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Abstract

There is currently accumulating evidence that endogenous estrogens play a critical role in the 

development of breast cancer. Estrogens and their metabolites have been studied in both pre- and 

postmenopausal women with more consistent results shown in the latter population, in part 

because of large hormonal variations during the menstrual cycle and far fewer studies having been 

performed in premenopausal women. In this review we describe in detail estrogen metabolism and 

associated genetic variations, and provide a critical review of the current literature regarding the 

role of estrogens and their metabolites in breast cancer risk.
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1. Introduction

Breast cancer remains an overwhelming health burden, with an estimated 232,670 new 

breast cancer cases and 40,000 deaths among women living in the U.S in 2014 [1]. Age is 

the strongest risk factor for breast cancer. Unlike many cancers that increase beginning at 

the end of the fifth decade of life, breast cancer begins to rise in the third decade of life, 

most likely due to the effects of ovarian hormones on breast tissue [2–4]. More than 2/3 of 

all new cases occur after the age of 55 and women older than 65 have a relative risk greater 

than 4.0 when compared with those younger than 65.

To date, many additional risk factors for breast cancer have been identified. Some risk 

factors are non-modifiable, such as age, BRCA1 and BRCA2 gene mutations, family 

history, reproductive history, and high-dose radiation to the chest. Others are potentially 

modifiable, such as high endogenous estrogens, hormone therapy, obesity (for 

postmenopausal breast cancer) and alcohol consumption [2, 3]. There is some controversy 

regarding whether or not the risk factor of high mammographic density is modifiable [5–9].
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Since a number of these known risk factors are related to endogenous estrogen levels, the 

effect of estrogens on breast carcinogenesis has drawn a great deal of attention in the last 

two decades, with evidence suggesting that estrogens play a causal role in the etiology of 

breast cancer [10]. In this review, we will discuss the metabolism of estrogens and will 

present a detailed analysis of published data evaluating the role of circulating and urinary 

estrogens and their metabolites in human breast cancer.

2. Estrogen Metabolism

All steroid hormones originate from C27 cholesterol (Figure 1). The main source of 

cholesterol required for the synthesis of steroid hormones (steroidogenesis) is LDL-

cholesterol [11]. Cholesterol is metabolized down a number of enzymatic pathways and is 

converted to the 21-, 19-, and 18-carbon steroid hormones, respectively.

The first step in ovarian steroidogenesis is the movement of cholesterol into the 

mitochondrion. This step is regulated by the steroidogenic acute regulatory protein (StAR) 

encoded by the STAR gene [12]. The next step involves the conversion of cholesterol to 

preg-nenolone, catalyzed by the mitochondrial side-chain cleavage enzyme complex. 

Pregnenolone acts as a precursor for all steroid hormones. It is metabolized by different 

enzymes, and under the action of 17-hyroxylase/17, 20-lyase enzyme, a product of the 

CYP17A1 gene is converted to progesterone or androstendione. Androstendione, in turn, is 

further metabolized to other androgens or estrogens.

Estrogens are among very few aromatic molecules in humans. They are all C18 steroids and 

consist of one benzene ring, a phenolic hydroxyl group at C3, and a hydroxyl group (17β-

estradiol) or a ketone group (estrone) at C17 (Figure 1). The main estrogens circulating in 

the human body are estradiol and estrone, as well as 16-hydroxyestradiol (estriol). Although 

estriol is usually the major estrogen in pregnant women [13], and is the most abundant 

estrogen in the urine of all women, estradiol is the most biologically active estrogen, 

primarily secreted by ovarian granulosa cells located next to theca cells and regulated by 

follicle-stimulating hormone (FSH). Estrone is reversibly converted to estradiol through the 

action of 17β-hydroxysteroid dehydrogenase enzyme [14]. Androstenedione, the most 

important product of the theca cells during the follicular phase of the menstrual cycle, is not 

biologically active; however, it acts as a precursor for both estrone and testosterone in the 

ovaries and peripheral tissues. [15]. Testosterone, in turn, is converted to estradiol by the 

action of aromatase enzyme in the peripheral tissues (Figure 1).

In premenopausal women, estradiol synthesized in the ovaries is the most important 

estrogen, while in postmenopausal women, estrone synthesized in peripheral tissues is 

predominant. Aromatase (CYP19), encoded by the CYP19A1 gene, is the rate-limiting 

enzyme in catalyzing the conversion of androgens to estrogens [16, 17]. Given the 

importance of this enzyme, blocking aromatase activity is an important pharmacological tool 

used for the treatment of estrogen-dependent diseases such as breast cancer, endometriosis, 

and endometrial cancer.

Estradiol and estrone are metabolized by three competitive pathways involving irreversible 

hydroxylations catalyzed by the NADPH-dependent cytochrome P450 (CYP) enzymes 
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including CYP1A1, CYP1B1, and CYP1A2 (Figure 2). Estrone and estradiol are 

hydroxylated at positions C2, C4 and C16 and are converted to catechol estrogens (2-

hydroxyestrone, 4-hydroxyestrone, 2-hydroxyestradiol, and 4-hydroxyestradiol), and 16α-

hydroxyestrone. Estriol is produced by the hydroxylation of estradiol or 16α-

hydroxyestrone. Catechol estrogens are further metabolized (methylated) to 

methoxyestrogens (2-methoxyestrone, 4-methoxyestrone, 2-methoxyestradiol and 4-

methoxyestradiol) by the catechol-O-methyltransferase (COMT) enzyme (Figures 2 and 3).

In addition to methylation, parent estrogens and catechol estrogens are also conjugated with 

glucuronic acid and sulfate by hepatic phase II enzymes including UDP-

glucuronosyltransferases and sulfotransferases, respectively. Conjugation is considered a 

detoxification reaction by which hormones either become water soluble and are excreted in 

the urine or feces, or turn into a more lipophilic moiety with elevated half-lives (Figure 2) 

[18–20].

2-hydroxylation pathway

Quantitatively, the 2-hydroxylation pathway is the major metabolic pathway compared to 

the 4- and16-hydroxylation pathways. The cytochrome P-450 enzymes, including CYP1A1 

and CYP1B1, are major phase I enzymes mainly expressed in breast and liver tissues [21]. 

These enzymes, along with CYP1A2, catalyze the C2 hydroxylation of parent estrogens to 

their respective catechol estrogens [22]. Two-hydroxylated estrogens possess low binding 

affinity for the estrogen receptor (ER) [23, 24]. These metabolites demonstrate reduced 

hormonal potency when compared with estradiol, and both non-estrogenic and anti-

estrogenic activities have been attributed to them. There is some evidence from cell culture 

studies in ER+ human MCF-7 breast cancer cells suggesting that 2-hydroxyestrone and 2-

hydroxyestradiol inhibit cell growth and proliferation [25, 26]. In addition, 2-hydroxy 

metabolites have been associated with normal cell differentiation and apoptosis [27, 28]. 

Taken together, these findings have led some researchers to classify 2-hydroxyestrone as a 

“good estrogen” [29]. The lack of tumorigenic activity of 2-hydroxy metabolites has been 

attributed to a few mechanisms including a high rate of clearance, more rapid rate of O-

methylation by the COMT enzyme, lower hormonal potency in estrogen target tissues, and 

methylated products of 2-hydroxyestradiol such as 2-methoxyestradiol, which suppress 

tumor cell proliferation and angiogenesis [23]. At the same time, it has been shown that 2-

hydroxyestrogens can damage DNA and generate free radicals as they go through redox 

cycling or when COMT is inhibited [30, 31]. It is important to note that high inter-individual 

variability in 2-hydroxylation has been shown in human liver samples, possibly explaining 

the high variability of metabolite levels in individuals [32].

Methoxyestrogens, including 2-methoxyestradiol, have been shown to inhibit carcinogenesis 

by suppressing cell proliferation and estrogen oxidation due to effects on microtubule 

stabilization [33–35]. Lottering et al. [36] investigated the effects of 17-β estradiol and its 

metabolites on cell cycle in MCF-7 cells and reported that 2-methoxyestradiol acts as a 

cytostatin and inhibits mitosis.
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4-hydroxylation pathway

CYP3A4/3A5 has been shown to be the primary enzyme in the 4 hydroxylation of estradiol 

in human liver microsomes [32]. 4-hydroxylated catechol estrogens possess carcinogenic 

potential due to their ability to cause DNA damage by forming depurinating adducts, which 

in turn, generate mutations with subsequent oxidative damage and initiation of breast cancer 

[37]. In microsomal preparations of human mammary fibroadenoma and adenocarcinoma, 

formation of 4-hydroxyestradiol was four times higher than 2-hydroxyestradiol formation, 

indicating that the ratio of 4-/2-hydroxyestradiol may be used as a biomarker for detection of 

malignant breast tumors [38]. In addition, it has been shown that the ratios of quinone-

estrogen DNA adducts to their parent or conjugated catechol estrogens were significantly 

higher in women with breast cancer or at high risk of breast cancer compared with control 

women [39]. On the other hand, it has been suggested that the 4-methoxyestrogens prevent 

oxidative metabolism of estradiol [35] and oxidative DNA damage [40]. These findings are 

in agreement with a more recent study in which inhibition of COMT enzyme activity was 

associated with higher levels of depurinating 4-hydroxyestrone (estradiol)-1-N3Adenine and 

4-hydroxyestrone (estradiol)-1-N7Guanine adducts in MCF-10F cells [41].

16-hydroxylation pathway

16α-hydroxyestrone is the most important metabolite of the 16-hydroxylation pathway. 16α-

hydroxyestrone is a potential tumor initiator, which promotes unscheduled DNA synthesis 

and anchorage independent growth in mouse mammary epithelial cells [42–44]. Animal 

studies have shown that urinary concentrations of 16α-hydroxyestrone are associated with 

increased proliferation of mammary cells [43, 44], Ras oncogene expression [45], and 

mammary tumor incidence [46]. Osborne et al. investigated the extent of estradiol 16α-

hydroxylation in relation to the risk of developing breast cancer in human breast tissue. They 

reported that 16α-hydroxyestrone levels were eight-fold higher in cancerous mammary 

terminal duct lobular units than nearby mammary fat tissue, suggesting that 16α-

hydroxyestrone production may play an important role in breast cancer induction [47].

There are currently substantial data suggesting a link between concentrations of individual 

metabolites or the ratio of specific metabolites and breast cancer risk in humans; this will be 

discussed in further details later in this review.

3. Role of Genetic Variation in Estrogen Metabolism

It has been postulated that genetic polymorphisms in genes encoding enzymes involved in 

estrogen metabolism pathways and the genes encoding the ERs are associated with breast 

cancer risk. Polymorphic variations in genes encoding COMT, CYP1A1, CYP1B1, estrogen 

receptor alpha (ERα), estrogen receptor beta (ERβ), CYP17A1, and CYP19A1 have 

received extensive attention within the last decade.

COMT is a phase II enzyme that inactivates catechol estrogens by conjugating them into 

nongenotoxic methoxyestrogens [48]. COMT also prevents biotransformation of catechol 

estrogens to quinone-DNA adducts and development of reactive oxygen species (ROS) 

capable of damaging cellular macromolecules such as DNA, lipids, and proteins [49–51]. 

COMT, located on chromosome 22q11 [52], is polymorphic; a single G to A transition at 
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codon 158 of COMT (single nucleotide polymorphism (SNP) rs4680) results in a 3- to 4-

fold decrease in enzymatic activity (GG vs. AA genotype). Individuals with heterozygous 

genotype (A/G) show intermediate levels of COMT activity [53–54].

Given the role of COMT in the conversion of catechol estrogens to methoxyestrogens, 

genetic variations in this enzyme may influence the risk of breast cancer as a result of 

significant changes in catechol estrogen and methoxyestrogen levels [55]. It has been 

hypothesized that women possessing the low activity COMT genotype (AA or Met/Met) 

might be at greater risk of breast cancer due to higher concentrations of catechol estrogen 

intermediates [56–58]. Unexpectedly, results from the most recent meta-analysis [59] of 56 

studies including 34,358 breast cancer cases and 45,429 controls show no evidence of 

significant associations between the COMT Val158Met polymorphism and breast cancer 

risk in any genetic model (comparing recessive and dominant models with each other). 

Although these findings did not change in subgroup analyses by ethnicity, source of 

controls, or menopausal status, they must be interpreted with caution because of the large 

heterogeneity between studies and lack of data for adjustment of other covariates such as 

age, body mass index (BMI), lifestyle, and environmental factors.

In addition to the hydroxylation of parent estrogens to catechol estrogens, CYP along with 

peroxidase enzymes catalyze the oxidation of catechol estrogens to estrogen semiquinones 

and quinones, which are carcinogenic metabolites of estrogens (Figure 3) [60]. It has been 

hypothesized that polymorphic variations in CYP1A1 and CYP1B1genes are linked with 

increased risk of breast cancer. In a case-control study, Taioli et al. [61] demonstrated that 

African-American breast cancer cases with the Msp1 homozygous variant polymorphism in 

CYP1A1 had an odds ratio (OR) of 8.4 (95% confidence interval: 1.7–41.7) compared with 

controls. This association was not observed in Caucasian women. In contrast, Miyoshi [62] 

reported an inverse association between the Msp1 (6235(T/C)) and breast cancer risk in 

Japanese women (OR= 0.60; 95% CI, 0.41–0.88). Taken together, these findings are mixed 

and more research is needed to clarify this discrepancy.

SNPs in CYP1B1genes have also been investigated in relation to breast cancer risk [63–66]. 

In a population-based case-control study conducted by Reding et al. [67] of 891 breast 

cancer cases and 878 controls, women homozygous with the T allele in CYP1B1*2 (Ser119; 

rs1056827) were compared with women homozygous with the G allele. Those homozygous 

for the CYP1B1*2 Ser allele (T/T) had a 1.69 times higher risk of breast cancer (95% CI, 

1.17–2.46); however, results from this study were not in agreement with an earlier meta-

analysis [68] that showed no overall associations of breast cancer risk with CYP1B1 

polymorphisms. This inconsistency may be due to selection bias or the result of chance in 

Redwing’s study, or limitations of meta-analysis, such as variability in populations and 

publication bias.

In a meta-analysis of more than 10,000 mostly Caucasian breast cancer cases, multiple 

potentially functional SNPs in ERα including rs2234693, rs9340799, rs1801132, rs3798577, 

and rs2228480 have been studied. The only SNP that showed borderline significant 

association with reduced risk of breast cancer was rs2234693 (CC genotype vs. TT; 

OR=0.92; 95 % CI, 0.86–0.99; P =0.08 for heterogeneity test) [69]. Polymorphisms in the 
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ERβ gene and breast cancer risk have also been studied in a recent systematic review [70] 

that reported that rs2987983, and rs4986938 SNPS are significantly associated with overall 

breast cancer risk

Most recently, Chattopadhyay et al. [71] reported significant associations between SNPs in 

ERα (rs2234693), ERβ (rs2987983), CYP17A1 (rs743572) and CYP19A1 (rs700519) and 

breast cancer risk in a case control study performed in North India. The study included 360 

cases with corresponding controls matched on age, sex, ethnicity, and geographical location. 

For the ERα genetic polymorphism, the CC genotype was the reference genotype for all 

comparisons. The CT and CT+TT genotypes were positively associated with 

postmenopausal status (P=0.018 and P=0.017; respectively) and histological grade I and II 

cases (P=0.022 and P=0.008; respectively), and negatively associated with advanced clinical 

stage (III+IV) (P=0.008 and P=0.021; respectively). However, in each case the significance 

was lost after conducting Bonferroni corrections for multiple comparisons. For the other 

SNPs, a number of associations remained statistically significant after performing 

Bonferroni corrections and adjusting for age. For ERβ, the TC+CC genotypes were inversely 

correlated with premenopausal status when compared with the TT genotype (OR=0.31; 95 

% CI, 0.15–0.62; P value=0.001). For CYP17A1, the TC+CC genotypes were positively 

associated with ER− status compared with TT genotype (OR=2.77; 95 % CI, 1.52–5.04; P 

value =0.001). Finally, a SNP in CYP19A1 or the aromatase gene (rs700519) was linked 

with an increased risk among postmenopausal women (CT+TT vs. CC; OR=2.72; 95 % CI, 

1.47–5.10; P value=0.001).

Studies assessing different SNPs in the CYP19A1 and CYP17A1 genes in relation to breast 

cancer have yielded inconclusive results. Talbott et al. [72] have demonstrated that 

polymorphic variations in the CYP 19 gene in rs1008805 (A/G) SNP with at least one G 

allele, but not rs730154 (C/T) SNP, is linked with higher risk of premenopausal breast 

cancer (OR = 1.72; 95% CI, 1.20–2.49). There was no association between postmenopausal 

breast cancer and rs1008805 SNP. Yet Reding and other investigators [73] from the 

Women’s Contraceptive And Reproductive Experiences (CARE) study observed no 

substantial association with breast cancer risk for neither SNPs in CYP19A1, nor for 

CYP17A1, ERα, COMT, CYP1A1, or CYP1B1 genes in more than 1,600 White and Black 

cases. Similar results have been noted from the Shanghai Breast Cancer Study for 19 SNPs 

in CYP19A1gene [74]. Polymorphic variations in the CYP17A1 gene in relation breast 

cancer have been also considerably evaluated, but findings are mixed and no firm 

conclusion can be drawn at this time [75–78].

Further studies with more homogenous populations and larger sample sizes are required to 

substantiate the role of ERs and estrogen-metabolizing gene polymorphisms in breast cancer 

risk pathogenesis.

4. Estrogens and Breast Cancer Risk

There is increasing evidence from epidemiological, animal, and in vitro studies that 

endogenous estrogens are involved in breast carcinogenesis [79]. Evidence suggesting a 

hormonal role in breast cancer development began with an early observation that bilateral 
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oophorectomy significantly reduces breast-cancer risk, and that risk reduction is greater if 

the ovaries are removed earlier in life [80]. In addition, some of the well-established risk 

factors for breast cancer, including early onset of menarche (<12 years), late menopause 

(>55 years), nulliparity or having child late in life, are related to lifetime exposure of breast 

tissue to sex hormones. Given that approximately 2/3 of breast tumors are ER positive (ER

+) [81] and responsive to circulating estrogens, and that almost all ER negative (ER−) cases 

are resistant to endocrine therapy, it is important to elucidate the specific mechanisms by 

which estrogens are related to elevated breast cancer risk. We will discuss the association of 

estrogens with breast cancer risk in the following sections separately based on menopausal 

status. Assessing the role of androgens and progesterone in breast cancer is beyond the 

scope of this review and will not be discussed here.

4.A. Postmenopausal Women

4.A.1. Circulating primary hormones—In postmenopausal women, increased 

circulating concentrations of estradiol, estrone, estrone-sulfate, and androstendione have 

been associated with higher breast cancer risk, whereas higher levels of sex hormone 

binding globulin (SHBG) have been associated with lower risk [82–89]. Key et al. [90], in a 

pooled analysis of 9 prospective studies of 663 women who developed breast cancer and 

were not on any exogenous sex hormones, showed that risk of breast cancer significantly 

increases with higher levels of total estradiol, free estradiol, estrone, estrone-sulfate, 

androstenedione, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate 

(DHEAS), and testosterone. The relative risk (RR) and 95% CI for the highest quintile 

versus the lowest quintile of estradiol levels was 2.0 and 1.47–2.71, respectively (Table 1). 

Since this analysis was published, a few more prospective and case-control studies have 

been reported that have found similar results [91–95]. It should be noted that the majority of 

populations studied were general populations with average breast cancer risk who were not 

taking any exogenous sex hormones. However, when breast cancer risk category (low versus 

high based on Gail or Rosner and Colditz risk model scores) [96, 97] was taken into 

consideration, no difference in the association between sex hormones and breast cancer was 

observed in low versus high breast cancer risk subjects [94, 98]. These findings should be 

evaluated in further studies.

Surprisingly, the results from the Women’s Health Initiative (WHI) are in disagreement with 

those from observational studies. Manson and colleagues [99] have recently published 

updated data from the WHI with 13 years of cumulative follow-up. Briefly, WHI 

randomized 27,347 postmenopausal women 50–79 years to take either conjugated equine 

estrogens alone (CEE) for 7.2 years or CEE plus medroxyprogesterone acetate (MPA) for 

5.6 years. Compared with the placebo group, the CEE group showed a 21% reduced risk of 

invasive breast cancer (95% CI, 0.65–0.97) while the CEE+MPA group showed a 28% 

increased risk (95% CI, 1.11–1.48) (Table 1). As suggested by Chlebowski and others [100, 

101] the discrepancy between observational studies and the WHI may be due to 

methodological issues. For example, in non-research setting, women using hormones usually 

have more screening mammograms than non-hormone users, and consequently breast cancer 

is detected earlier; however, in the WHI study, all participants were required to receive 

screening mammograms at baseline and annually. In addition, there were a relatively small 
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number of breast cancer cases in the estrogen–alone group (n=168 for the intervention group 

and n=216 for the control group).

There are a number of limitations of observational studies, including the collection of a 

single blood sample. It has been suggested that one blood sample with a long period of 

follow up time, which is characteristic of epidemiological studies, may not be a good 

predictor of breast cancer risk. However, Zhang et al. in a nested case–control analysis 

within the Nurses’ Health Study, showed that one single measurement of blood reproductive 

hormones is sufficient to predict ER+/PR+ breast cancer in postmenopausal women 16–20 

years following blood draw. In addition, when two blood measurements, collected 10 years 

apart, were compared, the intra-class correlation coefficients were found to be 0.69 (95 % 

CI, 0.61–0.75) for estradiol, and 0.74 (95 % CI, 0.67–0.80) for SHBG, indicating that 

hormone levels are well correlated over long period of time [102].

Due to scarce available data, it is unclear if the relationship between circulating sex 

hormones and breast cancer differs according to receptor status. In a recent short review by 

Key, results from four studies were compared, and it was reported that estradiol was directly 

linked with ER+ breast cancer in postmenopausal women. However, since the number of ER

− breast cancer cases was very small, no firm conclusion could be established [103].

A number of known breast cancer risk factors have been proposed to influence risk via 

effects on estrogens. Obesity, defined as BMI> 30 kg/m2, raises the risk of postmenopausal 

breast cancer, and this has been attributed to the higher circulating levels of estrogens 

synthesized in the adipose tissue of obese women. At the same time, an inverse association 

between obesity and SHBG blood levels has been reported, which in turn, contributes to 

higher concentrations of free estradiol (bioavailable fraction) in the circulation.

The magnitude of the associations of estrogens with a number of breast cancer risk factors 

including obesity, reproductive, demographic, and life style factors has been investigated by 

the Endogenous Hormones and Breast Cancer Collaborative Group in several studies. In a 

pooled analysis of eight prospective studies in postmenopausal women, adjusting data for 

free estradiol concentrations attenuated breast cancer risk by 17% for each 5 kg/m2 increase 

in BMI, resulting in a loss of statistical significance for the association between BMI and 

breast cancer risk [104]. In another cross-sectional analysis of 13 prospective studies by the 

same group, estrogen and androgen levels were positively associated with obesity, smoking 

(15+ cigarettes daily) and alcohol consumption (20+g alcohol daily), and inversely linked 

with age. By contrast, SHBG concentrations were greater in older women and lower in 

obese women and those consuming alcohol [105].

Mammographic density, a known risk factor for breast cancer development, is a measure of 

the amount of fibroglandular tissue that appears on a mammogram [106]. It has been 

hypothesized that sex steroid effects on breast cancer are mediated through mammographic 

density [107, 108]; however, available data do not consistently support the hormonal basis 

for mammographic density mostly because of the confounding influence of BMI [109–111].

It has long been of concern that circulating estrogen may not be an appropriate surrogate for 

breast tissue levels. Some studies have shown that estrogen concentrations in normal or 
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breast tumor tissue are greater than in the circulation [112–113]. It has been suggested that 

inhibition of local estrogen aromatization in tumor tissue may be an appropriate breast 

cancer prevention strategy. This notion has recently been rejected by Lønning et al. [114] 

who proposed a model in which plasma-to-tissue equilibration explains the high estrogen 

levels in breast tissue. According to this model, malignant breast tumors are constantly 

exposed to circulating estrogens through ER binding or active uptake of estrogens. 

Therefore, they propose that systemic suppression of estrogen production may be superior to 

targeting local aromatase enzyme in hormone responsive breast cancer. Given the strong 

positive association observed between blood sex hormones and breast cancer in 

postmenopausal women, circulating estrogens seem to be an appropriate marker of tissue 

exposure, as suggested by Hankinson and Eliassen [115].

4.A.2. Urinary and circulating estrogen metabolites—The role of estrogen 

metabolites in breast cancer has been the subject of discussion for the last three decades; 

however, compared to circulating primary estrogens, few studies have investigated the 

association between breast cancer and individual estrogen metabolites, their pathways or 

ratios. Among catechol estrogens, 16α-hydroxyestrone and 4-hydroxy metabolites are 

relatively more estrogenic and have genotoxic potential while 2-hydroxy metabolites are 

considered to have little estrogenic activity or antiestrogenic properties [29].

Findings from small observational studies [25, 116, 117] have led to the hypothesis that a 

lower ratio of urinary 2-hydroxyestrone to 16α-hydroxyestrone (2/16-hydroxyestrone) is a 

breast cancer risk factor. The most recent combined analysis [118] reviewed the results of 5 

trials comprised of 385 invasive breast cancer cases and 723 controls. All metabolites were 

analyzed utilizing an enzyme linked immunosorbent assay (ELISA), and odds ratios 

adjusted for known breast cancer risk factors were calculated. Results comparing the women 

in the lowest tertiles with those in the highest tertiles did not reveal any significant 

association for either the 2/16-hydroxyestrone ratio (OR=1.02; 95% CI, 0.71–1.48) (Table 2) 

or any individual metabolites (OR for 2-hydroxyestrone =0.93; 95% CI, 0.67–1.30, and OR 

for 16α-hydroxyestrone =1.01; 95% CI, 0.73–1.41). Additionally, when data were stratified 

by ER status, no significant difference in the relative risk was found. The pattern of results 

was similar in a systematic review by Obi et al. [119] in which 6 prospective and 3 

retrospective studies including 1189 breast cancer cases and 1888 matched controls were 

reviewed. Women in the top category of either urinary or circulating 2/16-hydroxyestrone 

did not differ in risk of breast cancer compared to those in the bottom category (Table 2). 

Risk associations were not changed when ER subtype was also taken into account.

Recently, Fuhrman et al. [120] examined the associations of circulating levels of 15 

estrogens and estrogen metabolites individually and grouped by pathway, as well as 

metabolic pathway ratios, with breast cancer risk in a prospective case-control study nested 

within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Participants were 

277 invasive breast cancer cases and 423 matched controls, all postmenopausal women not 

using exogenous hormones at the time of the blood draw. In contrast to previous studies, an 

assay with high sensitivity and specificity, liquid chromatography–tandem mass 

spectrometry (LC-MS/MS), was utilized to measure circulating levels of hormones and their 

metabolites. The study demonstrated positive associations between breast cancer risk and 
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unconjugated estradiol levels (HR = 2.07; 95% CI, 1.22–3.51; P trend=0.01) and the ratio of 

4-hydroxylation pathway catechol estrogens to 4-hydroxylation pathway methylated 

catechol estrogens (HR = 1.76; 95% CI, 1.06–2.93; P trend=0.02) comparing the highest to 

the lowest quintile. Interestingly, the ratio of 2-hydroxylation pathway to parent estrogens 

was found to be inversely associated with breast cancer risk (HR Q5 vs. Q1 = 0.54; 95% CI, 

0.32–0.90; P trend=0.003) (Table 2).

Since the publication of the Fuhrman et al. results, another two studies have been conducted 

by the same lab and core investigators with inconsistent findings. Dallal et al. [121] 

reproduced similar results in a prospective case-cohort study within the Breast and Bone 

Follow-up to the Fracture Intervention Trial (B~FIT), of 407 cases and 496 controls. In this 

study, high circulating levels of estradiol were associated with elevated breast cancer risk 

(HRtop vs. bottom quintile=1.86; 95% CI, 1.19–2.90; Ptrend=0.04). Additionally, increased ratios 

of the 2-hydroxylation pathway to parent estrogens, and 2:16-hydroxylation pathways were 

associated with lower risk (HR=0.69; 95% CI, 0.46–1.05; Ptrend=0.01; and, HR=0.60; 95% 

CI, 0.40–0.90; Ptrend=0.002, respectively) (Table 2). Surprisingly, the ratio of 4-

hydroxylation pathway to parent estrogens was reported to be inversely related to breast 

cancer risk (HRtop vs. bottom quintile =0.61; 95% CI, 0.40–0.93; Ptrend=0.004), which is not in 

agreement with the findings from previous studies. In contrast to Fuhrman and Dallal 

studies, no statistically significant results were observed in another nested case-control study 

by the same lab using blood samples from the Columbia Missouri Serum Bank [122]. The 

reasons for the discrepancies among these results are not quite clear, however, the 

investigators believe they might be due to differences in COMT polymorphisms or simply 

due to chance alone.

The association between circulating endogenous estrogens and breast cancer risk in 

postmenopausal women has been conclusively established, and compelling evidence exists 

to support a causal relationship. Epidemiological studies have consistently shown a 2–3 fold 

increase in breast cancer risk in women with elevated blood estradiol levels. On the other 

hand, findings from estrogen metabolite investigations are mixed. This inconsistency in 

estrogen metabolite results may be due to methodological differences in participant 

characteristics, study design and follow-up length (for some studies insufficient), number of 

cases (some studies under-powered), and high inter-individual variation in serum and 

urinary concentrations of estrogen metabolites, or limitations associated with estrogen 

metabolite measurement. Of particular note are differences in assay methodologies. Until 

recently, the leading methodology for measurement of estrogen metabolites was ELISA, a 

method that has limited specificity and sensitivity. This is of particular importance for 

analysis of samples from postmenopausal women, whose levels are extremely low. 

Recently, some groups have used liquid chromatography–tandem mass spectrometry (LC–

MS/MS), which has much higher sensitivity and specificity.

4. B. Premenopausal Women

4. B.1. Circulating primary hormones—Much less research has been performed on the 

effects of endogenous estrogens on breast cancer risk in premenopausal women than in 

postmenopausal women. Thus, the role of estrogens in breast carcinogenesis in this 
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population is not thoroughly understood and remains relatively unclear. This is likely due to 

the much smaller number of breast cancer cases in premenopausal women. Another potential 

reason may be the large inter- and intra-individual variations in sex hormone concentration 

during the menstrual cycle. To the best of our knowledge, only nine prospective studies 

[123–132] have evaluated the associations between serum estrogens and breast cancer risk 

in premenopausal women.

Hankinson and Eliassen reviewed the results of seven of these studies in 2010 [133]. Briefly, 

three cohort studies [123, 124, 127] failed to show significant associations between breast 

cancer risk and estradiol, estrone, or estrone-sulfate, possibly due to the fact they were small 

studies with less than 50 cases, or had not adjusted for the timing of the menstrual cycle at 

the blood draw. Although the European Prospective Investigation into Cancer and Nutrition 

(EPIC) cohort [128], Guernsey cohort [126], and Rosenberg studies [125] had larger sample 

sizes with 285, 62 and 79 cases respectively and accounted for the phase of menstrual cycle, 

no statistically significant results were found for associations between breast cancer risk and 

estrone, estradiol, or SHBG.

On the other hand, early follicular blood samples from breast cancer cases (n=197) in the 

Nurses Health Study II (NHSII) demonstrated a significantly elevated breast cancer risk in 

women with higher total and free estradiol (RRQ4 vs. Q1= 2.1; 95% CI, 1.1–4.1; and, 

RRQ4 vs. Q1= 2.4; 95% CI, 1.3–4.5; respectively). Importantly, the magnitude of the effect 

estimate was more pronounced among the ER+/PR+ cases compared with all breast cancer 

cases (RRQ4 vs. Q1= 2.7; 95% CI, 1.2–6.0 for follicular total estradiol) consistent with the 

classical role of ERs in stimulating higher cell proliferation and mutagenesis [134]. On the 

other hand, no evidence of a relationship between breast cancer risk and estrone, estrone-

sulfate, or SHBG was seen [130].

In a 2011 meta-analysis of those seven nested case–control studies with a total of 693 cases 

and 1609 controls, only a weak relationship between circulating estradiol and breast cancer 

risk was reported (OR for a doubling of estradiol=1.10;95% CI, 0.96–1.27) (Table 3) [135].

Following this meta-analysis, results of three studies and a new systematic review have been 

published. Dorgan et al. [129] reported no association between total or bioavailable estradiol 

or SHBG and breast cancer risk, in a prospective case-control study of 98 breast cancer 

cases nested in the Columbia, MO, Serum Bank cohort matched with 168 controls on factors 

such as the day of blood draw and menstrual cycle phase. Similarly, data from 104 cases of 

the Italian Hormones and Diet in the Etiology of Breast Tumors (ORDET) cohort did not 

suggest any associations with risk when the highest tertiles of estradiol and SHBG levels 

were compared with the lowest tertiles [131]. The Nurses’ Health Study II has recently 

published updated data regarding the relationship of plasma sex hormones to breast cancer 

risk [132]. Since the last data were published in 2006, more than 400 additional cases were 

identified, bringing the total number of cases to 634. Estrogens were measured by 

radioimmunoassay or LC–MS/MS, and SHBG was measured by chemiluminescence 

immunoassay. Overall, after adjusting for known breast cancer risk factors, no significant 

associations were reported between breast cancer risk and early follicular or mid-luteal total 

estradiol, free estradiol, estrone, or SHBG. There was weak evidence indicating that mid-
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luteal estradiol was positively related with ER+/PR+ breast cancer (ORQ5 vs. Q1= 1.7; 95% 

CI, 1.0–2.9; Ptrend = 0.02).

Interestingly, results from the most recent pooled analysis of data by the Endogenous 

Hormones and Breast Cancer Collaborative Group [136] were not consistent with the 

findings of the previous studies. This inconsistency may be due to the exclusion of data from 

four of the previously discussed studies [123, 125, 127, 131]. Participants included in the 

analyses were premenopausal women below 50 years of age who were not using any 

exogenous sex hormones at the time of blood collection. Cases and controls were matched 

for age, menstrual cycle day, and blood draw date, and an odds ratio associated with a 

doubling in hormone levels was calculated separately for each hormone. Data from 600 

women with incident breast cancer and 1375 controls were used to calculate the odds ratio 

for breast cancer in relation to serum estradiol. The odds ratio for circulating estrone was 

estimated based on data from 477 cases and 933 controls. Findings showed that a doubling 

in concentrations of estradiol and estrone was associated with 19% and 27% elevated risk of 

breast cancer, respectively (OR for estradiol= 1.19; 95% CI, 1.06–1.35; Ptrend=0.004; OR 

for estrone= 1.27; 95% CI, 1.05–1.54; Ptrend=0.01) (Table 3). SHBG was not related to 

breast cancer risk. These risk estimates were not changed significantly after adjustment for 

hormonal breast cancer risk factors. When data were evaluated based on the tumor ER 

subtype, no significant differences in results were observed between ER+ or ER− cases, 

although odds ratios were generally larger among the ER+ subjects.

Overall, observational data regarding the associations of circulation estrogen concentrations 

with breast cancer risk in premenopausal are not as strong as postmenopausal women. 

Therefore, no conclusions can be drawn until larger well-designed studies with enhanced 

analytical methods are conducted.

4.B.2. Urinary and circulating estrogen metabolites—Four prospective studies have 

investigated the relationships between breast cancer incidence and concentrations of 

individual estrogen metabolites, their ratios or metabolic pathways in premenopausal 

women. The ratio of 2/16-hydroxyestrone has been studied in either urine or blood samples 

with inconsistent results. Muti et al. [137] reported that relative to the lowest quintile, cases 

in the highest quintile of luteal phase urinary 2/16-hydroxyestrone had a 45% reduction in 

breast cancer risk (n =67 cases; adjusted RR= 0.55; 95% CI, 0.23–1.32). Additionally, both 

2-hydroxyestrone and 16α-hydroxyestrone were positively but non-significantly linked with 

risk. Consistent with these results was a study conducted by Meilahn et al. [117] in which 60 

breast cancer cases were matched to 184 controls on age, baseline visit date, and menstrual 

cycle phase. Results showed that women in the top tertile of the 2/16-hydroxyestrone ratio 

had a lower breast cancer risk compared to those in the bottom tertile (OR= 0.75; 95% CI, 

0.35–1.62; P value= 0.46).

The New York University Women’s Health Study [138] is the only trial that has reported 

circulating levels of the 2/16-hydroxyestrone ratio. In this study, 377 cases were matched 

with 377 controls on day and phase of menstrual cycle. Results revealed no significant 

associations between breast cancer risk and 2-hydroxyestrone or 16α-hydroxyestrone, or 

their ratio (OR for 2-hydroxyestrone: 16α-hydroxyestrone =1.13; 95% CI, 0.68–1.87; Ptrend=0.5). 
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Along the same lines, in the subgroup analysis based on ER status when comparing the 

highest quartile with the lowest quartile among ER+ cases, the 2/16-hydroxyestrone ratio 

was associated with more than doubling of breast cancer risk (OR=2.15; 95% CI, 0.88–5.27; 

Ptrend=0.09).

Contrary to the previous studies that had analyzed 2-hydroxyestrone, 16α-hydroxyestrone, 

and their ratio with the ELISA method, the NHSII quantitated a comprehensive list of 15 

urinary estrogens and estrogen metabolites utilizing the gold standard method, LC-MS/MS 

[139]. Mid-luteal urine samples were collected by 247 cases and 485 matched controls. 

Findings indicated that 2- and 4-hydroxylation pathway estrogen metabolites, but not 16-

hydroxylation pathway, were inversely associated with risk, but results did not reach 

statistical significance. Likewise, the 2/16-hydroxyestrone ratio was not linked to risk 

(RRQ4 vs. Q1=0.90; 95% CI, 0.57–1.41; Ptrend = 0.86). The only estrogen metabolite 

positively associated with risk was 17-epiestriol, which is a metabolite in the 16-

hydroxylation pathway (RRQ4 vs. Q1= 1.74; 95% CI, 1.08–2.81; Ptrend = 0.01). Interestingly, 

when comparing the highest quartile with the lowest quartile, elevated urinary 

concentrations of estrone and estradiol were associated with 48% and 49% reductions in 

risk, respectively (RR for estrone = 0.52; 95% CI, 0.30–0.88; RR for estradiol = 0.51; 95% 

CI, 0.30–0.86). Additionally, elevated ratio of 16-pathway estrogen metabolites to parent 

estrogen metabolites was associated with higher risk (RRQ4 vs. Q1= 1.61; 95% CI, 0.99–2.62; 

Ptrend = 0.04), and parent estrogen metabolites to non–parent estrogen metabolites ratio was 

negatively linked to risk (RRQ4 vs. Q1= 0.58; 95% CI, 0.35–0.96; Ptrend = 0.03). It is difficult 

to interpret these findings since the directions of the associations for the primary estrogens 

in the urine are not in agreement with that observed in circulating primary estrogens. Also, 

due to a lack of research done in this area, sufficient data do not exist for comparison. One 

possible explanation for these results is that higher levels of primary estrogens are excreted 

into urine prior to finding any chance to convert into genotoxic metabolites. Also, one may 

speculate that urine is not as relevant as blood to breast tissue exposure.

Recently, two systematic reviews and combined analyses have examined the relationships 

between circulating or urinary 2-hydroxyestrone, 16α-hydroxyestrone, and their ratio with 

breast cancer risk. Obi et al. [119], in a study of 682 premenopausal cases and 1027 matched 

controls, concluded that the urinary 2/16-hydroxyestrone ratio, but not circulating levels, is 

non-significantly associated with lower risk of breast cancer (range of ORs=0.5–0.75; 95% 

CI, 0.25–1.01 and 0.35–1.62; respectively) (Table 3). Similarly, Dallal et al. [118], in a 

combined analysis of 726 women (n=183 cases) demonstrated that elevated urinary 2/16-

hydroxyestrone is suggestive of lower breast cancer risk (ORtop tertile vs. low tertile= 0.74; 95% 

CI, 0.45–1.23) (Table 3). Additionally, data from the same analysis showed that higher 

urinary 2/16-hydroxyestrone is indicative of decreased risk of breast cancer for ER− cases 

(ORtop tertile vs. low tertile= 0.33; 95% CI, 0.13–0.84). This latter finding is based on small 

number of 31 cases; therefore, it may be due to chance and needs more research to be 

confirmed. A summary of data for both circulating and urinary estrogens and their 

metabolites is presented in Table 3.
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5. Conclusions

There is currently convincing evidence that endogenous estrogens are associated with breast 

cancer in postmenopausal women; however, this relationship has not been firmly established 

in premenopausal women, possibly due to the large variations in hormone levels during the 

menstrual cycle, the small number of studies that have been performed, and the small 

number of cases. Of recent interest are genetic polymorphisms in the enzymes involved in 

estrogen metabolism that may modify breast cancer risk in relation to sex hormones.

The role of estrogen metabolites in the etiology of breast cancer has been studied, but 

available data are mixed and no firm conclusion can be drawn in either pre- or 

postmenopausal women. Developments in mass spectrometry have greatly enhanced the 

sensitivity and specificity in the quantification of estrogens and estrogen metabolites in both 

blood and urine.

Further studies with particular attention to factors such as hormone receptor subtype, 

controlling for hormones variations during menstrual cycle in premenopausal women, are 

needed to improve our understanding of the importance of estrogen to breast cancer risk. 

Taken together, there are not sufficient data to confirm the role of estrogen metabolites as 

predictors of breast cancer, but it can be concluded at this point that any intervention which 

leads to reduced circulating levels of primary estrogens have the potential to lower the risk 

of breast cancer in postmenopausal women.
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Figure 1. Pathways of steroid hormone synthesis in humans
Abbreviations: StAR, steroidogenic acute regulatory protein; CYP11A1, side-chain cleavage 

of P450; CYP17A1, 17-hydroxylase/17,20-lyase; HSD3B2, 3β-hydroxysteroid 

dehydrogenase-Δ5,4 isomerase type 2; ; CYP19A1, aromatase; HSD17B1, 17β-

hydroxysteroid dehydrogenase type 1 [13].

Samavat and Kurzer Page 23

Cancer Lett. Author manuscript; available in PMC 2016 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Endogenous estrogen metabolism in human
The parent estrogens estrone and estradiol are reversibly inter-converted, catalyzed by the 

17β-hydroxysteroid dehydrogenase enzyme. They are also converted to catechol estrogens 

including 2-hydroxestrogens, 4-hydroxestrogens, 16-hydroxestrone, or estriol through the 

action of CYP enzymes. Catechol estrogens, in turn, are metabolized to 2-methoxyestrogens 

and 4-methoxyestrogens. Estrone, catechol estrogens, and methoxyestrogens can be 

conjugated to glucuronic acid and sulfate.

Abbreviations: COMT, catechol-O-methyltransferase; CYP, cytochrome P-450 enzyme 

[114].
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Figure 3. Estradiol metabolism and DNA adduct formation
Estradiol catechol estrogens, including 2-hydroxyestradiol and 4-hydroxyestradiol, can go 

through reductive-oxidative cycling and produce mutagenic free radicals. These reactions 

are catalyzed by CYP and peroxidase enzymes. Estrogen semiquinones and quinones are 

reactive and carcinogenic intermediate metabolites of redox cycling pathways and can cause 

DNA damage.

Abbreviations: CYP, cytochrome P-450 enzyme; COMT, catechol-O-methyltransferase 

[17].
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