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ABSTRACT

Motivation: Tissue microarrays (TMAs) quantify tissue-specific
protein expression of cancer biomarkers via high-density immuno-
histochemical staining assays. Standard analysis approach
estimates a sample mean expression in the tumor, ignoring the
complex tissue-specific staining patterns observed on tissue arrays.
Methods: In this article, a cell mixture model (CMM) is proposed
to reconstruct tumor expression patterns in TMA experiments. The
concept is to assemble the whole-tumor expression pattern by
aggregating over the subpopulation of tissue specimens sampled
by needle biopsies. The expression pattern in each individual
tissue element is assumed to be a zero-augmented Gamma
distribution to assimilate the non-staining areas and the staining
areas. A hierarchical Bayes model is imposed to borrow strength
across tissue specimens and across tumors. A joint model is
presented to link the CMM expression model with a survival model
for censored failure time observations. The implementation involves
imputation steps within each Markov chain Monte Carlo iteration and
Monte Carlo integration technique.
Results: The model-based approach provides estimates for various
tumor expression characteristics including the percentage of
staining, mean intensity of staining and a composite mean staining
to associate with patient survival outcome.
Availability: R package to fit CMM model is available at
http://www.mskcc.org/mskcc/html/85130.cfm
Contact: shenr@mskcc.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
A tissue microarray (TMA) experiment measures tumor-specific
protein expression via high-density immunohistochemical (IHC)
staining assays, allowing simultaneous evaluation of hundreds of
patient samples on a single array (Kononen et al., 1998). Since
their initial development, TMA-based expression studies have
quickly become an integral part of cancer biomarker development
(Divito et al., 2004; Rubin et al., 2005; Seligson et al., 2005).
A typical tissue array comprises up to 1000 tiny biopsy tissue
elements (tissue cores) with multiple elements corresponding

∗To whom correspondence should be addressed.

to repeated sampling from individual tumors. Expression data
consisting the IHC staining intensity and staining percentage are
obtained on individual cores. Such core-level measures can display
substantial within-tumor variability. Liu et al. (2004) considered
various pooling methods, such as the mean, median, minimum
and maximum of the core-level data. They found different choices
of pooling method led to disparate results in Cox regression
analysis. Demichelis et al. (2006) incorporated such within-tumor
heterogeneity in a hierarchical Bayes model for tumor classification
and showed improved performance over the naive classifier. For
survival outcome, Shen et al. (2008) proposed a measurement error
approach to jointly model the repeated expression measures and
patient’s survival. The joint model was shown to outperform the
naive method and a two-stage approach in estimating the hazard
ratio in Cox regression models.

In this study, we propose a novel idea of modeling the expression
data. We introduce the concept of a cell mixture model (CMM).
As will be discussed later, the error model in the previous paper
(Shen et al., 2008) is a special case of the new framework. As
illustrated in Figure 1, the basic idea of the CMM model can be
decomposed into the following aspects: (1) a tumor is represented by
a population of Ri needle biopsy samples (the total sampling capacity
of a tumor); (2) the expression values in each individual tissue core
is a mixture distribution with a point mass at zero (the non-staining
area); (3) the whole-tumor expression can be recapitulated by adding
up (e.g. weighted summation of) the distributions of the expression
values in all the needle biopsy samples (or commonly referred to as
tissue cores in TMA study). The mathematical description will be
put forward in the Section 2.

There are difficulties of implementing such a mixture model in
TMA expression data. First, the experimental data are only collected
on a small number (ri out of Ri) of random sample of tissue cores
in tumor i. Generally speaking, the number of measured cores ri
often averages from 3–5 whereas Ri can be in the hundreds, though
both may vary proportionate to the size of the tumor. Second, each
core is a very small subarea measured in millimeters compared to
the whole tumor which averages around 1–2 cm (prostate tumors).
When our interest is to obtain accurate estimates for tumor- and
core-level expression characteristics, sample-based methods will not
be satisfactory. An analogy is in estimation of the characteristics
of the population in the United States with data collected in
three representative cities. In survey sampling problems, small area
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Fig. 1. A conceptual model for the whole tumor. Each tumor i represented
by a population of Ri tissue cores.

estimation often involves parameter estimation for a small sub-
population of interest. Hierarchical Bayes (HB) and empirical Bayes
(EB) approaches have been effective with continuous data. For a
thorough review of various methods, see Ghosh and Rao (1994), Rao
(1999) and Pfreffermann (2002). For a unified analysis of discrete
and continuous data, Ghosh et al. (1998) present hierarchical Bayes
generalized linear models. The idea of Bayesian predictive inference
and Markov chain Monte Carlo integration is particularly useful for
our problem at hand. In this study, we extend the implementation to a
zero-point mass mixture distribution under the CMM model. Details
of constructing the CMM expression estimators will be discussed in
Section 2.

Associating tumor-wise expression features with patient survival
information is of scientific interest in TMA studies. Therefore
accurate estimation of the disease risk associated with a biomarker
is essential. To achieve this, a joint modeling approach would be
most effective in which the expression data and the survival data
are simultaneously modeled. Markov chain Monte Carlo methods
offer a convenient framework for complex problems where analytic
solutions are often unavailable or cumbersome. As will be discussed
in detail in Section 2, linking the CMM model on the expression
data with survival requires an imputation step within each Markov
Chain Monte Carlo (MCMC) iteration where draws are obtained
from posterior predictive distributions.

2 METHODS

2.1 Notation and the model
Figure 1 describes the concept of the CMM. The cartoon illustrates a tumor
being dissected into a population of Ri tissue core samples. Each core
j (j = 1, ...,Ri) captures a sample of cells stained at different intensities. Let
aij(x) denote the number of cells measured at staining intensity x,x∈[0,M]
in core j of tumor i. Thus the density function of x can be expressed as

gij(x) = aij(x)/nij , where nij is the total number of cells in core j of tumor

i. The total number of cells measured is Ni =∑Ri
l=1 nij . In Figure 1, each

histogram is informative of gij , which is assumed to be a mixture density
with a point mass at zero for the non-staining area and some density function
f (·) for the positively stained area. In particular,

gij(x) = (1−πij)I(x = 0)+πij f (x|µij,σ
2
ij )I(x>0), (2.1)

where πij denotes the proportion of staining; µij,σij are mean and variance
parameters associated with the density f . Subsequently, the tumor-wise
density function gi(x) is aggregated over all the gij(x)′s:

gi(x) =
Ri∑

j=1

ωijgij(x), (2.2)

where ωij = nij/Ni and
∑Ri

l=1ωij = 1.

2.2 Description of the data
The tumor sampling scheme in TMA experiments has a ‘geographical’
clustered sampling structure. Consider each tumor as a population of cells.
Small areas of 0.6 mm (cores) are taken from the tumor where cells within
each area are measured for protein expression. Let Xijk be the resulting
intensity measure in tumor i (i = 1, ...,m), core j (j = 1, ...,ri), and cell
k (k = 1, ...,nij). It needs to be pointed out that Xijk is an idealized measure
where measurements can be taken per cell. The current technology instead
provides a crude mean intensity measure for cells that have non-zero intensity

Yij =
nij∑

k=1

XijkI(Xijk >0)/n1ij

per core. As illustrated in Figure 2, Yij is the actual observed data whereas
the cell-level data are latent. The empirical estimate of µij is yij . For the
zero-mass part, we observe the number of positively staining cells and the
number of non-staining cells which are

n1ij =
∑

k

I(Xijk >0), n0ij =
∑

k

I(Xijk = 0),

respectively. And nij = n1ij +n0ij will be the total number of cells measured
in tumor i core j. The empirical estimate of πij is n1ij/nij .

2.3 A hierarchical zero-augmented Gamma model
In this section, we introduce a zero-augmented Gamma (hZAG) model for
the observed data.

2.3.1 Modeling the positive staining intensity We start by assuming
Xijk |Xijk >0 follow a Gamma distribution G

(
1/δ,δµij

)
with mean µij ,

variance δµ2
ij and the coefficient of variation 1/

√
δ. For identifiability issue,

we set δ = 0.2 which is a reasonable choice based on the real datasets. The
choice of Gamma distribution leads to a standardized Gamma distribution for
Yij . In simulation, we did not find serious model misspecification problems
for the Gamma model when simulating Yij from a log-normal distribution
(Supplementary Fig. 1). A Gamma-Inverse Gamma-Normal hierarchical
model is set up as follows:

Yij
ind∼ Gamma

(n1ij

δ
,

δ

n1ij
µij

)
, i = 1,...,n;j = 1,...,ri,

µij
iid∼ Inverse Gamma

( 1

ν
+2,

ν+1

ν
ea0i+az′

i

)
, (2.3)

a0i
iid∼ Normal(0,τ 2

a ).

In this model, {µi1, ...,µiri } denotes the vector of core-level random
effects for subject i and {a01, ...,a0n} denotes the vector of subject-level
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random effects. Given the Gamma-Inverse Gamma conjugacy, the marginal
densities integrated over µij has the following analytic form:

f (yij|a0i,a,zi) = �(
n1ij
δ

+ 1
ν
+2)

�(
n1ij
δ

)�( 1
ν
+2)

× ( ν+1
ν

ea0i+az′
i )

1
ν +2y

n1ij
δ −1

ij

( δ
n1ij

)
n1ij
δ (

n1ij
δ

yij + ν+1
ν

ea0i+az′
i )

n1ij
δ + 1

ν +2
,

(2.4)

where zi is tumor-level covariates and a is the associated coefficients.

2.3.2 Modeling the point mass at zero To model the point mass at zero in
the mixture density of Equation (2.1), we assume the following hierarchical
structure:

n1ij ∼Bin(nij,πij),

logit(πij) = b0i +bz′
i +εij,

(2.5)

where b0i ∼N(0,τ 2
b ), εij ∼N(0,σ 2

b ) and zi can be the same or different
than those included in Equation (2.3). Let b0ij = logit(πij) such that πij =
exp(b0ij)/(1+exp(b0ij)).

The core- and subject-level parameter space are

�ij = {µij,b0ij}, �i = {a0i,a,τ 2
a ,ν,b0i,b,σ 2

b ,τ 2
b },

respectively (as illustrated in Fig. 2). The likelihood function treating the
latent quantities as parameters can be written as:

Lcmm ∝



n∏
i=1

ri∏
j=1

(
1

1+eb0ij

)n0ij
(

eb0ij

1+eb0ij

)n1ij



×e
− 1

2
∑n

i=1
∑ri

j=1

(
b0ij−b0i−bz′i

σb

)2

e
− 1

2
∑n

i=1

(
b0i
τb

)2

×



n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+ 1

ν
+2,

n1ij

δ
yij +(

1

ν
+1)ea0i+az′

i

)


×e
− 1

2
∑n

i=1

(
a0i
τa

)2

.

(2.6)

To complete the hierarchy for the Bayesian model, the following prior
distributions are specified as:

ak ∼N(µak ,σ
2
ak

),τ−2
a ∼G(rτ2

a
,γτ2

a
),ν ∼G(rν ,γν );

bk ∼N(µbk ,σ
2
bk

),σ−2
b ∼G(rσ 2

b
,γσ 2

b
),τ−2

b ∼G(rτ2
b
,γτ2

b
),

(2.7)

where N(·) denotes Normal distribution and G(·) denotes Gamma
distribution. Posterior inference will then be based on the joint posterior
distribution f (�ij,�i|D). Gibbs sampling is used to iteratively sample from
the full conditionals of each parameter given the rest of the parameters and
the data.

2.4 Estimation of tumor-wise expression characteristics
In this section, we focus on estimating the tumor-wise protein expression
characteristics. Three quantities are of interest: the tumor-wise proportion of
staining (πi), mean intensity of staining (µ+

i ) and a composite intensity (µi).
Under the proposed CMM assumptions, these quantities are defined as

πi =
Ri∑

j=1

ωijπij, µ+
i =

Ri∑
j=1

ωijµij, µi =
Ri∑

j=1

ωijπijµij, (2.8)

respectively. Here πij = exp(b0ij)/(1+exp(b0ij)). For the rest of the article,
we use h(�ij), where 
ij = (b0ij,µij), as a general notation for the above
expression characteristics. Assume independence among the cores and,
without loss of generality, assume the first ri cores from the i-th tumor are
observed and the rest of the cores are not observed, we decompose h(�ij) as

πi =
ri∑

j=1

ωijπij +
Ri∑

j=ri+1

ωijπ
m
ij ,

µ+
i =

ri∑
j=1

ωijµij +
Ri∑

j=ri+1

ωijµ
m
ij ,

µi =
ri∑

j=1

ωijπijµij +
Ri∑

j=ri+1

ωijπ
m
ij µm

ij ,

(2.9)

where the first components of the expansion are estimable given the
data D = (yij,n1ij,nij : i = 1, ...,n;j = 1, ...,ri

)
, and the second components

involve latent quantities 
m
ij where data are not observed for core j

(j = ri +1, ...,Ri).

2.4.1 The CMM model-based estimator To obtain a CMM model-based
estimate of h(�ij), we propose a Bayesian framework. (1) The first com-
ponent of Equation (2.9) is computed based on a set of draws
�

(g)
ij = {b(g)

0ij ,µ
(g)
ij :g = 1, ...,G} from the posterior density f (�ij|�i,D) for

j = 1, ...,ri. The posterior means π̃ij = G−1∑
g exp(b(g)

0ij )/(1+exp(b(g)
0ij ));

µ̃+
ij = G−1∑

gµ
(g)
ij , and µ̃ij = G−1∑

g exp(b(g)
0ij )/(1+exp(b(g)

0ij ))µ(g)
ij are then

readily obtained from the posterior samples. (2) Let �m
ij = (bm

0ij,µ
m
ij )—the

parameter vector involved in the second component of Equation (2.9). In
the absence of knowledge about �m

ij , we replace the latent quantities with
their expectation E[�m

ij |D]. To calculate this, we use the posterior predictive
density function

p(�m
ij |D) =

∫
p(�m

ij |�i,D)f (�i|D)d�i.

Using Monte Carlo integration technique, we first draw �i from their
joint posterior distribution f (�i|D) and then simulate �m

ij according to
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Equations (2.3) and (2.5). Let {�(p)
ij :p = 1, ...,P} be the set of predictive

draws. The following quantities can then be computed:

Ẽ[πm
ij |D](g) = 1

P

P∑
p=1


 exp(b(p)

0ij )

1+exp(b(p)
0ij )

∣∣∣�(g)
i


. (2.10)

Similarly, we simulate a set of {µ(p)
ij ,m = 1, ...,P}, given �̃

(g)
i using

Equation (2.3) and obtain

Ẽ[µm
ij |D](g) = 1

P

P∑
p=1

[
µ

(p)
ij

∣∣∣�(g)
i

]
. (2.11)

Finally, the composite mean at the g-th iteration is computed as

Ẽ[πm
ij µm

ij |D](g) = 1

P

P∑
p=1


 exp(b(p)

0ij )

1+exp(b(p)
0ij )

µ
(p)
ij

∣∣∣�(g)
i


. (2.12)

These are essentially imputation steps within each MCMC iteration.
Assuming equal weights ωij ≡1/Ri, the CMM estimates are

π̃ cmm
i = 1

Ri

ri∑
j=1

π̃ij + Ri −ri

Ri

1

G

G∑
g=1

Ẽ[πm
ij |D](g),

µ̃+cmm
i = 1

Ri

ri∑
j=1

µ̃ij + Ri −ri

Ri

1

G

G∑
g=1

Ẽ[µm
ij |D](g),

µ̃cmm
i = 1

Ri

ri∑
j=1

π̃ijµ̃ij + Ri −ri

Ri

1

G

G∑
g=1

Ẽ[πm
ij µm

ij |D](g).

(2.13)

Since Ri �ri, we let (Ri −ri)/Ri →1 and 1/Ri →0 such that the second term
is used as the estimate. This circumvents the need to specify the value of Ri

which is a theoretical construct to motivate the model and not observed.

2.4.2 Sample-based estimates The sample-based estimates are derived as:

π̂ s
i =

∑ri
j=1 n1ij∑ri
j=1 nij

,µ̂+s
i =

∑ri
j=1 nijyij∑ri

j=1 nij
,µ̂s

i =
∑ri

j=1 n1ijyij∑ri
j=1 nij

. (2.14)

These sample-based estimates are implied by the proposed model by setting
σ 2

b = 0 in Equation (2.5) and ν = 0 in Equation (2.3) such that homogeneity
is assumed across cores within a tumor. These estimates are unbiased when
the sample cores have the same characteristics as the tumor.

2.5 Joint analysis with patient survival outcome
In TMA studies, the ultimate interest is to associate the tumor expression
characteristics to patient survival data in the following proportional hazards
model form:

λ(t) = λ0(t)eβ∗h(
ij )+κz′
i , (2.15)

adjusting for clinical covariates zi. A joint modeling approach would be the
most effective way to obtain accurate estimates of disease risks associated
with a biomarker. To extend the CMM model into a joint model with censored
failure time data, we use a piecewise constant hazards model in which the
time axis is partitioned into L disjoint intervals, I1,...,IL , where Il = [al−1,al)
with a0 < ti and aL > ti for all i = 1,...,n. L is chosen such that each interval
contains approximately equal number of events. Assume a constant baseline
hazard in the l-th interval, let λ0(t) = λl for t ∈ Il . Rl is the set at risk at
the beginning of interval l; dl is the number of failures in interval l and

�il = min(ti,al)−al−1. By treating the latent variables b0ij,µij as a set of
parameters in a Bayesian framework, the joint likelihood function is given by

LJoint ∝



n∏
i=1

ri∏
j=1

(
1

1+eb0ij

)n0ij
(

eb0ij

1+eb0ij

)n1ij



×e
− 1

2
∑n

i=1
∑ri

j=1

(
b0ij−b0i−bz′i

σb

)2

e
− 1

2
∑n

i=1

(
b0i
τb

)2

×



n∏
i=1

ri∏
j=1

IGµij

(n1ij

δ
+ 1

ν
+2,

n1ij

δ
yij +(

1

ν
+1)ea0i+az′

i

)


×e
− 1

2
∑n

i=1

(
a0i
τa

)2

×
L∏

l=1

λ
dl
l exp

(∑
i∈Dl

βh(�ij)+κz′
i

)
exp

(
−λl

∑
i∈Rl

�ile
βh(�ij )+κz′

i

)
,

(2.16)

where �ij = (b0ij,µij). The following priors in addition to those specified
in (2.7) are chosen:

λl ∼Gamma(rλl ,γλl ),β ∼N(µβ,σ 2
β ),κj ∼N(µκj .σ

2
κj

). (2.17)

The parameter spaces are expanded to:

�ij = {µij,b0ij},�i = {a0i,a,τ 2
a ,ν,b0i,b,σ 2

b ,τ 2
b },

�i = {λl : l = 1,...,L,β,κ},
(2.18)

The full conditional of β is given by

β|·∝exp


β

∑
i∈Dl

h(�ij)+κz′
i −

L∑
l=1

λl

∑
i∈Rl

�il exp(βh(�ij)+κz′
i)




×exp

{
1

2
(
β−µβ

σ 2
β

)2

}
,

(2.19)

where at the g-th MCMC iteration, computation of h(�ij) involves predictive
draws and Monte Carlo integration as discussed in the previous section. The
details of the MCMC implementation can be found in (Shen, 2007).

3 SIMULATION STUDY

3.1 Simulation setup
In the simulation study, we assign parameter values in the simulation
to mimic those for the real datasets. In particular, the parameter
values under the hZAG model are specified as follows: τ2

a =
0.01,σ 2

b = 1,τ2
b = 1. The model has one covariate Z1i simulated

from N(0,1) with associated model coefficient a1 = 0.5,b1 = 0.5.
For each tumor, ri is simulated from Binomial(10,0.5). Simulation
of Ri, the total sampling capacity of a tumor, is relatively
subjective as no information is available. We simulate Ri from a
Binomial(200,pi) where pi is allowed to vary with covariates such
as tumor size. The survival time Ti is simulated from a proportional
hazards model in the following form

λ(t) = λ0(t)eβ∗h(
ij)+κ1z1i , (3.1)

with λ0(t)≡1. The censoring time is simulated from an independent
exponential distribution that results in a 30% censoring proportion.
Proper priors were used in the CMM model by setting ak,bk ∼
N(0,1000) and τ−2

a ,τ−2
b ,σ−2

b ,ν ∼Gamma(0.001,0.001). Similarly

in the survival model, prior specifications are β,{κj}J
1 ∼N(0,1000)

and {λl}L
1 ∼Gamma(0.001,0.001). All programming is done using

the R programming language. Convergence is fast for µ+
i due to
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Table 1. Cox regression

h(
ij) true β β̂ sd(β̂) ŝe(β) coverage

πi 2 2.06 0.24 0.23 0.97
π̂ s

i 1.48 0.23 0.18 0.27
π̃ cmm

i (2stg) 1.60 0.22 0.22 0.53
Joint model 2.06 0.32 0.40 0.97

µ+
i 2.5 2.50 0.30 0.26 0.93

µ̂+s
i 1.43 0.25 0.23 0.39

µ̃+cmm
i (2stg) 2.07 0.27 0.23 0.44

Joint model 2.48 0.55 0.49 0.94

µi 1.8 1.82 0.21 0.20 0.95
µ̂s

i 1.40 0.18 0.16 0.48
µ̃cmm

i (2stg) 1.68 0.16 0.19 0.79
Joint model 1.75 0.41 0.47 0.95

Results are summarized over 100 simulated datasets each of n = 100.

a closed form solution and therefore the elimination of the Monte
Carlo imputation step within each MCMC iteration. We discarded
the first 4000 iterations as the burn-in period. For πi and µi , we used
a 10 000 burn-in period. Convergence is monitored using traceplots.
Every 10th sample is then retained to achieve a total of 1000 samples,
from which posterior mean and SD were calculated. Each simulation
consisted of 100 replicate data, each of n = 100 subjects. Results are
summarized over replicated datasets.

3.2 Simulation results
The interest in this section is to estimate the Cox regression
coefficient β in Equation (3.1). The hazard ratio is exp(β). Three
approaches are compared: a naive method where the sample-based
expression estimates are plugged in a Cox model; a two-stage CMM
method where the CMM estimates are plugged in the Cox model and
the joint modeling approach based on the joint likelihood (2.16). The
first two methods are considered two-stage methods as compared
with the joint model. The two-stage methods have several major
limitations. First, the survival information is not used in the CMM
model to reconstruct tumor expression, which can cause bias and
efficiency loss in estimating β in the second stage. Second, the
uncertainty of estimating the expression quantity is not assimilated in
the second stage, leading to overoptimistic standard error estimates
of β̂. The joint modeling approach concurrently updates the CMM
model and the survival model by iteratively sampling through the
joint posterior distribution of the combined parameter space. We
therefore expect more accurate inference from the joint model.
In Table 1, the top panel simulates βπi = 2,βµ+

i
= 0,βµi = 0, the

middle panel assumes βπi = 0,βµ+
i

= 2.5,βµi = 0 and the bottom
panel assumes βπi = 0,βµ+

i
= 0,βµi = 1.8. It is evident that the

joint model performs best in terms of the estimates and coverage
probabilities for β̂.

4 CASE STUDY USING PROSTATE CANCER TMA
EXPERIMENTS

4.1 Data description and model fit
We apply the CMM model to two prostate cancer TMA datasets
used in Shen et al. (2008). The protein expression of two cancer
biomarkers, AMACR and BM28, were measured using tissue arrays
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Fig. 3. Histograms of the percentage of staining and the intensity of staining.
The estimated variance parameters in the CMM model are indicated in the
plots. For the AMACR data, the batch effect for the Gamma-Inverse-Gamma
model is listed.

constructed on 203 prostate tumors from a surgical cohort who
underwent radical prostatectomy at the University of Michigan as
a primary therapy for clinically localized prostate cancer diagnosed
between 1994 and 1998. The outcome of interest is prostate-specific
antigen (PSA) failure. Gleason score and pathologic stage are
included as the clinical covariates Zi. A batch effect is added to
the AMACR dataset, as evident in Figure 3, the staining intensity
distribution is bimodal. In Rubin et al. (2005), an array-wise
normalization was performed to eliminate the batch effect resulting
from experiment-to-experiment variation of immunohistochemical
staining. For MCMC convergence of the joint model, we use the first
10 000 draws as burn-in, and retain every 20th draw till 1000 samples
are collected for inference. To evaluate the model fit, we plotted
fitted density function in four tumors each has relatively ‘abundant’
number of cores to illustrate the ‘reconstructed’ expression profile
based on the CMM model. Supplementary Figure 2 did not suggest
extremely unreasonable fit.

4.2 BM28 expression characteristics and patient
survival

Figure 3 suggests that BM28 is a homogeneously stained marker.
All of the 52 tumors showed over 94% staining, suggesting the
percentage of staining is not an informative measure for BM28.
We therefore focus on analyzing the intensity of the staining of this
gene biomarker. This is clarified in Section 4.2.

The top panel of Table 2 describes the performance of Cox
regression models relating the estimated mean intensity of BM28
to PSA recurrence adjusting for Gleason score and pathological
stage of the tumor. Among the two stage estimation procedures
of β, the CMM estimator of µ+

i does not perform better than
the sample-based estimator. It is likely that the CMM estimates
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Table 2. Case study using prostate cancer TMA datasets

Sample-based CMM (2stg) Joint model

β̂ ŝe(β) β̂ ŝe(β) β̂ ŝe(β)

BM28 (n = 52)
µ+

i 0.668 0.232 0.630 0.236 1.481 0.501
Gleason 0.666 0.601 0.683 0.561 0.592 0.558
Stage 0.938 0.507 0.837 0.535 0.822 0.501

AMACR (n = 203)
πi 0.827 0.358 1.284 0.539 1.778 0.586
µ+

i −1.132 0.464 −0.554 0.402 −0.488 0.389
µi −0.736 0.457 −1.008 0.458 −2.372 0.728
Gleason 1.237 0.418 1.177 0.42 1.025 0.513
Stage 1.345 0.298 1.254 0.298 1.276 0.293

Prediction of patient PSA recurrence using tumor-wise protein expression estimates.

in the dataset does not approximate the true expression quantity
significantly better than would the sample-based estimates when
the within-subject variation ν is small (ν̂ = 0.006). The joint model
estimate is however more than two times larger than those under
the two-stage estimation. The estimated hazard ratio under the joint
model is 4.4 (95% CI:1.6–11.7 ) compared with 1.9 (95% CI: 1.2–
3.0) estimated under two-stage methods. However, a hypothesis
test of H0 :β = 0 would give similar conclusions as the estimated
standard error from the joint model is also substantially larger than
those from the two-stage estimation. After controlling for Gleason
and pathological stage of the disease, the mean intensity of BM28
staining in the tumor is a significant predictor of prostate cancer
PSA recurrence. A further notion is that these results are consistent
with those observed under a measurement error model in Shen
et al. (2008). The underlying Gamma-Inverse-Gamma assumption
on the intensity measure versus the log-normal assumption adopted
there does not seem to have large influence on estimating the Cox
regression coefficient β in the joint model.

4.3 AMACR expression characteristics and patient
survival

Table 2 summarizes the results in the AMACR dataset. A distinct
feature is the interactions among the expression characteristics. The
predictive value of πi depends on the values of µ+

i and µi, and
vice versa. In a simulation study when similar coefficient values
are assigned to the three expression features according to the real
data, we found that noise-inflated expression estimates (e.g. sample-
based) would in the same fashion attenuate βπi and βµi , and yet
overestimate βµ+

i
. Figure 4 reveals the complexity of AMACR

protein expression as a predictor of PSA recurrence outcome. Each
of the three expression estimates are dichotomized into two risk
groups using the lower quartile as cutoff, resulting in a total of
eight combinations (though one group has 0 observations). Overall,
B demonstrates better differentiation of risk groups compared to
A. In both figures, tumors demonstrating low staining proportion,
low intensity and low composite intensity (curve 1) has the highest
recurrence risk of all. One significant difference between A and B
lies in curves 3 and 4. The joint model has generated substantially
different estimates of the recurrence risks for these two groups
compared with sample-based methods.
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Fig. 4. Kaplan–Meier plots. Patients are categorized into risk groups based
on the AMACR expression estimates [(A) sample-based, (B) joint model].
The lower quartiles are used for dichotomization. 1. low πi, low µ+

i , low µi;
2. low πi, high µ+

i , low µi; 3. low πi, high µ+
i , high µi; 4. high πi, low µ+

i ,
low µi; 5. high πi, low µ+

i , high µi; 6. high πi, high µ+
i , low µi; 7. high πi,

high µ+
i , high µi.

5 DISCUSSION
A CMM is proposed to reconstruct tumor expression characteristics
from TMA data. The concept is to assemble the whole-tumor
expression pattern from the subpopulation of tissue cores. We let
each individual core density adopt a zero-augmented Gamma density
function to describe the proportion of non-staining and the intensity
of the positive staining, respectively. A two-stage approach and a
joint model are presented to link the CMM expression model patient
survival outcome. The implementation of the joint model involves
imputation steps within each MCMC iteration and Monte Carlo
integration technique. Simulation studies show that the joint model
can effectively reduce the attenuation of the disease risk estimates
evident in two-stage methods. In addition, when interactions among
the expression features exist, relating noise-inflated expression
estimates to survival can lead to misleading results. Applying the
joint model effectively avoids an erroneous interpretation of the risk
estimates. So in conclusion, inference based on the joint likelihood
is preferred over the two-stage approach.

Using notations from the current article, the error model proposed
in Shen et al. (2008) concerns a ‘true’ protein expression level y∗

i in
tumor i . The core-level data vector of staining intensity measures
D = (yi1, ...,yiri

) are modeled as repeated measures (error-prone) of
the truth y∗

i . The objective is then to assess the prognostic value of
this ‘true’ expression quantity y∗

i given D in survival regression
models. The measurement error model has the benefit of model
simplicity by simplifying the data structure using an inferred ‘true’
expression quantity. In addition, the proportion of non-staining
captured by the data vector (n1ij,nij : j = 1, ...,ri) was not explicitly
modeled in that study.

The CMM model in the current study is fundamentally different
in concept than the error model. Here, we consider a full distribution
of the biomarker expression in tumor i with density function
gi(x), composed of a mixture pattern of non-staining (x = 0) and
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positive staining (x>0) . This densities characteristics, such as
(though not limited to) E[x|x = 0], E[x|x>0] and E[x] are then
explored as predictors of that patient’s survival outcome. Those
three characteristics correspond to 1−πi, µ+

i and µi, respectively
in Equation (2.9).

To make a connection, the quantity y∗
i in the error model bears

similarity to the positive mean µ+
i under the CMM framework when

we let the dispersion δ of the Gamma distribution in Equation (2.3)
go to zero. So to some degree, the error model can be considered a
special case of the CMM model.

Another novel aspect of the CMM model is the idea of
constructing the tumor-wise density function gi(x) as a weighted
summation of the core density functions in the form of
Equation (2.2). Although we used equal weights in this study,
it is straightforward to implement differential weights if certain
cores are regarded by pathologist’s review as more important or
representative than others. In other scenarios, it is also plausible
that one would wish to down-weight cores, for example, because of
stroma contamination.

Naturally the CMM model is a more challenging implementation.
Some of the major difficulties of fitting CMM model are (1)
the requirement of cumbersome imputation steps by Monte Carlo
integration within each MCMC iteration and (2) more parameters
in the model that need careful monitoring for convergence.
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