
Conformational dynamics of non-synonymous variants at 
protein interfaces reveals disease association

Brandon M. Butler1,a, Z. Nevin Gerek2,a, Sudhir Kumar2,3,4, and S. Banu Ozkan1,*

S. Banu Ozkan: banu.ozkan@asu.edu
1Department of Physics, Arizona State University, Tempe, AZ

2Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA

3Department of Biology, Temple University, Philadelphia, PA

4Center for Genomic Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract

Recent studies have shown that the protein interface sites between individual monomeric units in 

biological assemblies are enriched in disease-associated non-synonymous single nucleotide 

variants (nsSNVs). In order to elucidate the mechanistic underpinning of this observation, we 

investigated the conformational dynamic properties of protein interface sites through a site-

specific structural dynamic flexibility metric (dfi) for 333 multimeric protein assemblies. dfi 

measures the dynamic resilience of a single residue to perturbations that occurred in the rest of the 

protein structure and identifies sites contributing the most to functionally critical dynamics. 

Analysis of dfi profiles of over a thousand positions harboring variation revealed that amino acid 

residues at interfaces have lower average dfi (31%) than those present at non-interfaces (50%), 

which means that protein interfaces have less dynamic flexibility. Interestingly, interface sites 

with disease-associated nsSNVs have significantly lower average dfi (23%) as compared to those 

of neutral nsSNVs (42%), which directly relates structural dynamics to functional importance. We 

found that less conserved interface positions show much lower dfi for disease nsSNVs as 

compared to neutral nsSNVs. In this case, dfi is better as compared to the accessible surface area 

metric, which is based on the static protein structure. Overall, our proteome-wide conformational 

dynamics analysis indicates that certain interface sites play a critical role in functionally related 

dynamics (i.e., those with low dfi values), therefore mutations at those sites are more likely to be 

associated with disease.
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INTRODUCTION

Advances in sequencing technologies are providing a wealth of data on human genetic 

variation. It is now clear that any personal exome contains thousands of variants, the 

majority of which are non-synonymous single nucleotide variants (nsSNVs) (1). However, 

distinguishing between neutral variants (i.e., those with little or no effect on phenotype) 

from variants associated with disease still remains a major challenge for both monogenic 

(Mendelian) and complex diseases (1, 2). The current state-of-the-art methods for 

diagnosing amino acid variants primarily employ evolutionary information obtained from 

multispecies sequence analysis in a variety of ways (1–6). While these methods have been 

used extensively, they often fail to correctly diagnose damaging variants at evolutionarily 

variable positions and neutral variants at highly conserved positions (2).

Several methods have been proposed to incorporate structure-based information from 

protein structures. Two prominent methods are to use accessible surface area (ASA), which 

determines the surface area of a protein accessible to a solvent, and the change in protein 

stability, which utilizes the difference in free energy between the folded and unfolded state 

upon mutation through empirical calculation based on the 3-D structure (7–12). 

Interestingly, the addition of these modalities has only produced a marginal 3–4% 

improvement in the rate of true positive diagnosis (9, 13, 14). A common feature among 

these methods is that they are based on the static 3-D structure of the protein, which fails to 

capture the dynamic motion of the protein structure. From the conformational transitions of 

allosteric proteins to the required flexibility of a ligand-binding site, proteins must fluctuate 

to achieve their function (15–30).

A reason for the lack of methods incorporating protein dynamics into nsSNV diagnoses 

could be the absence of amino acid site-specific measures that can statistically quantify the 

contribution and impact of each position on the conformational dynamics of the protein in a 

fast and efficient way. We recently developed a dynamic flexibility index (dfi), which 

measures the contribution of each position to functionally important dynamics (31). Through 

dfi analyses of more than 100 monomeric proteins, we found that the added feature of 

protein dynamics has the potential to distinguish between nsSNVs that impact biological 

function and those that have no effect on function (neutral nsSNVs) at a proteome scale 

(31). Moreover, this large-scale analysis including population variations implicated in 

diseases, functionally critical positions (catalytic and binding sites), and evolutionary rates 

of substitutions produced concordant patterns; it established that the preservation of dynamic 

properties of residues in a protein structure is critical for maintaining the protein/biological 

function (31).

The dfi metric has not yet been evaluated for biological assemblies. Many proteins form 

biological assemblies in order to perform their specific functions in the cell. Recent studies 

have shown that nsSNVs located at protein-protein interface sites are often associated with 

disease (10, 32) where additional metrics beyond evolutionary information can be useful 

(33). Therefore, we report the dfi analysis for proteins that form biological assemblies and 

its relationship with evolutionary conservation. We also compare the difference between the 

dfi of disease-associated and neutral nsSNVs when it is calculated in biological assemblies 
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and when it is calculated by using proteins as monomers in order to determine which is more 

informative at phenotypic prediction. Moreover, we compare dfi with the static measure of 

solvent accessible area, which has also been used to predict disease-associated nsSNVs in 

biological assemblies (10).

METHODS

Data set

We generated a curated dataset of 1,174 protein nsSNVs using available databases, 

including HumVar that contains 301 disease-associated and 200 neutral population variants 

compiled for PolyPhen-2 (6), 383 neutral variants from the 1000 Genomes Project with 

those having population frequency greater than 10% (34), and 290 disease-associated 

variants from the Human Gene Mutation Database (HGMD) (35). The set of 333 unique 

multimeric proteins containing 591 disease-associated and 583 neutral nsSNVs was modeled 

such that all the proteins formed assemblies and have 3-D structures in the Protein Data 

Bank (36) with >80% sequence identity between the reference sequence and experimentally-

derived protein structures and >80% sequence coverage using BLAST. The high constraints 

were imposed to ensure that the structures used in this study are real experimental human 

proteins rather than pure homology models.

The dfi metric for biological assemblies

The dynamic flexibility index (dfi) is a metric to determine the structural flexibility at 

specific sites on a protein. We applied our original method (31) directly to biological 

assemblies (BAs) such that the dynamic flexibility for each position in the BA is considered. 

In brief, the method is based on the perturbation response scanning (PRS) method where the 

equilibrium structure of a protein is constructed as a 3-D elastic network model (ENM) in 

which the nodes are represented by C-alpha atoms (37, 38), and the pairwise potential 

between each atom is given by the potential of a harmonic spring. A small perturbation in 

form of random Brownian kick is applied sequentially to each C-alpha atom in the elastic 

network. The perturbation on a single residue results in a cascade of perturbations to all 

other atoms in the network, thus inducing a global response. The fluctuation response profile 

of the positions upon perturbation of a single residue ([�Δ3N×1) is obtained using linear 

response theory and given by the equation

where the ΔF vector contains the components of the externally applied random unit force 

vectors ( ) on the selected residues, and H−1 is the inverse of Hessian matrix (i.e. H, the 

Hessian, is a 3N×3N matrix composed of the second order derivatives of the harmonic 

potential with respect to the components of the position vectors for the chain of length N). 

To minimize the effects of randomness, this perturbation procedure is performed ten times 

to ensure that the applied force is isotropic with a zero angular average ( ), and 

the response vector ΔRi
j is averaged.
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In short, the application of the random Brownian kick to a given residue on the 3-D elastic 

network perturbs the residue interaction network of the protein beyond fluctuations inherent 

in the system at equilibrium and elicits responses from all other residues in the structure. 

Through the perturbation response scanning method (PRS) (39, 40), we compute the 

fluctuation response of residue j, ΔRi
j, both in direction and magnitude upon perturbation. 

We repeat this perturbation on each single residue for all positions in chain and obtain the 

response profiles of all other positions. The dynamic flexibility index, dfi, is then obtained 

by the equation

where  is the magnitude of positional displacements for residue j in 

response to a perturbation at residue i after averaging out the response vector ΔRi
j over ten 

different random directional unit forces, and N is the total number of positions on the 

biological assembly. Note that we compared the dfi values obtained from the coarse-grained 

ENM model with those obtained from all-atom replica exchange molecular dynamics 

simulations for several proteins in our earlier work (31) in which the dfi values obtained 

from these two different simulation approaches yield very high correlations, as Pearson 

correlation coefficients between PRS and all-atom MD ranged from 0.64 to 0.88 for 5 

proteins.

For the monomeric analysis of biological assemblies, the dfi value is estimated using the 

monomeric unit alone (i.e., for a homomeric dimer with two units of 2N residues only the N 

residue position of the monomeric unit is considered). Thus, the impact of the interactions 

aroused due the interaction of interface residues between each unit in the BA is not 

considered. In estimating the dfi values for the BA, however, the whole complex (i.e., 2N 

residue positions of the two homomeric units) is used such that the interactions between the 

interface positions in the BA are explicitly included in the Hessian. Moreover, the flexibility 

response of residue i on unit 1 after perturbing residue j on unit 2 is computed and included 

in the dfi profile of unit 1. A workflow depicting the methodology for the dfi analysis of the 

BA and monomeric unit is provided in Fig. 1.

Since we collectively analyze atomic positions for a wide variety of protein structures, dfi 

must be normalized. Thus, the dfi value of a specific atomic position in the protein is 

expressed as %dfi, which is a percentile rank of that atom in a sorted array of all dfi values 

in a given protein. The dfi calculation is performed on each biological assembly, which is 

comprised of two or more chains. The calculation is then done on a single chain taken from 

the biological assembly (Fig. 1).

Accessible surface area (ASA)

We compare the dfi metric with a static metric known as accessible surface area (ASA) and 

its capability to quantify phenotypes of nsSNVs. The ASA metric determines the amount of 
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surface area in the crystal that is accessible (i.e. exposed to a solvent). We calculated ASA 

by using the DSSP program (41). Following the dfi procedure, we normalized ASA values 

for each residue position and expressed them as %ASA.

Prediction of interface sites

The prediction of molecular interface residues of BAs were determined using the PISA 

server (42–44). PISA is a computational tool that predicts the strength of interaction between 

two monomers and the interfaces between them, resulting in the multimer that is likely the 

functional form of the BA.

Evolutionary Rates

We estimate the absolute evolutionary rate at each site by using a previously described 

method (2), which computes the number of amino acid substitutions in a given phylogeny 

following the parsimony algorithm for each site independently (45). The evolutionary rate of 

amino acid changes across species is then the number of amino acid substitutions divided by 

the total time elapsed in the tree. Evolutionary rates are in the units of substitutions per 

amino acid per billion years (Byrs) and are based on protein sequence alignments of 46 

species available from the University of California-Santa Cruz resource (UCSC Human 

Genome Browser) (46).

RESULTS AND DISCUSSION

To assess the effect of using biological assemblies (BAs) on the estimation of 

conformational dynamic parameters, we compared the dfi values of all 1,174 nsSNVs in 333 

BAs with those obtained by using only the monomeric units. Many sites harboring sequence 

variants showed large differences in %dfi calculated from the BA and monomeric forms 

(Fig. 2A). For example, many high %dfi sites in the monomeric calculations show rather low 

%dfi in the BA calculation. We found many of these residues to be located at interface sites 

in the BA, which seems reasonable since residues at interfaces exhibit a different fluctuation 

profile in assemblies. This is due to their interaction with the residues of another unit, unlike 

the monomeric forms where the same residues would interact with a solvent instead. When 

considering only the interface sites (357 of 1,174), we observe a large difference (p < 

0.0001) in the cumulative %dfi distributions (Fig. 2B) between the monomeric and 

multimeric forms with an average %dfi of 31% for the BA unit and 51% for the monomeric 

unit. The interface variants had lower dynamic flexibility, with over 50% showing %dfi ≤ 

25%. This tendency is expected since the interactions with other monomeric units in the BA 

lead to a decrease in flexibility. On the other hand, the cumulative %dfi distributions of 

monomeric and BA units are very similar for the nsSNVs at non-interface sites (817 of 

1,174), as shown in Fig. 2C. For these sites, the average %dfi for BA units was 50% and that 

for their monomeric units was 46%.

The above pattern prompted us to investigate whether considering the structural dynamics of 

the BA is more powerful in distinguishing disease-associated nsSNVs. We computed the 

cumulative distributions of 207 disease-associated nsSNVs from 62 proteins and 150 neutral 

nsSNVs from 71 proteins separately for interface sites (Fig. 3). There is a distinct separation 

Butler et al. Page 5

Proteins. Author manuscript; available in PMC 2015 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the two cumulative distributions. At lower dfi, the separation of the two curves was 

pronounced, indicating that sites containing disease-associated variants have lower dfi than 

those containing neutral variants at interfaces. The average %dfi for disease-associated 

variants at interfaces is 23% while that for neutral variants is 42% (p < 0.0001).

We chose two case studies to shed light on the mechanistic differences for the analysis of 

individual proteins and BAs. Human pyridoxine-5′-phosphate oxidase (1NRG in the Protein 

Data Bank) is a homodimer that serves as an important enzyme to catalyze reactions in the 

vitamin B6 metabolism pathway. Two variants with known disease implications from 

HGMD were mapped onto the protein interface, as shown in Fig. 4A. The structure is 

colored within a spectrum of red–yellow–green–cyan–blue, where red shows the highest and 

blue the lowest values of %dfi. Based on Fig. 4A, it is clear that these two variants located at 

the interface have low dynamic flexibility (ARG-95 and ARG-229 have a %dfi of 0.07981 

and 0.15962 respectively). With such low dfi values those sites are likely critical for 

function, thus a mutation there will likely lead to a disruption in function. For instance, the 

site ARG-229 is mutated to TRP-229, which results in the potentially fatal disease, neonatal 

epileptic encephalopathy (NEE) (35, 47). For the second case, three neutral variants from 

the 1000 Genomes Project were mapped to the model structure of human carboxypeptidase 

A1 (homologous structure is 1PYT in the Protein Data Bank) with TYR-435 occurring at an 

interface site and the other two at non-interface sites (Fig. 4B). From Fig. 4B, it can be seen 

that these sites have noticeably higher dynamic flexibility. Interestingly, even TYR-435 had 

a high dfi score of 0.62084 despite its location at an interface. It is expected that interface 

sites generally have lower dfi values since they are interacting with residues of another 

protein, thus high dfi at an interface is surprising and could lend useful information relating 

to the phenotype. Fig. 4 shows how variants within an individual protein could lead to the 

general trend seen in Fig. 3, which is based on the analysis of more than 100 proteins. 

Moreover, the trend exhibited in Fig. 3 and the case study presented in Fig. 4 together gives 

further indication to the notion that dfi may discriminate disease-associated from neutral 

variants.

For comparison, we also examined the performance of ASA, a metric based on the static 

form of the protein structure, which has also been utilized to differentiate disease-associated 

nsSNVs from neutral variants (10, 33, 48). We found that the average %ASA showed only a 

small difference (45% for disease-associated and 66% for neutral population variants), as 

compared to a 2.5 times difference observed for average %dfi (21% for disease associated 

and 54% for neutral population variants). We found that there is a correlation between ASA 

and dfi, as sites with low ASA that are surrounded with other residues rather than solvent 

would exhibit fewer fluctuations and cause lower dfi values. However, among these low 

ASA positions, certain positions can be more dynamically critical in translating or 

controlling the functionally related motion than others due to their residue interaction pattern 

within the protein structure. By utilizing dfi, we are able to capture these dynamically 

critical positions. Thus, the above result suggests that the interface residues that play an 

important role in the collective motion of the BA are more susceptible to damaging 

mutations.
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We examine whether the predictive capabilities of dfi for the BA go beyond that afforded by 

evolutionary conservation of positions involved by estimating the evolutionary rate (r) for 

each nsSNV site (as described in the methods section). We divided the estimated 

evolutionary rate (r) into two different categories: ultra-conserved (r = 0) or less-conserved 

(r > 0). In our analysis, 37% of interface sites and 30% non-interface sites were ultra-

conserved sites. Likewise, 63% of interface sites and 70% of non-interface sites were less-

conserved sites. This difference in evolutionary rates is rather small, as compared to 

conformational dynamics where a higher fraction of interface sites have very low dfi (53% 

of interface sites and 29% non-interface have dfi ≤ 25%). This prompted us to consider the 

phenotypic prediction of nsSNVs at interface sites, as the ability to correctly identify disease 

associated variation at less-conserved sites is not high for many evolutionary rate based in 

silico prediction tools (1, 2) and many interface sites are at less conserved positions. We 

surmised that dfi calculated using BAs may provide information beyond that afforded by 

evolutionary conservation at those sites. Thus, we explored the ability of dfi to discriminate 

disease-associated and neutral nsSNVs at less-conserved sites (r > 0).

We compared box plots of %dfi and %ASA for disease-associated and neutral variants at 

interface sites that were less-conserved (Fig. 5A). Remarkably, the average %dfi of disease-

associated nsSNVs is approximately 2.5 times lower than that of neutral nsSNVs gathered 

from human population statistics (6). The average %dfi for disease-associated variants was 

25% at less-conserved sites at interfaces, whereas the average %dfi for neutral variants from 

the 1000 Genomes Project and HumVar was 45% (p < 0.001 when comparing both 

datasets). This suggests that dfi is likely a useful metric for predicting phenotypes of 

nsSNVs at less-conserved sites. In comparison, we did not see a suggestive difference in 

ASA between neutral and disease-associated variants, as the average %ASA for disease-

associated sites was 47% at less-conserved interface sites, whereas the average %ASA for 

neutral sites was 52% (p = 0.63 for disease vs. 1000 Genomes Project and HumVar). We 

then conducted a receiver operating characteristics (ROC) curve analysis for %dfi and 

%ASA to elucidate their ability to distinguish between disease and neutral phenotypes of 

nsSNVs. A randomly generated test set consisting of 10% of the entire data set (which only 

includes nsSNVs at interfaces) was used and the remaining 90% was used for training (4, 

49). The area under the curve (AUC) for dfi is 0.71 and 0.56 for ASA (Fig. 5B). Therefore, 

the use of dfi appears to be advantageous for use in future diagnostic methods.

CONCLUSION

This work has provided evidence that non-synonymous variants observed at protein 

interface sites with low dfi are more likely to be disease-associated. This may be due to the 

fact that protein interface sites with low dfi play a critical role in modulating the functionally 

important inter-dynamics of biological assemblies. Indeed, evolutionary based metrics as 

well as proteins’ static structure based metrics such as ASA have unique strengths in 

predicting the phenotypic impact, thus incorporating metrics based on structural dynamics 

(such as dfi) along with other metrics may increase the prediction accuracy of phenotypes of 

interface nsSNVs.
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FIGURE 1. 
The schematic diagram of the method followed for structural dynamics analysis of each 

multimeric protein. We identify a three-dimensional (3-D) structure for each protein 

sequence through a BLAST search using protein data bank (PDB). In this search, the 

sequence coverage and the sequence identity between the reference sequence query and the 

known protein structures is set to >80% and >80%, respectively. The identified 3-D 

experimental structures from PDB are then used for the Perturbation Response Scanning 

(PRS) model to predict the dynamic flexibility index (%dfi) for each residue position.
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FIGURE 2. 
A scatter plot is shown in (A) of the %dfi values for all variants, disease-associated and 

neutral, using the biological assembly units (y-axis) their corresponding monomeric units (x-

axis). Each axis is scaled logarithmically. Many sites exhibit low dfi in the BA but much 

higher dfi in their monomers, indicating that they are located at interfaces. Cumulative %dfi 

distributions of interface sites (B) and non-interface sites (C) for the BA units and their 

corresponding monomeric units.
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FIGURE 3. 
Cumulative %dfi distributions of protein interface sites for disease-associated variants (black 

line) and neutral variants (grey line) from the human population (compiled from HumVar 

and the 1000 genomes project). The average %dfi for disease-associated variants at 

interfaces is 23% while that for neutral variants is 42% (p < 0.0001).
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FIGURE 4. 
The ribbon diagrams of (A) recombinant human pyridoxine-5′-phosphate oxidase (PDB 

code: 1NRG) and (B) human carboxypeptidase A1 (PDB code: 1PYT) with respect to 

dynamic flexibility index, %dfi, are shown. Each structure is colored within a spectrum of 

red–yellow–green–cyan–blue, where red shows the highest and blue the lowest values of 

%dfi. In (A), two disease-associated variants are shown, which both occur at interface sites, 

while (B) shows three neutral variants, with TYR-435 occurring at an interface site and the 

other two at non-interface sites. The colors of their sticks and spheres correspond to their 

%dfi.
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FIGURE 5. 
A) A box plot of %dfi (green) and %ASA (brown) distributions comparing disease-

associated and neutral nsSNVs for less-conserved variants (evolutionary rate r > 0) 

occurring at protein interfaces. Box plots show median, upper, and lower quartiles, and 

whiskers represent maximum and minimum values. (B) A receiver operating characteristics 

(ROC) curve for dfi and ASA using a test set that was generated from 10% of the whole data 

set. The area under the curve (AUC) for dfi and ASA was 0.71 and 0.56 respectively. TPR 

and FPR are true and false positive rates in predicting disease associated nsSNVs to be 

identified as non-neutral, respectively.
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