466 | BIOMEDICAL OPTICS EXPRESS 2479 



5. Conclusion 

A new method of computing dynamic heart rate involving the use of short video clips has 
been proposed in this paper. Video clips are far easier to obtain and cheaper than the existing 
invasive or in-contact methods of obtaining the heart rates. In this study, it is observed that 
close to accurate readings can be obtained if the three ICA sources are independent of each 
other. The independence of the ICA sources needs to be established to ensure the reliability of 
the findings. For this, mutual information developed earlier was used. Two experiments were 
done to corroborate the validity of the proposed method and the accuracy of its findings. 
These experiments show that the findings of this method agree with the findings of the 
established, and therefore accepted, method. The Bland-Altman plot shows that most of the 
findings of this study fall within the boundaries set for 95% limit of agreement interval. The 
RMSE in both experiments is less than 3 BPM. 
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