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Abstract

This paper presents the analysis of a third-order linear differential equation representing a muscle-

tendon system, including the identification of critical damping conditions.

We analytically verified that this model is required for a faithful representation of muscle-skeletal 

muscles and provided numerical examples using the biomechanical properties of muscles and 

tendon reported in the literature.

We proved the existence of a theoretical threshold for the ratio between tendon and muscle 

stiffness above which critical damping can never be achieved, thus resulting in an oscillatory free 

response of the system, independently of the value of the damping. Oscillation of the limb can be 

compensated only by active control, which requires creating an internal model of the limb 

mechanics.

We demonstrated that, when admissible, over-damping of the muscle-tendon system occurs for 

damping values included within a finite interval between two separate critical limits. The same 

interval is a semi-infinite region in second-order models. Moreover, an increase in damping 

beyond the second critical point rapidly brings the system to mechanical instability.

Introduction

One's ability to exert controlled forces on the environment, such as when manipulating 

fragile objects, is very important in everyday life. This suggests that force regulation is a 

necessary component of motor control.

Classical force controllers are generally implemented in systems with small contact 

impedance in order to limit the force applied to the end effector by external disturbances. In 

biological motor systems, as the force generated by the muscle fibers increases, so does the 

muscle's stiffness. This behavior is directly in contrast with the need to keep the contact 

impedance low. Compliant tendons act as stabilizing impedance buffers between the force-

generating element (muscle) and the environment.
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Unlike standard second-order Kelvin-Voigt (KV) models, third-order Poynting-Thomson 

(PT) models include a tendon elastic element in series with the muscle, making them more 

adherent to the system's physiology and better suited to the study of force control strategies. 

However, the presence of the tendon element can generate an oscillatory behavior that needs 

to be compensated by the controller. Limited literature is available on the mechanical 

behavior of PT models, especially around critical damping conditions. Using an analytical 

approach, this work investigates the physiological parameters that influence the region of 

critical damping of a third-order PT model.

We demonstrate that for parameters included within normal physiological ranges a PT 

model always exhibits an oscillatory free response; therefore, the force controller 

implemented by the central nervous system (CNS) is required to cope with such 

biomechanical constraint through feed-back and feed-forward regulation. This is in 

agreement with findings previously published by our group that empirically showed the 

construction of an internal feed-forward model trajectory as part of a force-regulation 

strategy [1].

Third Order Analytical Model

When studying the motion of a mechanical system, x⃗(t) is a vector of generalized variations 

of position coordinates (angles, Cartesian coordinates, etc.). We can define Dn x as the set 

representing the position coordinates variations and their derivatives with respect to time up 

to the nth order so that , in general n ∈ Q [2].

A mechanical system must comply with the Lagrange–d'Alembert principle so that:

(1)

where M(x, t) is the inertial matrix of the system in the chosen coordinate frame, g⃗(Dn x, t) is 

the external force field, and σ⃗(Dn x, t) is the internal force field generated by the mechanical 

network [2, 3].

The system depicted in Figure (1A) is commonly known as the Kelvin-Voigt (KV) model 

and is widely used to represent the mechanical behavior of single degree-of-freedom (DOF) 

mechanical systems. A KV mechanical model is linear and second-order. The system 

internal viscoelastic force field σ(Dn x, t) is represented by the differential equation:

(2)

Most identification techniques proposed in the literature assume the damping CKV and 

stiffness KKV to be time-invariant.

A more realistic representation of the muscle-tendon complex separates the physical 

properties of tendon from those of the muscle fibers. Figure (1B) represents a linear, time-
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invariant, third-order system known as the Poynting-Thomson (PT) model. This mechanical 

network is an extension of the KV model commonly used in muscle models and includes 

tendon elasticity (Hill-type passive model). The PT model includes two separate elastic 

elements. The element KS, in series with the muscle fibers, represents the stiffness of the 

tendon. The parallel between KP and CP represents the stiffness and damping of the muscle 

fibers.

Equation (1) is a model for a time-variant linear system whose oscillating solutions can be 

found both in the time and frequency domains by means of classical control theory. 

Assuming the system is stationary (i.e. the resonant angular frequencies ω(t) in response to a 

perturbation of the mechanical system are constant), classical Laplace transform techniques 

can be used to approach the problem in the frequency domain where Eq. (1) is recast in the 

form:

(3)

Dividing both members of Eq.(3) by the Laplace transform of the displacement function we 

can calculate the transfer function of the impulse response, namely:

(4)

With reference to the PT model shown in Fig.(1B), we can define the transfer function of the 

muscle fibers as ZP = CPs + KP. The transfer function of the whole model is the transfer 

function of the series of tendon and muscle fibers:

(5)

Rearranging Eq.(5) we obtain:

(6)

hence, the viscoelastic force of the PT system, expressed in the time domain is in the form:

(7)

During a free response, the external force is null, hence g(Dn x, t)= 0. Therefore, Eq.(1) can 

be rewritten as follows:
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(8)

By simple arithmetic and substituting Eq.(7) in Eq.(8), we can isolate the time derivative σ̇ 

of the internal viscoelastic force field σ so that:

(9)

Furthermore, we can derive both members of (8) with respect to time obtaining:

(10)

Substituting Eq.(9) in Eq.(10) we have the third-order formulation of the PT model [4]:

(11)

System's Oscillatory Behavior

The following substitutions can be applied to Eq.(11):

(12)

We can represent the characteristic polynomial of the differential Eq. (11) in the following 

form:

(13)

The solution of the characteristic polynomial can be obtained using Cardano's method. Two 

auxiliary variables can be defined:

(14)

The discriminant Δ = Q3 + R2 of the cubic equation can be computed [5]. The sign of the 

discriminant determines the type of solution for equation (13). The roots of a cubic 

polynomial can be [4, 5]:

• Three distinct real roots (Δ < 0)

• Three real roots, at least two of which are equal (Δ = 0)

• One real root and two complex conjugate roots (Δ > 0)
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We will demonstrate that the sign of the discriminant depends on the ratio between the 

tendon stiffness KS and the muscle stiffness KP. A PT model presents an oscillating free 

response only if the solution of (12) includes a complex root, i.e. if Δ > 0 (see Fig.2).

From Eq.(14), the discriminant can be expressed as a function of the muscle damping as 

follows [4]:

(15)

By solving Eq.(15) for Δ(CP)≫0 we will find the region in the solution domain where the 

model presents an oscillating free response. The multiplicative term outside the main 

parenthesis in Eq.(15) is always positive, and the expression within parenthesis is a bi-

quadratic form. Hence, to find the solutions to Δ = 0, we can substitute (CP)2 = v and solve 

the following quadratic equation [4]:

(16)

To solve Eq.(16) we can impose the following two conditions [4]:

(17)

The expression (17a) represents the condition of the discriminant of (16) to be non-negative, 

since . The equation (17b) can be clarified by putting (16) in its monic form:

(18)

The coefficient of the first degree term needs to have the same sign as the sum of the two 

solutions (which are both positive since CP ≥ 0). Since M2 > 0 and

(19)

the condition expressed in Eq.(17a) is equivalent to the following:

(20)

Assuming the stiffness of the tendon proportional to the stiffness of the muscle, we can 

define KS = κ · KP, with κ > 0. Substituting in Eq.(20) we obtain
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(21)

This shows that for κ < 8 Eq.(11) and Eq.(13) have two complex conjugate roots, which 

translate in a free oscillatory response of the PT system, independently of the value of CP. 

On the other hand, if κ ≥ 8 there exists a finite interval of damping values within which the 

system does not present an oscillatory free response (see Fig.2).

Conditions for Stability

When the system is under-damped, Eq.(13) always has one real root r1 and two complex 

conjugate roots r2,3. Using Cardano's methods for the solution of cubic algebraic equations, 

we can calculate the real root defining the following auxiliary variables [5],

(22)

thus obtaining:

(23)

Eq.(13) can be recast using the following polynomial decomposition:

(24)

Where

(25)

were obtained using Ruffini's rule [6]. By solving the second order term of Eq.(24), the 

complex roots of the polynomial P(λ) are as follows:

(26)

Notice that for the system to be stable the real part of all roots (i.e. r1 and α) needs to be non 

positive; hence,
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(27)

Equation (25b) represents the square of the angular natural frequency of the system , 

which is a parabolic function of the real root r1. Unlike in a second order system, the natural 

frequency is a function of the damping.

Stiffness and Length Ratio

The ratio between the tendon and muscle stiffness has been the object of several 

experimental works. Values of 0.5 < κ < 3 were estimated by Wren and colleagues in 

several animal studies [7]. For humans, results reported by Loram [8] suggest that κ < 8 is 

always true for the soleus and gastrocnemius. Furthermore, it was found that muscles and 

tendon stiffness are approximately equal for the first dorsal intraosseus muscle (index 

flexor) at full activation, [9].

Obtaining the ratio κ, either in vivo or in vitro, requires very complex experimental design; 

however, an approximate estimate can be obtained from the biomechanical parameters of the 

muscle-tendon system. The stiffness of the tendon can be described as a function of its tissue 

mechanical properties and geometry [10]:

(28)

where AT is the average cross section of the tendon, E is the elastic modulus and L is its 

length.

Furthermore, it is reasonable to assume that in order to optimize the modulation of force the 

muscle would be in the configuration of isometric tetanic contraction. Thus, a similar 

analytical approach can be taken, where the stiffness of the muscle is [10, 11]:

(29)

Here, γ = 24.5 is an experimental constant [10], Lf is the length of the muscle fibers and P0 

is the isometric force calculated as P0 = PCSA · ps, where PCSA is the physiological cross 

section area, and ps = 22.5[N / cm2] is the specific tension of the muscle [10, 12, 13]. Hence, 

the stiffness ratio can be calculated for each muscle-tendon system based on the 

biomechanical parameters so that:

(30)

Table (1) and Table (2) present the physiological parameters for 5 main muscles across 

either the wrist or the elbow.
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To represent the stiffness in the joint space as the series of an equivalent lumped tendon and 

muscle, we need to establish the average stiffness ratio between the two elements. Since the 

force along a single muscle-tendon system is the same for muscle and tendon, we can 

express the stiffness ratio as the ratio between the elongations of the muscle and the tendon, 

respectively.

(31)

Hence, we can lump all muscle-tendon systems acting on the same articulation into an 

equivalent muscle and equivalent tendon. We assume that the elongation of the equivalent 

muscle and equivalent tendon are the average of the elongation across the elements that 

compose them. Thus, the equivalent stiffness ratio at the joint is the average of the stiffness 

ratios across muscle-tendon systems.

The rotational stiffness of each muscle-tendon system at the joint can be easily calculated 

starting from the equation of torque τ0, so that

(32)

where K is the stiffness of the specific muscle-tendon system Kθ is the rotational stiffness 

generated at the joint, ΔLw is the elongation of the whole muscle-tendon system, lm is its 

moment arm, and Δθ is the rotation of the body segment. Assuming that each muscle 

contributes to the rotational stiffness of the joint on which it acts, we can estimate the 

lumped joint stiffness by first calculating the equivalent stiffness of the series between each 

muscle and corresponding tendon and then adding all muscle-tendon stiffnesses (parallel of 

springs).

Numerical Examples

We validated our result with a numerical example using the biomechanical parameters in 

Tab.(1) and Tab.(2). The moment arm lm is calculated for the joint angle θ = 0 where both 

the wrist and the elbow are completely extended. The equivalent joint stiffness at the wrist 

are  and , while at the elbow we obtained 

 and , giving a stiffness ratio of κwrist = 2.64 and 

κelbow = 4.85, respectively. Figure 2 depicts a numerical example for the two joints where κ 

= 2.64, 4.58, 8, and, 10, using  and  as the value of 

the inertia with respect to the joints [23].

For κ < 8 the modulation of  does not produce a critical or over-damped condition in 

neither of the two joints. Furthermore, the values of  that eliminate the residual vibration 

when κ > 8 are enclosed in a very narrow window. Specifically, for κ = 10, we obtained 

 for the wrist, and  for the elbow, respectively.

Piovesan et al. Page 8

Int Mech Eng Congress Expo. Author manuscript; available in PMC 2015 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Not only increasing the damping of the system does not attenuate vibration when κ < 8, but 

it could also undermine the stability of the system. An increase in damping above the 

minimum of Δ(CP) would increase the value of the real root monotonically to the point of 

becoming positive (Fig. 3a); thus, making the system unstable. This behavior is quite 

different from that of a second order system, where the increase of damping would never 

introduce instabilities.

Figure (3) illustrates how the roots of the characteristic polynomial changes as a function of 

CP. The minimum of r1 (most stable configuration of the system) coincides with the 

minimum of Δ(CP) in Fig.(2). As the damping increases beyond Δ(CP), so does r1.

When taking into account the complex roots r2,3 of the specific examples, α (i.e. the real 

part of the complex roots r2,3) is always negative as CP increases. Furthermore, notice that 

for κ ≥ 8 the resonant frequency of the system ω (i.e. the value of r2,3 imaginary part) is null 

between the two critical damping values.

Discussion

In this paper we developed a series of analytical tools to investigate the force control of 

human subject when the muscletendon system is describe as a third-order Poynting-

Thomson system. We establish that when the stiffness of the tendon is less than eight times 

the stiffness of the muscle, the model exhibits an oscillatory free response, independently of 

the value of the damping. For higher ratios of tendon stiffness to muscle stiffness, the model 

is over-damped for damping values included within a finite interval between two separate 

critical limits. Hence, differently from a second-order model, the free response of an over-

damped PT model can become oscillatory when the damping is increased.

A numerical example using physiologically compatible values of the muscle-tendon 

parameters pointed out that the interval of critical damping is quite small. Furthermore, if 

the damping is increased beyond its higher critical value, the single real root of the PT 

system increases rapidly to positive values, making the system unstable.

These observations suggest that in physiologically compatible cases the modulation of force 

is subject to an internal disturbance taking the form of an oscillatory behavior proper of the 

system's biomechanics.

Given the difficulties of suppressing the internal disturbances using damping, and given that 

the force generated by the muscle is transmitted to the environment via the tendon in the 

form

(33)

we suggest that the control of the oscillations needs to be done indirectly by controlling the 

position of the muscle-tendon interface z(t). Golgi tendon organs (GTO) are located at the 

conjunction between muscle and tendon and are normally thought of strain gauges used by 

the CNS as force transducers. It is possible that their location at the interface ensures a linear 
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relationship with maximum sensitivity between the tendon's force and elongation, since the 

tendon is simply an elastic element with constant stiffness, and therefore provide positional 

information for the controlled variable z(t).

These analytical demonstrations based on a realistic biomechanical model suggest that in 

order to control their output force, humans need to create an internal model of their 

mechanics, to compensate for the intrinsic oscillation of the system by actively-varying the 

length of the tendon. It is plausible that the same control strategy could be used to predict 

and compensate for externally introduced vibrational disturbances. This would still require 

the subject to create an internal model of the oscillatory behavior of the limb. Externally 

induced deterministic disturbance can be of two main types:

1. The power spectral density of the disturbance is concentrated at few specific 

frequencies. In this case after few cycles the perturbation can be predicted and 

compensated as demonstrated in [1].

2. The power spectral density of the disturbance is equally distributed on a wide 

frequency band.

At first glance the latter kind of perturbation seems not predictable: however, writing each 

frequency component of the disturbance in the form xc(t) = Xc sin(ωc · t) the power acting on 

the inertial load of the limb is:

(34)

Since the power spectral density is uniformly distributed, the power Pc needs to be equal for 

each ωc. Thus, the amplitude Xc of each perturbation component will be bigger for those that 

have lower angular frequency. Therefore, if position control of the muscle-tendon interface 

is used as a force-control strategy, where a fixed stiffness is imposed at the end-point, the 

signals with low frequency and wide amplitude are likely to result in larger force errors and 

therefore be more easily identified by the subject. This would create only a partial 

compensation of the disturbance, but since the stiffness of the tendon is constant, it would 

eliminate the part of the disturbance generating the higher elastic forces.

Conclusion

These results shed some light on the mechanical properties of muscle-tendon systems, 

confirming that non parametric techniques based on free vibrations are a viable tool to 

identify the system's properties, since a free oscillating response is physiologically the most 

common [3, 24-27].

Furthermore, the third-order model of the muscle-tendon system that we presented agrees 

with our previous results, which have shown the formation of an internal model of external 

perturbations during force control tasks [1].
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Nomenclature

t time

s complex number

x⃗(t), X⃗ (s) generalized co-ordinate and respective Laplace transform

n degrees of the derivative with respect to time

Q rational numbers

Dn x set of all the derivatives of x⃗(t) with respect to t up to the nth degree

KV 2nd order Kelvin-Voigt

PT 3rd Poynting-Thomson system

CKV damping of a KV System

KKV stiffness of a KV System

M, M generalized mass of the arm and respective Laplace transform

CP parallel damping of a PT system representing the damping of muscle 

fibers

KP parallel stiffness of a PT system representing the stiffness of muscle 

fibers

KS series stiffness of a PT system representing the stiffness of tendons

θ, Δθ joint angle and its variation
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inertia of the arm segment with respect to the joint.

parallel damping of a PT system in the rotational case

parallel stiffness of a PT system in the rotational case

series stiffness of a PT system in the rotational case

σ⃗(Dn x, t), Σ⃗(s) generalized internal force field generated by non inertial elements and 

respective Laplace transform

g⃗(Dn x, t), G⃗(s) generalized external force field and respective Laplace transform

A, B, C auxiliary coefficients for 3rd order PT differential equation (function of 

muscles and tendon stiffness)

R, Q, S, T Cardano's method auxiliary variables

κ ratio between tendon and muscle's fibers stiffness

P(λ) monic 3rd order characteristic polynomial

Δ(CP) discriminant of the 3rd order characteristic polynomial

v auxiliary variable for the discriminant of the characteristic polynomial

Ω(v) 2nd order polynomial representing the discriminant of the characteristic 

polynomial as function of the auxiliary variable v

ΔΩ discriminant of Ω(v)

r1, r2, 3 roots of the monic characteristic polynomial P(λ)

α real part of r2,3 representing the exponential decay rate

ω imaginary part of r2,3 representing the system's resonant angular 

frequency

j imaginary unit √−1

ξ damping ratio

square of the system's natural frequency

z coordinate at the junction between tendon and muscle

L tendon length

Lf muscle fibers length
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ΔLw elongation of the muscle as a whole (tendon +fibers)

ρ linear density of the tendon

AT Tendon's cross section area

E Young's modulus of the tendon

PCSA Physiological cross section area of the muscle

P0 muscle isometric force

ps muscle specific tension at the isometric force

lm moment arm at 0° degree

ωc frequency component of the external disturbance

Pc power generated by the inertial force at the frequency component of the 

external disturbance

xc (t) time-varying position of the inertial load

Xc amplitude of the inertial load position
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Figure 1. 
Mechanical models of muscle-tendon systems. A) Second-order viscoelastic linear system 

(Kelvin-Voigt). B) third-order viscoelastic linear system (Poynting-Thomson). The 

schematics highlight the different force fields of the D'Alembert equation - Eq.(1) -. In the 

figure, each force field is a function of the mechanical elements that generates it.
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Figure 2. 
Sign of the characteristic polynomial's discriminant for a Poynting-Thomson model. The 

discriminant is shown as a function of the muscle damping  and the parameter κ (ratio 

between the stiffness of the tendon and muscle elements). The function is shown for both 

wrist and elbow models. For κ < 8 the discriminant is positive, independently of the value of 

, which translate to a free oscillatory response of the PT system. If κ ≥ 8 a finite interval 

of damping values exists within which the system does not present an oscillatory free 

response.

Piovesan et al. Page 16

Int Mech Eng Congress Expo. Author manuscript; available in PMC 2015 July 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
roots of the characteristic polynomial as function of the damping CP. First row represents 

the real root. Second and third rows represent the real and imaginary parts of the two 

complex conjugate roots. Notice that the imaginary part never changes sign as the damping 

increases.
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