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Abstract: X-ray luminescence computed tomography (XLCT) has
become a promising imaging technology for biological application based
on phosphor nanoparticles. There are mainly three kinds of XLCT imaging
systems: pencil beam XLCT, narrow beam XLCT and cone beam XLCT.
Narrow beam XLCT can be regarded as a balance between the pencil beam
mode and the cone-beam mode in terms of imaging efficiency and image
quality. The collimated X-ray beams are assumed to be parallel ones in the
traditional narrow beam XLCT. However, we observe that the cone beam
X-rays are collimated into X-ray beams with fan-shaped broadening instead
of parallel ones in our prototype narrow beam XLCT. Hence we incorporate
the distribution of the X-ray beams in the physical model and collected the
optical data from only two perpendicular directions to further speed up the
scanning time. Meanwhile we propose a depth related adaptive regularized
split Bregman (DARSB) method in reconstruction. The simulation exper-
iments show that the proposed physical model and method can achieve
better results in the location error, dice coefficient, mean square error and
the intensity error than the traditional split Bregman method and validate
the feasibility of method. The phantom experiment can obtain the location
error less than 1.1 mm and validate that the incorporation of fan-shaped
X-ray beams in our model can achieve better results than the parallel X-rays.
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1. Introduction

Since the 1970s, the rare earth phosphors, especially the oxysulfide phosphors, due to its ad-
vantages such as high luminescence efficiency and innocuity, etc., have caused great attention
as the host materials of X-ray phosphors [1]. While radioluminescence of phosphor material
has long been used in radiation detectors, the use of nanophosphors in biological contexts is
just beginning to be explored [2]. Among these applications, X-ray luminescence computed to-
mography (XLCT) is one of the newly-developed and most attractive imaging modality, which
has been demonstrated by in vitro imaging of nanoparticles in tissue phantoms for oxysulfides
(Gd2O2S: Eu) [3]. The combination of insignificant scattering of X-rays in tissues, and the high
tissue penetration of near-infrared (NIR) optical photons emitted from appropriate phosphors,
opens up the possibility of achieving deep tissue optical imaging in vivo with unprecedented
spatial resolution [4]. Meanwhile researchers have synthesized potentially less toxic particles
recently [5, 6]. This can overcome the limitation of phosphor nanoparticle synthesis of XLCT
molecular probes and further promote its future application.

Based on the promising nanophosphors and its attractive imaging principles, many re-
searchers have studied and developed X-ray luminescence computed tomography (XLCT) these
years. To take advantage of linear propagation of the X-rays, Xing et. al. proposed the narrow
beam X-ray excitation technology known as XLCT in their papers [7]. Then, Li et. al. used
a collimated pencil beam X-ray with a beam size of 1 mm diameter to more selectively ex-
cite deep targets [8]. However, since the scanning area of the collimated pencil beam X-ray is
smaller than narrow beam XLCT, this technology demands relatively longer scanning time un-
der X-ray exposure which limits its application in biology processes. In order to overcome this
issue, a cone beam XLCT imaging system was designed by our group [9] to improve scanning
speed, and was applied to small animal experiments by Liu et. al. [10]. Nevertheless, the intro-
duction of cone beam XLCT may cause limited spatial resolution for deep targets due to light
scatter, which is similar to fluorescence molecular tomography (FMT) and bioluminescence
tomography (BLT) [8]. Wang et. al. also analyzed that the cone beam scanning mode does not
sufficiently utilize the primary benefit of XLCT in terms of a reduced permissible source region
and presented a fan-beam stimulation scheme for XLCT, which can be regarded as one trans-
formation of narrow beam XLCT [11]. Hence, among these XLCT imaging strategies, narrow
beam XLCT can be regarded as an optimal balance between the pencil beam mode and the
cone-beam mode in terms of imaging efficiency and image quality.

In the traditional narrow beam XLCT, the collimated X-ray beams are modeled as parallel
ones [7]. However, in our prototype narrow beam XLCT system, we observed that the X-rays
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were collimated into fan-shaped X-ray beams instead of parallel X-rays, which was different
from traditional narrow beam XLCT. The description of precise X-rays distribution can con-
tribute to the XLCT imaging quality. Hence we first established the X-ray distribution model
through our experiment and applied it in our propagation model. Meanwhile to further speed
up the scanning time, we collected the optical data from only two perpendicular directions. In
order to recover the distribution of the nanophosphors within such limited information, we also
proposed a depth related adaptive regularized split Bregman (DARSB) method to overcome the
ill-posedness of our reconstruction problem.

The remaining sections are organized as follows. Section 2 describes the photon propagation
model and reconstruction method in our system. In Section 3, the numerical simulation with
different phantoms is conducted as well as the phantom experiment. Finally, the conclusion and
discussion are given in Section 4.

2. Method

2.1. Imaging System

X-ray 
source

X-ray
detector

CCD 
camera

 Lead 
shield

Phantom

 Lead 
collimator

Linear 
stage

Rotation 
stage

Fig. 1. An overview of the system.

A prototype XLCT system is built in our laboratory with the configuration shown in Fig. 1.
The system can perform conventional computed tomography (CT) imaging with a microfocus
X-ray source (Apogee, Oxford Instruments, USA) and an X-ray flat panel detector (C7921CA-
02, Hamamatsu, Japan). Meanwhile, the X-ray beam is collimated with the X-ray collimator
made up of two L-shaped lead shields to excite the nanophosphors. A liquid-cooled back illu-
minated CCD camera (PIXIS 2048B, Princeton Instruments, USA) with a focus lens (Micro-
Nikkor 55 mm f/2.8, Nikon, Japan) is positioned to capture the emitted light for the X-ray
luminescence imaging. The phantom is placed on a motorized rotation stage which is mounted
on a motorized linear stage to realize the scanning of the object with selectable step interval at
selectable directions. A lead made X-ray shield is placed between the camera and the phantom
to reduce x-ray radiation on the CCD.

It is necessary to perform a fundamental assessment after building our experiment system.
We collect the X-ray data from the X-ray detector with the collimator positioned in front of the
X-ray source. First we adjusted the collimator with the motorized linear stage to align the X-ray
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beam with the X-ray source focus spot, which was realized by comparing the maximum of the
X-ray data on the X-ray detector for every movement. Then we adjusted the X-ray detector with
different distances from the X-ray source (715 cm, 690 cm, 665 cm, and 640 cm) and obtained
corresponding X-ray data. The width of X-ray beam was measured by selecting the full width at
half maxima (FWHM) of the average value of the columns in the X-ray data and multiplying the
pixel of the detector as shown in Fig. 2(a). The widths of the X-ray were 1.275, 1.2, 1.125, and
1.05 mm at the corresponding position. The experiment shows that the width of the X-ray beam
is linearly changing with the position of the detector as shown in Fig. 2(b). It can be concluded
that the profile of the X-ray after the collimator is fan-shaped broadening at the plane of the
stage. Meanwhile, based on the relationship between the X-ray beam width and the distances
from the X-ray source, the X-ray beam was 0.6 mm at the end of the collimator. Based on the
X-ray distribution model and the widths of X-ray beams obtained on the X-ray detector, we
can calculate the width of the X-ray beam at any distance between the collimator and the X-ray
detector, which can be applied to establish the accurate fan-shaped X-ray distribution model in
the following photon propagation model.

2.2. Photon propagation model

In XLCT imaging process, the imaging model involves the following three steps: First, the X-
rays are emitted from the X-ray source and suffer from attenuation through the tissues or the
phantoms as follows:

X(r) = X0 exp{−
∫ r

r0

µt(τ)dτ}, (1)

where X0 is the X-ray source intensity with the initial position r0, and µt(τ) is the X-ray at-
tenuation coefficient at position τ; Second, once the nanophosphors are excited by the X-rays,
they will emit NIR light, which follows linear relationship with the nanophosphor density and
the X-ray intensity as follows:

S(r) = εX(r)ρ(r), (2)

where S(r) is the light source, X(r) is the X-ray intensity, ρ(r) is the nanophosphor density
at position r and ε is the light yield; Last, the NIR light will transport to the surface of the
biological tissues and be captured by our CCD camera which can be accurately modeled by the
radiative transfer equation (RTE) or diffusion approximation [12] and expressed as:

−∇ · [D(r)∇Φ(r)]+µ(r)Φ(r) = S(r) r ∈Ω, (3)

where r is the position vector, Ω is the domain under consideration, D(r) is the diffusion coef-
ficient, Φ(r) is the photon flux density and S(r) is the source.

Based on the finite element method (FEM), the above model can be converted into the fol-
lowing matrix between the nanophosphor concentration ρ and the NIR measurement Φ, whose
details can be found in [9]:

A ·ρ = Φ,where ρ ≥ 0. (4)

where A = ~A~ ~Ψ, ρ = ~ρ ~ ~Ψ. ~A is the system matrix constructed with FEM, ~ represents
the operation that removes rows in matrix ~A corresponding with the zero-elements in columns
vector ~Ψ while ~Ψ is a columns vector composed of zero or unity elements and defined by the
specific X-rays distribution as follows:

~Ψ =

{
1 if node n is within the X-ray scanning area
0 otherwise

, (5)
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(a)

(b)

0.003 0.87y x 

Fig. 2. (a)Data analysis of the X-ray detection with different distances from the X-ray
source (71.5 cm, 69 cm, 66.5 cm, and 64 cm). (b)Relationship between the X-ray beam
width and the distances from the X-ray source
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Our above fundamental assessment convealed that the cone beam X-rays became X-ray beams
with fan-shaped broadening after collimation. Based on the X-ray distribution model and the
widths of X-ray beams obtained on the X-ray detector, we can establish the accurate fan-shaped
distribution model using Eq. (5).

2.3. Reconstruction Method

The solution to the above linear inverse problem in Eq. (4) can be tackled as the recovery of the
nanophosphor concentration ρ from the measured luminescent boundary data Φ. The inverse
reconstruction problem suffers from ill-posedness because of the high scattering of light in bi-
ological tissues, the limited optical measurements and the other experiment conditions. This
ill-posed problem can be addressed by means of implicit regularization and skillful iterative
methods like the algebraic reconstruction technique [13], unconstrained optimization meth-
ods based on l2-regularization [14] or l1-regularization [15] and even lp-regularization [16].
Meanwhile, the priori information such as the permissible region strategy [17] and multispec-
tral method [18] are also commonly applied in optical imaging and have also been applied in
XLCT [19].

Compared with these advanced methods, the methods based on Bregman iteration transform
the optimization problem to an equivalent constrained problem with the concept of Bregman
distance [20]. Among these methods, the split Bregman (SB) method addresses the optimization
problem by analyzing it into several functions and minimizing them separately on an efficient
and simple way [21, 22]. For instance, for l1-constraints such as the total variation (TV), the SB
method decouples l1-functionals and l2-functionals, and minimizes them separately, the l2-part
by using conventional methods, and the l1-part by straightforward shrinkage formulas [23].
The SB method has been widely applied in image denoising and magnetic resonance imag-
ing [20, 21, 24]. Recently, it has also been extended to the application of fluorescence diffuse
optical tomography and bioluminescence tomography [23, 25]. The problem is converted into
the following unconstrained optimization problem by the Lagrangian method [26]:

min
ρ
|ρ|1 +

λ

2
‖Aρ−Φ‖2,where ρ ≥ 0. (6)

In reconstruction, there are some problems that the reconstructed sources tend to become
superficial while the localization errors are increasing particularly for deep sources [27]. Here
we fully utilized the X-ray attenuation information as a related depth weighting factor and
introduced two auxiliary variables when referring to the variable splitting technique. Hence,
we apply the X-ray attenuation information as a related depth weighting factor to modify the
l1-norm part of Eq. (6) as follows:

min
ρ
|ρ̂|1 +

λ

2
‖Aρ−Φ‖2,where ρ ≥ 0. (7)

where ρ̂ = Π · ∗ρ in which Π is the vector that reflects the corresponding X-ray relative at-
tenuation value at each vertex and ·∗ represents the product of corresponding elements of the
vectors Π and ρ . The corresponding X-ray relative attenuation value at each vertex is estimated
by accumulating the attenuation value on the voxel data of CT reconstruction.

Then we decouple it into two subproblems to minimize over ρ with dk fixed and next mini-
mize over d with ρk+1 fixed alternately [28], in which λ and θ are the regularization coefficient
and ”splitting” regularization coefficient respectively.

Based on the present SB scheme, we proposed a depth related adaptive regularized split
Bregman (DARSB) method to overcome the ill-posedness of the inverse problem in Eq. (4).
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Meanwhile, our method involves on the adaptive regularization parameter estimation with ad-
justing it in a closed form in each iteration, where Morozovs discrepancy principle is applied
to provide a modular solver to update the nanophosphor density ρ [29].

2.3.1. Deduction of the proposed method

An auxiliary variable x and another auxiliary variable y are applied to represent Aρ and ρ

respectively. Then, the Eq. (7) can be transformed into:

min
ρ,x,y
|y|1 +

λ

2
‖x−Φ‖2 subject to Aρ = x, y = ρ̂. (8)

With the Bregman function J(ρ,x,y) and the corresponding Bregman distance

D
(pk

ρ ,p
k
x,p

k
y)

J (ρ,x,y;ρk,xk,yk) defined as:

J(ρ,x,y) = {|y|1 +
λ

2
‖x−Φ‖2}, (9)

D
(pk

ρ ,p
k
x,p

k
y)

J (ρ,x,y;ρk,xk,yk) = J(ρ,x,y)− J(ρk,xk,yk)−
< pk

ρ ,ρ−ρ
k >−< pk

x,x− xk >−< pk
y,y− yk >,

(10)

the following iterative framework is deduced based on the SB method and the alternating di-
rection method (ADM) [21, 29]:

ρ
k+1 = argmin

u
{β1

2
‖x−Aρ−bk‖2

2 + |y|1 +
β2

2
‖y−dk− ρ̂‖2

2}, (11)

yk+1 = argmin
y
{|y|1 +

β2

2
‖y−dk− ρ̂‖2

2}, (12)

xk+1 = argmin
x
{λk+1

2
‖x−Aρ‖2

2 +
β1

2
‖x−Aρ−bk‖2

2}, (13)

bk+1 = bk +Aρ
k+1− xk+1, dk+1 = dk + ρ̂

k+1− yk+1. (14)

Hence, Eq. (7) can be transformed into the problem of tackling the above subproblem (11)-
(14) efficiently. The subproblem with respect to ρ is solved by preconditioned conjugate gradi-
ent method with the backtracking operation to guarantees the global convergence [30]. Mean-
while we apply the nonnegative constraint with respect to ρ in subproblem (11). Eq. (12) can
be solved by shrinkage as follows:

yk+1 = shrink(dk + ρ̂
k+1,

1
β
), (15)

where shrink(ρi,δ ) = sign(ρi)max(0, |ρi|−δ ).
For the minimization problem concerning xk+1, we have to analyze the problem that whether
‖x−Aρ‖2

2 ≤ c to satisfy the discrepancy principle, which is realized by the following two
situations in each iteration [29]:
if ‖Aρk+1 +bk−Φ‖2

2 ≤ c, set λ k+1 = 0 and xk+1 = Aρk+1 +bk;
if ‖Aρk+1 +bk−Φ‖2

2 > c, set:

xk+1 =
λ k+1Φ+β1(Aρk+1 +bk)

λ k+1 +β1
, λ

k+1 =
β1‖Aρk+1 +bk−Φ‖2√

c
−β1. (16)
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2.3.2. Parameter selection

During the above algorithm, the choice of the noise dependent upper bound c is still unde-
termined. This parameter can reflect and constrain the error between the actual solution and
the reconstructed one to a reasonable level, which is normally proportional to the noise vari-
ance and still an open problem [29]. Here we estimate it by referring to the minimum of the
‖Aρ−Φ‖2

2 iteratively. Meanwhile, we introduce two parameters β1 and β2 when calculating the
regularization parameter adaptively. It is obvious that β2 is the weight of the difference between
y and ρ while β1 is the weight of the difference between x and Aρ . We set β1 = 1010∗SNR×β2,
β = 10−3, where the signal-noise ratio (SNR) of the optical signal is obtained by setting the
maximum of the local variance as the variance of the signal while the minimum as the variance
of the noise [31]. Even though the convergence of the proposed method can be guaranteed by
the condition that β1 and β2 > 0 [32], a relatively higher SNR represents the nearer distance be-
tween Aρ and φ , which results in a relatively larger β1 to control the variable x. All the settings
of these parameters are obtained empirically.

2.3.3. Evaluation standard

In order to value our reconstruction results more clearly and further explain the validity of our
proposed method, we propose two benchmarks that are regularly applied in optical imaging.
The first one is the location error of the Euclidean distance between the actual source position
and the reconstructed source position as follows [33]:

location error =
√
(x− x0)2 +(y− y0)2 +(z− z0)2 (17)

where (x,y,z) is the center coordinate of the reconstruction source with the maximum density
and (x0,y0,z0) is that of the actual source center.

We also introduce DC (dice coefficient) [34] to compare the similarity of the reconstructed
results and the actual source distribution, which is obtained as follows:

DC =
2|RS

⋂
AS|

|RS|+ |AS|
×100%, (18)

where |RS| and |AS| represent the number of tetrahedral-elements in reconstructed results and
the actual source correspondingly, while |RS

⋂
AS| is the number of tetrahedral-elements shared

by reconstructed results and the actual source. The larger value of DC can reflect that the re-
constructed results are more similar to the actual source.

To further evaluate the accuracy of the reconstruction, the MSE (mean square errors) is ap-
plied in our experiments as follows:

MSE =

√
1

N−1 ∑(ρ t
k−ρr

k)
2, (19)

where ρ t
k is the true density while ρr

k is the reconstructed density on the kth mesh element. N is
the number of elements where ρ t

k > 0.
Then the relative intensity error between the actual source and the reconstructed one is ap-

plied and defined as [11]:

intensity error =
1

Num(ρ t
k > 0) ∑

ρt
k>0

|ρr
k −ρ t

k|
max(ρ t

k)
×100% (20)

where ρ t
k is the true density while ρr

k is the reconstructed density on the kth mesh element re-
spectively, and Num(ρ t

k > 0) is the number of elements where ρ t
k > 0. The relative intensity
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error can accurately reveal the intensity error between the actual source and the reconstructed
one in the actual region and can be seen as a combination of the relative error of the power
density and the measurement of overlapped region, both of which are used to reflect the real re-
construction performance in [35]. The smaller intensity error can indicate the better quantitative
reconstruction results.

3. Experiment

3.1. Simulation study

Based on the above system test, we conducted simulation study and compared our method with
the traditional SB method to further validate the feasibility and effectiveness of our proposed
method. We used four different cylinder phantoms (phantom A, B, C and D) in the simulation
study. The phantom with the size of a 30 mm diameter and 30 mm height contained a small
cylinder with a 4 mm diameter and 4 mm height to represent the nanophosphors, whose centers
were set to (15, 15, 20) mm, (15, 11.25, 20) mm, (15, 7.5, 20) and (15, 3.75, 20) mm respec-
tively, as shown in Figs 3 (a), (b), (c) and (d). The cylinder phantom was applied to mimic the
muscle tissue, whose absorption and reduced scattering coefficients of the phantom were set
to 0.013 mm−1 and 0.93 mm−1 respectively [36]. The X-ray attenuation coefficient was set to
0.0475 mm−1 [37]. The light yield ε was set to 0.15 cm3/mg [38].

We applied the distribution of the X-ray beam in the above X-ray beam assessment as well
as the distances of the X-ray source, X-ray detector and the stage to ensure the validity of the
simulation. The phantom was supposed to move with step size of the width of the X-ray beam.
The simulation data was acquired by employing the light yield ε , the optical parameters, X-ray
attenuation coefficient, the discretized information of the phantoms and the system matrix A
calculated by the Eq. (4). It is reported that measurements at two orthogonal projections are
enough to reconstruct an X-ray luminescence optical tomography (XLOT) image of a single
target [39] or even more targets with certain strategy. Hence the simulation was conducted with
the assumption of scanning the phantom at two perpendicular directions presented by the black
arrows in Fig. 3. During the simulation, we obtained 9 projections by moving the phantom 9
times with the step size of the width of the X-ray beam for each direction. The SB method was
applied in the l1-regularized problem of Eq. (6) and the parameters applied in the method are
regularization coefficient and “splitting” regularization, which were empirically set as 2×10−2

and 10−6 correspondingly [21].
The reconstruction results were obtained as shown in Fig. 3. Figures 3(a), 3(b), 3(c) and 3(d)

show the configuration of the phantoms in the slice of z = 20 mm. Figures 3(e), 3(f), 3(g) and
3(h) show the reconstruction results of the proposed method while Figures 3(i), 3(j), 3(k) and
3(l) show the reconstruction results of the proposed method at the corresponding slice. The lo-
cation error and the intensity error from both methods were calculated as shown in Table 1. For
each phantom, the proposed method has a better performance on location error, DC, MSE and
intensity error than SB method. Moreover, the proposed method can better reveal the contour of
the nanophorsphors than the traditional split method as shown in Fig. 3, which can be also seen
in DC results in Table 1. This is mainly caused by the introduction of the weighting scheme and
the adaptive regularization parameter estimation, which overcome the ill-posed problem in the
reconstruction. Meanwhile, as shown in Table 1, the reconstruction results including location
error, DC, MSE and intensity error become worse when nanophosphors locate deeper in the
phantom. This can be explained by the facts that more energy of the X-rays is lost when the
depth of the nanophosphors is increasing, which means that less energy of the X-rays is used to
excite the nanophosphors.

Furthermore, we applied the reconstruction under different noise level to test the robustness
of the proposed method. The noise of different levels was added which followed the normal
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Fig. 3. Reconstruction results of the two methods. (a), (b), (c) and (d) show the configura-
tion of the phantoms in the slice of z = 20 mm. (e), (f), (g) and (h) show the reconstruction
results of the proposed method while (i), (j), (k) and (l) show the reconstruction results of
the SB method at the corresponding slice.

Table 1. Reconstruction errors of the two methods
Proposed method SB method

Location
error (mm) DC

MSE
(µg)

Intensity
error

Location
error (mm) DC

MSE
(µg)

Intensity
error

A 0.37 76.36% 0.17 3.90% 0.97 66.64% 0.17 3.92%
B 1.16 73.46% 0.19 4.74% 1.30 65.00% 0.20 4.76%
C 1.35 72.43% 0.20 5.78% 1.70 64.18% 0.22 5.86%
D 1.57 70.37% 0.21 6.71% 1.64 63.64% 0.24 6.92%
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distribution with a mean of 0 and the standard deviation varied from 10% to 40% of the average
of the surface measurements with a 10% interval. The reconstruction location errors remain the
same under all of the noise levels in each phantom. Meanwhile, there is a little difference in the
DC, MSE and intensity error as shown in Table 2. The DC, MSE and intensity errors stay the
same level in each phantom, which can indicate that the measurement noise affect the imaging
quality with little fluctuation. Hence it can be induced that the proposed method is robust to
measurement noise.

Table 2. Reconstruction errors of the method of different noise levels
phantom A B C D

DC 76.26% 73.26% 72.03% 70.17%
10% MSE (µg) 0.17 0.19 0.20 0.21

Intensity error 3.90% 4.74% 5.78% 6.71%
DC 75.46% 72.84% 71.91% 69.32%

20% MSE (µg) 0.17 0.19 0.21 0.21
Intensity error 3.90% 4.75% 5.79% 6.72%

DC 76.82% 72.76% 71.27% 69.64%
30% MSE (µg) 0.17 0.20 0.21 0.21

Intensity error 3.91% 4.75% 5.80% 6.81%
DC 75.76% 73.07% 72.13% 69.77%

40% MSE (µg) 0.18 0.20 0.21 0.22
Intensity error 3.91% 4.76% 5.82% 6.81%

3.2. Phantom experiment

Based on the above simulation study, we conducted a physical phantom experiment in our
imaging system to further evaluate our proposed imaging strategy. A polyoxymethylene made
cylinder phantom with a 20 mm diameter and 20 mm height was applied to mimic biological
tissues. The absorption and reduced scattering coefficients of the phantom were set to 0.025
mm−1 and 1.12 mm−1 respectively, which were measured by diffuse optical tomography. The
nanophosphors were put into a plastic capillary with a 1 mm radius and 3 mm height, which
was embedded in the phantom.

During the experiment, we used the X-ray source to excite the nanophosphors from two per-
pendicular directions and the CCD camera to collect the luminescent photons emitted from the
phantom. The image acquisition system was enclosed in a light-tight environment to avoid the
outside light effect. Before the luminescence signal collection, we measured the X-ray beams
with the same methods applied in the above imaging system test to obtain the width of the X-
ray beam formed by the collimator. The width of the X-ray beam was 0.5 mm at the end of the
collimator. During the luminescence signal collection, the phantom was moved with the step
size of the X-ray beam. The exposure time was set to 2 s. It only took about 56 s to complete the
data collection without considering the time of phantom movement. The fusion images of the
collected data from one direction are shown in Fig. 4. Figures 4(a)-4(n) show the fusion images
of the phantom when it moves at the direction parallel to the X-ray source.It can be observed
that with the movement of the phantom, the collected data have changed obviously. If the center
of the nanophosphors was near the X-rays beams, the collected data was becoming larger be-
cause more nanophosphors were excited by the X-rays. Then, the computed tomography (CT)
projections were first performed (50 kVp, 1.0 mA, 360 views with 1◦ intervals) and were recon-
structed by the filtered back-projection method to get the physical structure and the correspond-
ing X-ray attenuation coefficient of the phantom. The center of the capillary in the phantom was
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(42.67, 45.81, 21.79) mm, which was obtained from the CT reconstruction results. In the in-
verse reconstruction, the cylinder phantom was discretized into 56621 tetrahedral-elements and
11009 nodes from the CT results by AMIRA. From the measured data, the distribution of the
luminescent sample could be reconstructed by the proposed method.

In the experiment, in order to further validate the accuracy of the proposed XLCT imaging,
we compared the results in which the X-ray beams were approximate as parallel ones. We also
compared the results of the proposed method with the traditional SB method. Figure 5 shows
the results in the slices of z = 21.79 mm and x = 42. 67 mm respectively represented by red
dotted lines shown in Fig. 5(a). Figure 5(a) shows the micro-CT result on the x-z plane. Fig-
ures 5(b) and 5(c) show the reconstruction results of the traditional SB method with fan-shaped
X-rays model and parallel X-rays model respectively while Figures 5(d) and 5(e) show the
results of the proposed method with fan-shaped X-rays model and parallel X-rays model re-
spectively. The reconstruction errors are shown in Table 3. It can be observed that the results of
the fan-shaped X-rays model were better than the results of the parallel X-rays model, which
means that the model of the accurate attenuation of the X-rays can help improve the recon-
struction effectively. Meanwhile, the results from two different methods were consistent with
the simulation experiments. The reconstruction results from the proposed method have better
performance than SB method in the location error. Moreover, the proposed method can better
reveal the contour of the nanophorsphors than the traditional split method as shown in Fig. 5.
Moreover, the reconstruction results with the parallel X-rays model are sparser than that with
fan-shaped X-rays model as shown in Fig. 5. The parallel X-rays model is less accurate than
the fan-shaped X-rays one, and the scanning area is disagree with actual experiment system.
This may cause the sparser reconstruction results in the parallel X-rays model.

(a) (b) (c) (d) (e) (f) (g)

(n)(m)(l)(k)(j)(i)(h)

Fig. 4. Fusion images of the collected data from one direction. (a)-(n) show the fusion
images of the phantom when it moves at the direction parallel to the X-ray source.

Table 3. Reconstruction errors of the two methods in different models
Proposed method SB method

X-ray Location error (mm) DC Location error (mm) DC
Fan-shaped X-ray 1.02 59.47% 1.15 45.68%

Parallel X-ray 1.26 38.02% 1.67 27.52%

The results show that the distribution of the nanophosphors in the phantom can be revealed
by our proposed method in the XLCT imaging system. However, due to the ill-posed problem in
the phantom reconstruction and the measurement errors in the process of the data collection, the
reconstruction error was slightly bigger than in the simulation experiments, which was normal
in the phantom experiment. The light yield ε of the nanophosphors need related information of
the X-ray energy, which couldn’t be directly measured in our present system conditions. Hence,

#237850 Received 9 Apr 2015; revised 13 Jun 2015; accepted 15 Jun 2015; published 23 Jun 2015 
(C) 2015 OSA 1 Jul 2015 | Vol. 6, No. 7 | DOI:10.1364/BOE.6.002649 | BIOMEDICAL OPTICS EXPRESS 2661 



(a)

z=21.79 mm

x=42.67 mm

(c)

(d) (e)

(b)
5 mm

Fig. 5. Reconstruction results of the phantom experiments in the slices of z=21.79 mm and
x=42. 67 mm respectively represented by red dotted lines. (a) shows the micro-CT result on
the x-z plane. (b) and (c) show the reconstruction results of the traditional SB method with
fan-shaped X-rays model and parallel X-rays model respectively while (d) and (e) show the
results of the proposed method with fan-shaped X-rays model and parallel X-rays model
respectively.

the unit of Fig. 5 was ignored and the comparison of quantity results as well as MSE results
was not discussed and will be studied in future.

4. Conclusion

In this paper, a narrow beam XLCT imaging modality is proposed, in which the fan-shaped X-
rays distribution is modeled and a depth related adaptive regularized split Bregman (DARSB)
method is proposed to overcome the ill-posedness of reconstruction. The simulation and phan-
tom experiments were conducted in our imaging system, which could perform conventional CT
imaging and X-ray luminescence imaging. The simulation experiments show that the proposed
method can achieve better results both in the location error, DC, MSE and the intensity error
than the traditional SB method. The simulation experiments showed that our proposed method
was stable and robust against different measurement noise levels. The phantom experiment can
obtain the location error of 1.02 mm and further validate that the incorporation of fan-shaped
X-ray beams in our model can achieve better results than the parallel X-rays.

The cone beam XLCT can be viewed as one of the optical imaging modality such as biolu-
minescence tomography (BLT) and fluorescence molecular tomography (FMT), whose recon-
struction quality are relatively lower than that of narrow beam XLCT. However, the imaging
quality and scanning time of the narrow beam XLCT is closely related to the beam width and
sampling [40]. For example, C. M. Carpenter et. al. reported that objects as small as 1 mm in
size could be resolved using a 1 mm beam width [40] and that the phantom was translated 26
times in increments of 1 mm and was rotated 24 times to cover 360◦ [7]. However, the scan-
ning time in our imaging system could be shortened with the relatively larger scanning area
of X-rays. Meanwhile, the scanning only performed from two perpendicular directions to ac-
complish the reconstruction. Even though the scanning time in our phantom experiment was
shorter than the cone beam XLCT imaging [9], it cannot indicate that the scanning time in our
system is less than the cone beam XLCT because different nanophosphors were applied and
the scanning time is related to the size of the object. Nonetheless, compared with the traditional
narrow beam XLCT imaging, the scanning time in our proposed imaging modality is greatly
decreased. However, the effects of the width of the X-ray beam on the number of projections as
well as the results still need further study and research.
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There are still several topics that need our further study. First, The spatial resolution along
the longitudinal (z axis) direction is not good as that in the transverse plane (x-y plane) as
shown in the phantom results. Because the scanning was conducted in the transverse plane, the
spatial resolution in the plane can be improved by the fan beam scan. However, we didn’t re-
alize the scanning along the longitudinal direction, which may restrict the improvement along
this direction. Hence we will further study how to conduct the scanning along the longitu-
dinal direction and obtain more data from different planes, which is limited by our present
experiment conditions. Second, with the development of XLCT imaging, the scanning strategy
and reconstruction methods have been proposed in different systems, several of which have
already been applied to in vivo small animal imaging [19]. Nevertheless, each system has its
own advantages and disadvantages and can be affected by different conditions. The compari-
son of different scanning strategies and the scopes of application in different systems such as
pencil beam XLCT, narrow beam XLCT and cone beam XLCT imaging still need our further
research. Thus, we can further develop an optimal XLCT imaging system to achieve good in
vivo small animal imaging with the minimum scanning time. Meanwhile, compared with pencil
beam XLCT, the scanning time and X-ray dose can be reduced in the cone beam XLCT. The
X-ray dose of narrow-beam XLCT may be less than that of pencil beam, more than that of cone
beam. However, since we can’t measure the X-ray dose in our present system conditions, we
will investigate it in the future.
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