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Abstract

Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and 

lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV 

and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This 

review discusses how viral vector expression cassettes can be engineered with elements to 

enhance target specificity and increase transgene expression. The key differences relating to target 

specificity between ubiquitous and tissue-specific promoters are discussed, as well as how 

endogenous miRNAs and their target sequences have been used to restrict transgene expression. 

Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, 

polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing 

transgene expression in gene therapy applications. All discussion bears in mind that expression 

cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome 

design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene 

therapy.

Introduction

The cis-acting elements that regulate transgene expression can have as great of an impact on 

the success of gene therapy as the design of the vector capsid or envelope. Target specificity 

and an appropriate level of transgene expression can prevent unwanted phenotypes in other 

cells, an immune response, and possible toxicity. Overexpression and non-targeted 

expression in some diseases, such as Rett Syndrome, is to be avoided (Amir et al., 1999); 

however, in Hemophilia B, expression of Factor IX, a secreted protein present in the blood, 

is needed to be high and there is little concern of overexpression (reviewed in Cancio et al., 

2013).

Lentivirus and AAV (adeno-associated virus) expression cassettes, prominently used in gene 

therapy, can be designed for target specificity and transgene expression levels (Figure 1). 

Target specificity can be honed by using cell-specific promoters or endogenous miRNAs. 
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Transgene expression levels can be modulated by engineering the expression cassette to 

include the CMV enhancer (that includes transcription factor binding sites) or mRNA 

stability/nuclear export cis-acting elements (introns, polyA signals, or WPRE). Expression 

cassettes require thoughtful design due to foreign DNA packaging size constraints of AAV 

and lentivirus, approximately 4.1–4.9 kbs and 8–9 kbs, respectively (Dong et al., 1996; 

Kumar et al., 2001). While keeping in mind size constraints, this review will discuss 

different cis-acting elements that have been engineered into lentivirus and AAV expression 

cassettes to enhance cell-specific transgene expression. Lentivirus and AAV have been 

extensively reviewed elsewhere in the areas of their pros and cons, virology, uses, and 

development for gene transfer (Nagabhushan Kalburgi et al., 2013; Kay et al., 2011; Grieger 

and Samulski, 2012; Segura et al., 2013). Other outstanding reviews are available for 

insulators (Antoniou et al., 2013), self-complementary AAV (McCarty, 2008), AAV 

serotype tropism (Wu et al., 2006), retrovirus pseudotyping (Matrai et al., 2010), and 

systems to induce/regulate expression using exogenously supplied trans-acting factors 

(Toniatti et al., 2004). Although these are useful tools to control expression and/or cell 

specificity, they will not be discussed in this review. Moreover, while the genome 

modifications are described in this review in the context of AAV and lentiviral vectors, they 

are certainly applicable to other vector systems.

Promoters

An effective gene transfer approach must be directed to the specific tissues/cells where it is 

needed, and the resulting transgene expression should be at a level that is appropriate to the 

specific application. Promoters are a major cis-acting element within the vector genome 

design that can dictate the overall strength of expression as well as cell-specificity (Table 1).

Ubiquitous expression

In some cases, such as those where a gene product is secreted, ubiquitous expression in all 

cell types is desired. Constitutive promoters such as the human elongation factor 1α-subunit 

(EF1α), immediate-early cytomegalovirus (CMV), chicken β-actin (CBA) and its derivative 

CAG, the β glucuronidase (GUSB), or ubiquitin C (UBC) can be used to promote expression 

in most tissues (Husain et al., 2009; Qin et al., 2010; Norrman et al., 2010). Generally, CBA 

and CAG promote the larger expression among the constitutive promoters (Xu et al., 2001; 

Yin et al., 2011); however, their size of ~1.7 kbs in comparison to CMV (~0.8 kbs) or EF1α 

(~1.2 kbs) limits its use in vectors with packaging constraints such as AAV. The GUSB or 

UBC promoters can provide ubiquitous gene expression with a smaller size of 378 bps and 

403 bps, respectively, but they are considerably weaker than the CMV or CBA promoter 

(Husain et al., 2009; Qin et al., 2010). Thus, modifications to constitutive promoters in order 

to reduce the size without affecting its expression have been pursued and examples such as 

the CBh (~800 bps) and the miniCBA (~800 bps) can promote expression comparable and 

even higher in selected tissues (Gray et al., 2011). It should be noted that in some cases 

“ubiquitous” promoters can be prone to silencing or promote differential expression strength 

in selected cell types (McCown et al., 1996; Klein et al., 1998; Gray et al., 2011).
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Tissue-specific expression

When expression should be restricted to certain cell types within an organ, promoters can be 

used to mediate this specificity. For example, within the nervous system promoters have 

been used to restrict expression to neurons, astrocytes, or oligodendrocytes. In neurons, the 

neuron-specific enolase (NSE) promoter drives stronger expression than ubiquitous 

promoters (Xu et al., 2001); however, its size of 2.2 kbs limits its use in smaller vectors. 

Additionally, the platelet-derived growth factor B-chain (PDGF-β), the synapsin (Syn), and 

the methyl-CpG binding protein 2 (MeCP2) promoters can drive neuron-specific expression 

at lower levels than NSE, but their sizes of 1.4 kbs, 470 bps and 229 bps, respectively, make 

them more suitable for vectors with limitations in size (Paterna et al., 2000; Kügler et al., 

2003; Hioki et al., 2007; Kuroda et al., 2008; Rastegar et al., 2009; Gray et al., 2011). In 

astrocytes, the 680 bps-long shortened version [gfaABC(1)D] of the glial fibrillary acidic 

protein (GFAP, 2.2 kbs) promoter can confer higher levels of expression with the same 

astrocyte-specificity as the GFAP promoter (Lee et al., 2008). Targeting oligodendrocytes 

can also be accomplished by the selection of the myelin basic protein (MBP) promoter, 

whose expression is restricted to this glial cell; however, its size of 1.9 kbs and low 

expression levels limit its use (Chen et al., 1998).

Following systemic administration of vectors, cell- or tissue-specific promoters can be used 

to restrict expression away from the liver. In skeletal muscle cells, the promoters based on 

muscle creatine kinase (MCK) and desmin (1.7 kbs) have showed a high rate of specificity 

with minimal invasion to the liver (Wang et al., 2008; Talbot et al., 2010; Katwal et al., 

2013). The promoter of the α-myosin heavy chain (α-MHC; 1.2 kbs) has shown significant 

cardiac specificity in comparison with other muscle promoters (Lee et al., 2011). In 

hematopoietic stem cells the synthetic MND promoter (Li et al., 2010) and the promoter 

contained in the 2AUCOE (ubiquitous chromatin opening element) have shown to drive a 

higher transgene expression in all cell lineages when compared to the EF1α and CMV 

promoters, respectively (Zhang et al., 2007; Koldej 2013; Dighe et al., 2014). Conversely, 

using promoters to restrict expression to only liver hepatocytes after vector-mediated gene 

transfer has been shown to avoid transgene-specific immune responses, and to even induce 

immune tolerance to the expressed protein (Zhang et al., 2012). The α1-antitrypsin (hAAT; 

347 bps) and the thyroxine binding globulin (TBG; ~400 bps) promoters drive gene 

expression restricted to the liver with minimal invasion to other tissues (Yan et al., 2012; 

Cunningham et al., 2008).

Tissue specific promoters provide the advantage of limiting the expression to the desired cell 

or tissue. However, low levels of expression and/or large size may limit their use. To 

compensate for weak strength, the level of expression can be increased by adding enhancer 

elements such as from CMV (see below). Conversely, as mentioned above, these promoters 

can be modified in order to reduce their capabilities and overall strength.

Endogenous MicroRNAs

MicroRNAs (miRNAs) are 21–23 oligonucleotide RNA molecules that control protein 

expression by repressing genes post-transcriptionally in a tissue-, cell-, developmental-, or 

metabolic-specific manner (reviewed in Broderick and Zamore, 2011). Endogenous 
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miRNAs can `de-target' or inhibit transgene expression when their exact complementary 

target sequences are engineered into an expression cassette. The level of repression, in vitro, 

correlates with the number of target sequences within the expression cassette (Doench et al., 

2003; Brown et al., 2006; 2007). As an example, 4 copies of the hematopoietic-specific 

miR-142-3p target sequence (miR-142-3pT) were engineered into a lentivirus vector with a 

reporter transgene being driven by the ubiquitous PGK (phosphoglycerate kinase) promoter 

(Brown et al., 2006). In fact, miR-142-3p was still able to maintain expression inhibition 

even if cells were overloaded with up to 30 viral genomes per cell (Brown et al., 2006). The 

miR-142-3pT containing viruses, when injected intravenously into mice, inhibited transgene 

expression in Kupffer cells and restricted transgene expression to hepatocytes and liver 

endothelial cells (Brown et al., 2006). Transgene expression was further restricted to only 

liver endothelial cells, when 4 copies of miR-142-3pT and 4 copies of miR-122aT were 

combined within an expression cassette (Brown et al., 2007). In another in vivo study, when 

an engineered lentiviral vector containing 4 copies of the neuronal-specific miR-124 target 

sequence was injected into mouse brain, PGK-driven transgene expression was de-targeted 

from neurons to only astrocytes (Colin et al., 2009). Endogenous miRNAs are a useful tool 

in obtaining transgene cell specificity because their respective binding sites are small, can be 

combined, and are robust in their ability to restrict expression.

Post-transcriptional Regulatory Elements

Viral post-transcriptional regulatory elements (PREs) are important for viral gene 

expression; these cis-acting elements are required for nuclear export of intronless viral RNA 

(Huang and Yen, 1994; 1995). Both HPRE (Hepatitis B Virus PRE, 533 bps) and WPRE 

(Woodchuck Hepatitis Virus PRE, 600 bps) were assessed, in vitro, and the level of 

transgene expression was increased 6.1-fold and 8.6-fold, respectively (Donello et al., 

1998). The difference in expression was determined to be due to an additional sequence 

element in WPRE (Donello et al., 1998). WPRE can be shortened (to 247 bps), as 

demonstrated in neurons in vivo and in vitro, and it still offers sufficient transgene 

expression (Choi et al., 2014). In cultured human cells using lentiviral and AAV vectors, 

WPRE was found to increase CMV promoter driven transgene expression up to 8-fold (Loeb 

et al., 1999; Zufferey et al., 1999). In vivo studies have also shown an increase of PPE, 

PDGF, NSE, or CMV promoter-driven transgene expression by the presence of WPRE 

(Paterna et al., 2000; Xu et al., 2001). Importantly, transgene expression was not 

significantly increased by including WPRE, in vitro and in vivo, when driven from either the 

EFα1 or CAG promoter due to an intron in the promoters (Ramezani et al., 2000; Fagoe et 

al., 2014). Another effect of the WPRE is to protect transgenes from silencing, as seen when 

it was combined with the CMV or CAG promoter in human ES cells and in the brain 

(Paterna et al., 2000; Xia et al., 2007). In conclusion, although the WPRE can boost 

expression and prevent long-term silencing in combination with several promoters, the 

presence of an intron seems to mitigate its effectiveness in boosting transgene expression 

levels.
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Polyadenylation Signal Sequences and Upstream Enhancer

The polyadenylation of a transcript is critical for nuclear export, translation, and mRNA 

stability. Therefore, the efficiency of transcript polyadenylation is important for transgene 

expression. In vitro studies using mammalian cultured cells have been useful in determining 

the effects of different polyA signals to boost expression. One study, in human epithelial-

like cells, found that a transgene had a 2.5-fold increase in expression with either SV40 late 

or bovine growth hormone polyA (bGHpA) signal sequences compared to a minimal 

synthetic polyA (SPA) signal (Levitt et al., 1989; Yew et al., 1997). Some of the same 

polyA signals were assessed in neuronal cell cultures and gave similar results; the late SV40 

polyA signal and bGHpA were approximately equivalent and twice as strong as the minimal 

SPA (Choi et al., 2014). In vivo, the bGHpA signal, when packaged into AAV2 and injected 

intravenously into mice, gave 2- to 3-fold more transgene expression over the mouse β-

globin polyA signal (Wu et al., 2008). Together these results suggest that polyA signal 

strength is independent of cell type and that in vitro results generally correlate with in vivo 

observations.

The efficiency of polyadenylation is increased by the SV40 late polyA signal upstream 

enhancer (USE) placed upstream of other polyA signals (Schek et al., 1992). The SV40 late 

+ 2xUSE polyA signal compared to SV40 late polyA signal alone gave about a 2-fold 

increase in transgene expression (Schambach et al., 2007; Choi et al., 2014). SV40 late 

+2xUSE polyA signal also increased transgene expression by 45–100% when compared to a 

variety of other USEs (Schambach et al., 2007). In vivo, bGHpA and SV40 late +2xUSE 

polyA signals, when injected into mouse hippocampus, gave similar levels of increased 

transgene expression compared to the control (Choi et al., 2014). Interestingly, a study 

comparing SV40 late +2xUSE polyA signal and a shortened WPRE (247 bps) to bGHpA 

and WPRE found that both increased transgene expression to a similar level; however, the 

first construct is about 400 bps shorter (Schambach et al., 2007). These results are 

summarized in Table 2.

CMV Enhancer

The CMV enhancer is upstream of the CMV promoter at −598 to −68 (Boshart et al., 1985) 

(~600 bps) and contains transcription binding sites. In cultured cells, the presence of the 

CMV enhancer increased tissue-specific promoter-driven transgene expression 4-, 8-, 45-, 

and 90-fold in cardiomyocytes using the ANF (atrial natriuretic factor) promoter, in mouse 

and human epithelial cells using the CC10 (club cell 10) promoter, in lung epithelial cells 

using the SP-C (surfactant protein C) promoter, and in neurons using the PDGF-β (platelet-

derived growth factor-β) promoter, respectively (Yew et al., 1997; Liu, B. et al., 2004; Gruh 

et al., 2008). Strikingly, in neuronal cell culture, the CMV enhancer and tissue-specific 

promoter drove transgene expression levels as strong as the CMV enhancer and promoter 

(Liu et al., 2004). In vivo mouse studies, using a modified AAV2 intravenously injected into 

mice, found that using the CMV enhancer upstream of a cardiac muscle promoter resulted in 

50-fold more transgene expression in the heart than with the CMV promoter alone (Muller 

et al., 2006). Also in AAV, in vivo when injected directly into muscle, transgene expression 

using the CMV enhancer with a synthetic muscle-specific promoter (C5-12) was similar to 
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the CMV promoter level and 50% more than the C5-12 promoter alone (Liu et al., 2004). 

Together, the CMV enhancer increases transgene expression under different cell-specific 

promoters and different cell types making it a broadly applicable tool to increase transgene 

expression levels.

Introns

The presence of an intron or intervening sequence in mRNA was first described, in vitro, to 

be important for mRNA processing and increased transgene expression (Huang and 

Gorman, 1990; Niwa et al., 1990). Early in vitro comparison studies indicated that the SV40 

intron did not increase transgene expression in mouse lung epithelial cells when placed 

between the promoter and transgene, while a hybrid intron (adenovirus/mouse 

immunoglobulin) increased transgene expression by 1.6-fold (Yew et al., 1997). However, 

the presence of the SV40 intron between the promoter and the transgene, in an AAV 

expression cassette, gave a 2-fold increase of transgene expression under the CMV promoter 

and enhancer in lung carcinoma cells (Ostedgaard et al., 2005). A variety of introns (Table 

3) placed between the promoter and transgene were compared, in mice using AAV2, for 

liver transgene expression (Wu et al., 2008). The MVM (minute virus of mice) intron 

increased transgene expression more than any other intron tested and more than 80-fold over 

no intron (Wu et al., 2008). However, in cultured neurons using AAV expression cassettes, 

transgene expression was less under a CaMPKII promoter with a chimeric intron (human β-

globin donor and immunoglobulin heavy chain acceptor) between the transgene and polyA 

signal compared to a WPRE (Choi et al., 2014). Together, an intron can be a valuable 

element to include in an expression cassette to increase transgene expression.

Summary

AAV and lentiviral expression cassettes for gene therapy can be engineered to enhance 

transgene target specificity and expression. The specificity of transgene expression can be 

controlled using cell-specific promoters and endogenous miRNAs. The overall strength of 

expression can be increased up to 90-fold with the CMV enhancer or up to 80-fold by 

improving mRNA stability/nuclear export with a WPRE, polyA signal, an USE, or an intron. 

The combination of these elements must be given thoughtful consideration in order to 

adhere to the space constraints of AAV and lentivirus vectors for gene therapy.
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Figure 1. 
Cartoon diagram of a generic AAV or lentiviral expression cassette design indicating where 

modular regulatory elements would be placed. The promoter, ITR (inverted terminal 

repeats)/LTR (long terminal repeats), and polyA are essential. The other elements are 

optional. CE, CMV enhancer; I, intron; W, WPRE; M, miRNA target sequences; U, polyA 

upstream enhancer; pA, polyA signal.
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Table 1

Comparison of Selected Ubiquitous and Cell-specific Promoters.

Promoter Specificity Relative Strength Size (bps) Reference(s)

CMV Ubiquitous +++ 750–800 Xu et al., 2001; Gray et al., 2011

CBA (including 
derivatives: CAG, 
CBh, etc.)

Ubiquitous +++ 248–1,600 Klein et al., 2002; Ohlfest et al., 2005; Gray et al., 
2011

EF-1α Ubiquitous ++ 2,500 Gill et al., 2001; Xu et al., 2001; Ikeda et al., 
2002; Gilham et al., 2010

PGK Ubiquitous ++ 426 Gilham et al., 2010

UBC Ubiquitous + 403 Gill et al., 2001; Qin et al., 2010

GUSB (hGBp) Ubiquitous + 378 Husain et al., 2009

UCOE (Promoter of 
HNRPA2B1-CBX3)

Ubiquitous ++ 600–2,500 Antoniou et al., 2013

hAAT Liver ++ 347–1,500 Van Linthout et al., 2002; Cunningham et al., 
2008

TBG Liver ++ 400 Yan et al., 2012

Desmin Skeletal muscle +++ 1,700 Talbot et al., 2010

MCK Skeletal muscle ++ 595–1,089 Wang et al., 2008; Talbot et al., 2010; Katwal et 
al., 2013

C5-12 Skeletal, cardiac, and 
diaphragm

++ 312 Wang et al., 2008

NSE Neuron +++ 300–2,200 Xu et al., 2001

Synapsin Neuron + 470 Kügler et al., 2003; Hioki et al., 2007; Kuroda et 
al., 2008

PDGF Neuron +++ 1,400 Patterna et al., 2000; Hioki et al., 2007

MecP2 Neuron + 229 Rastegar et al., 2009; Gray et al., 2011

CaMKII Neuron ++ 364–2,300 Hioki et al., 2007; Kuroda et al., 2008

mGluR2 Neuron + 1,400 Brené et al., 2000; Kuroda et al., 2008

NFL Neuron + 650 Xu et al., 2001

NFH Neuron + 920 Xu et al., 2001

nβ2 Neuron + 650 Xu et al., 2001

PPE Neuron + 2,700 Xu et al., 2001

Enk Neuron + 412 Xu et al., 2001

EAAT2 Neuron and astrocyte ++ 966 Su et al., 2003; Kuroda et al., 2008

GFAP Astrocyte ++ 681–2,200 Brenner et al., 1994; Xu et al., 2001; Lee et al., 
2008; Dirren et al., 2014

MBP Oligodendrocytes ++ 1,900 Chen et al., 1998

Note: Cell type specificity, relative strength (+ being the weakest and +++ being the strongest), size, and relevant references for commonly used 
promoters.
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Table 2

Comparison of PolyA Signals and USEs.

PolyA Signal and USE Relative Strength Size (bps) Source Reference(s)

hGH + 624 Human growth hormone Ostedgaard et al., 2005

SV40 late +++ 135 Simian virus 40 Choi et al., 2014

SPA (synthetic polyA) + 49 Rabbit β-globin Levitt et al., 1989; Yew et al., 1997; 
Ostedgaard et al., 2005; Choi et al., 2014

bGH ++ 250 Bovine growth hormone Yew et al., 1997; Xu et al., 2001; Wu et 
al., 2008; Gray et al., 2011; Choi et al., 
2014

SV40 late 2xUSE ++ 100 Simian virus 40 Schambach et al., 2007; Choi et al., 2014

HIV-1 USE + 35 Human immunodeficiency virus 
1

Schambach et al., 2007

GHV USE + 39 Ground squirrel hepatitis virus Schambach et al., 2007

Adenovirus (L3) USE + 21 Adenovirus Schambach et al., 2007

hTHGB USE + 21 Human prothrombin Schambach et al., 2007

hC2 USE + 53 Human C2 complement gene Schambach et al., 2007

Note: The relative strength (+ being the weakest and +++ being the strongest), source, size, and relevant references for each polyA signal or USE is 
listed.
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Table 3

Comparison of Introns.

Intron Relative Strength Size (bps) Source Reference(s)

MVM +++ 67–97 Minute virus of mice Wu et al., 2008

F.IX truncated intron 1 + 300 Human factor IX Wu et al., 2008; Kurachi et al., 1995

β-globin SD / immunoglobin heavy 
chain SA

+ 250 Human, pZac2.1 Wu et al., 2008; Choi et al., 2014

Adenovirus SD# / immunoglobulin 
SA*

++ 500 pAdβ Wong et al., 1985; Yew et al., 1997

SV40 late SD# / SA* (19S/16S) + 180 pCMVβ Yew et al., 1997

Hybrid adenovirus SD# / IgG SA* +++ 230 Adenovirus Choi et al., 1991; Huang and Gorman, 
1990

Note: The relative strength (+ being the weakest and +++ being the strongest), source, size, and relevant references for each intron is listed. SD#, 
splice donor; SA*, splice acceptor.
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