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Abstract
Alzheimer's disease (AD) and osteoporosis are two closely related multifactorial progres-

sively degenerative diseases that predominantly affect aged people. These two diseases

share many common risk factors, including old age, being female, smoking, excessive

drinking, low estrogen, and vitamin D3 levels. Additionally, oxidative damage and the dys-

function of the antioxidant system play important roles in the pathogenesis of osteoporosis

and AD. Aβ not only leads to impaired memory but also plays a crucial role in the demineral-

ization process of bone tissues of older people and women with menopause. Curculigoside

can promote calcium deposition and increase the levels of ALP and Runx2 in osteoblasts

under oxidative stress via anti-oxidative character. Therefore, we investigated the effects of

CUR on the spatial learning and memory by the Morris water maze and brain immunohis-

tochemistry, and bone microstructure and material properties of femurs by micro-computed

tomography and mechanical testing in APP/PS1 mutated transgenic mice. Oral administra-

tion of CUR can significantly enhance learning performance and ameliorate bone loss in

APP/PS1 mutated transgenic mice, and the mechanism may be related to its antioxidant

effect. Based on these results, CUR has real potential as a new natural resource for devel-

oping medicines or dietary supplements for the prevention and treatment of the two closely

linked multifactorial progressive degenerative disorders, AD and osteoporosis.

Introduction
Osteoporosis is a progressive bone degenerative diseases characterized by decreases in bone
mass and bone mineral density (BMD), as well as deteriorates in bone microarchitecture which
can lead to an increased risk of fracture [1]. The intimate cooperation of bone cells including
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osteoblasts, osteoclasts and osteocytes maintains the integrity of bone structure [2]. The tradi-
tional understanding of the pathogenesis of osteoporosis is that the cessation of ovarian func-
tion at menopause is responsible for the accelerated rate of postmenopausal bone loss [3].
However, previous studies have suggested that increased level of reactive oxygen species (ROS)
has more close relationship with the pathogeny of the bone age-related diseases [4]. Increasing
clinical studies show that senile dementia patients are more likely to suffer from osteoporosis
and have higher risk of hip fracture [5]. AD transgenic mice also have decreased levels of osteo-
blastogenesis and loss of trabecular bone mass [6]. Abnormal amyloid beta peptide (Aβ) depo-
sition is one of the most important pathological factors of AD. The mRNA and protein
expression levels of Aβ42 and the amyloid precursor protein (APP) were elevated remarkably
in the bone of osteoporosis patients and ovariectomized rats [7]. The oxidative damage induced
by Aβ deposition may be a common pathogenic factor of the two closely related degenerative
diseases [8].

Curculigo orchioides belongs to the Amaryllidaceae family, which has been considered to
one of the important herbal medicine in the traditional Chinese medical system. The major
biologically active ingredient present in Curculigo orchioides, curculigoside (CUR), has been
found to show wide spread pharmacological activities including anti-immunostimulation [9],
oxidation resistance [10,11], angiogenesis [12], anti-osteoporosis [13], and neuroprotection
[14]. In our previous study, CUR reduced the oxidative damage and induced proliferation and
differentiation of osteoblasts under oxidative stress status, as well as inhibited bone resorption
via its anti-oxidative character in ovariectomized rats [15,16,17]。. In addition, CUR can also
improve the learning and memorizing ability of aged rats by decreasing cerebral acetylcholines-
terase activity and inhibiting the expression of β-site APP cleaving enzyme 1 in the hippocam-
pus [18]. In this study, we investigated the effect of CUR on Aβ deposition induced memory
deficit, bone loss and the potential proximate mechanisms.

Materials and Methods

2.1 Chemicals
CUR (purity. 98%) was isolated from Curculigo orchioides [19]. The mouse anti-osteocalcin
(OCN) antibody was purchased fromMillipore (Bedford, MA). The mouse anti-FOXO1 anti-
body and β-Amyloid antibody were purchased from Cell Signaling Technology (Beverly, MA),
and other antibodies were purchased from Abcam (Cambridge, MA). N-acetyl-L-cysteine
(NAC) and all others chemicals were purchased from Sigma.

2.2 Animals
APP/PS1 mutated transgenic mice used in the present study were obtained from the Jackson
Laboratory (stock no. 004462). Animal studies were approved by the Animal Research Com-
mittee of the Shanghai Jiao Tong University, and were carried out under the Guidelines for
Animal Experiment of the Shanghai Jiao Tong University (Approval No. SYXK 2012–0017,
Shanghai, China). The experimental animals were housed in hygienic plastic cages in a clean
well-ventilated room and were given free access to food and water with normal light and dark
cycles.

2.3. In vivo study design
Forty mice (9 month old) utilized in this study were divided into 4 groups with 10 in each: wild
type (C57BL/6J), APP/PS1 (C57BL/6J), APP/PS1 (C57BL/6J) treated with NAC (100 mg/kg),
and APP/PS1 (C57BL/6J) treated with CUR (100 mg/kg). CUR and NAC were dissolved by
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0.5% CMC-Na into liquid suspension respectively, with concentration of 9 mg/ml. CUR and
NAC were intragastrically administrated to APP/PS1 mutated transgenic mice for four weeks.
Four weeks later, the mice were sacrificed after behavior experiments and blood was collected
for the measurement of cytokines. Femurs were collected for micro-computed tomography
scanning, mechanical testing, and antioxidant enzymes assay. Brains were collected for immu-
nohistochemistry and antioxidant enzyme assay.

2.3.1 Morris water maze. Spatial learning and memory of mice were assessed by the Mor-
ris water maze consisted of a circular pool (1.8 m in diameter) as described [20]. Water in the
circular pool was held at 24 ± 0.5°C. The escape platform (9 cm in diameter) was submerged
1.5 cm below the water in the target quadrant (SW 3). Each mouse was trained for 4 trials per
day for 5 consecutive days. During the training, the time to find the platform was recorded as
latency. On the sixth day, the platform was removed to measure memory retention of the mice
in four groups. Each mouse monitored by a video camera had 60 s to investigate the target
quadrant. The time spent in the target quadrant was analyzed.

2.3.2 Immunohistochemistry. The right hemispheres of the mice in four groups were
fixed in 4% paraformaldehyde, and then placed in 30% sucrose until sinking to the bottom.
The hemispheres were cut and every section (10 μm) was stained with β-Amyloid antibody to
recognize total Aβ plaques (including several isoforms of beta-amyloid peptide, such as Aβ-40,
Aβ-42) as described [21]. The sections were mounted on slides for immunofluorescence detec-
tion using an Olympus microscope with DP-70 software.

2.3.3 Micro-Computed Tomography. The left femurs of the mice were fixed in 4% para-
formaldehyde, and then placed with gauze in the sample holder and scanned with GE Health-
care Locus SP micro CT (GE Healthcare, USA) using 6 μm resolution, 80 kV, 80 μA, 400 views
and 5 hours of exposure time [22]. The explore reconstruction utility software (GE Healthcare,
USA) was used for three-dimensional reconstruction and data processing. Calculation methods
of bone parameters have been previously described [23]. The BMD (bone mineral density),
bone volume fraction (BVF), trabecular thickness, trabecular number, and trabecular spacing
of femurs were analyzed to evaluate bone quality of femurs.

2.3.4 Mechanical testing. To assess the effects of CUR treatment on the mechanical prop-
erties of femurs, three-point bending testing was performed using a Dynamic Mechanical Ana-
lyzer (Shimadzu, Japan) to determine the material properties including elastic load, maximum
load, elastic stress, maximum stress and modulus of elasticity of the bones. Right femurs of the
mice were stored at −20°C and allowed to equilibrate to room temperature in saline for 30 min-
utes prior to mechanical testing. The femurs were loaded with a span length of 6 mm at a rate
of 0.1 mm/s until the moment of fracture [24]. The load-time curve obtained was converted
into a load displacement curve, and the material properties were calculated according to for-
mulas [25].

2.3.5 Antioxidant enzymes assay. Brain hemispheres and femurs were collected and
stored at − 80°C for later use [26]. The samples were homogenized in 4 volumes of Tris-HCl
buffer, and then centrifuged at 5000×g for 15 min. The supernatant was collected and deter-
mined within 2 h. The activities of catalase (CAT), superoxide dismutase (SOD) and the con-
centration of malondialdehyde (MDA) in brain and femurs were examined using commercial
kits according to the manufacturer’s instructions (Jiancheng, Nanjing, China).

2.3.6 ELISA analysis. The left hemispheres of the mice from four groups were homoge-
nized in ice-cold PBS containing 5 M guanidine hydrochloric acid and protease inhibitor mix-
ture (Roche Diagnostics). The femurs extracts were prepared by extracting frozen pulverized
bone tissue and suspending in ice-cold PBS containing 5 M guanidine hydrochloric acid and
protease inhibitor mixture (Roche Diagnostics). Total protein content in the brain hemispheres
and femurs extracts was determined via colorimetric BCA assay in accordance with the
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manufacturer’s recommendations (Jiancheng, Nanjing, China). The levels of Aβ42 and Aβ40
in the brain hemispheres and femurs extracts were quantified using ELISA kits (Invitrogen,
Camarillo, CA, USA).

Blood samples were obtained from posterior-orbital venous plexus, centrifuged at 5000 r/min
for 15 min at 4°C, and then stored at −80°C for late use. The plasma was collected and stored in
-80°C. Before analysis, the plasma samples were thawed to room temperature. The serum con-
centrations of TRACP 5b, IL-6 and TNF-α were assayed using ELISA kits (Jian Cheng, Nanjing,
China). Assays were performed in accordance with the manufacturer’s recommendations.

2.4 Statistical analysis
All data were expressed as mean±SD. Statistical significance was set at P< 0.05, and deter-
mined by one-way analysis of variance and the SNK test with SPSS 19.0 (IBM, New York,
USA). Graphs were drawn using GraphPad Prism (version 6.0 for Windows).

Results

3.1 CUR prevented spatial memory deficit of APP/PS1 mutated
transgenic mice
As shown in Fig 1A, during 5 day training period, the escape latency to find the platform
decreased progressively. At the fourth week, the latency of APP/PS1 mice was longer than that
of wild mice and this phenomenon was shortened by the treatment of CUR. In the probe trials
(Fig 1B), the swimming time spent in SW 3was used to estimate retention performance. The
swimming time of wild mice spent in SW 3 was 36.7 ±4.94 second. The APP/PS1 mice treated
with CUR (31.9±3.70 second) swam in SW 3 longer than those in APP/PS1 group (19.5±2.71
second, P<0.01). Fig 1C shows the swim-paths of representative animals from four groups.
The swimming tracks indicated that APP/PS1 mice searched for the platform in an inappropri-
ate way and the mice in CUR and NAC treatment made it easy for the APP/PS1 mice to find
the platform.

3.2 CUR reduced the levels of Aβ both in the brain and bone
To determine the effect of CUR on the production and accumulation of Aβ, we observed the
pathological changes of AD using immunohistochemistry and ELISA. CUR treatment
markedly decreased the number of Aβ deposits (total β-amyloid peptide, including several iso-
forms of Aβ, such as Aβ40, Aβ42) both in the cortex (Fig 2A and 2C) and hippocampus (Fig
2B and 2D). As shown in Fig 2E and Fig 2F, Aβ40 and Aβ42 levels were significantly increased
from 6.43±1.07 ng/g and 7.22±1.03 ng/g in the brain of wild mice to 15.21±0.76 ng/g (P<0.01)
and 18.16±1.80 ng/g (P<0.01) in the brain of APP/PS1 mice. Brain Aβ42 and Aβ42 levels in
the treatment of the CUR group decreased to 11.56±1.06 ng/g (P<0.01) and 13.72±1.72 ng/g
(P<0.01) respectively. As well as in femur, Aβ40 and Aβ42 levels were significantly increased
from 2.09±1.07 ng/g and 4.68±0.53 ng/g in wild mice to 3.67±0.24 ng/g (P<0.01) and 8.59
±0.48 ng/g (P<0.01) in APP/PS1 mice. The Aβ42 and Aβ42 levels in the femurs of APP/PS1
mice treated with CUR decreased to 2.96±0.21 ng/g (P<0.01) and 5.55±0.49 ng/g (P<0.01).

3.3 The antioxidant effect of CUR in the brain and femur
The SOD (Fig 3A) and CAT (Fig 3B) activities were respectively reduced from 84.30±6.17
U/mg protein and 31.59±3.11 U/mg protein in the brain of wild mice to 32.17±3.82 U/mg pro-
tein (P<0.01) and 24.61±1.87 U/mg protein (P<0.01) in the brain of APP/PS1 mice. The con-
centration of MDA (Fig 3C) was increased from 0.91±0.12 nmol/mg protein in the brain of
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wild mice to 2.17±0.18 nmol/mg protein in the brain of APP/PS1 mice (P<0.01). The activities
of CAT and SOD were increased to 51.47±5.98 U/mg (P<0.01) and 27.84±2.01 U/mg
(P<0.01) respectively, and the concentration of MDA was reduced to 1.48±0.09 nmol/mg
(P<0.01). Additionally, in femurs of APP/PS1 mice, the activities of the antioxidative enzymes
SOD (Fig 3D) and CAT (Fig 3E) were decreased significantly from 68.24±3.75 U/mg and 24.81
±1.38 U/mg to 36.91±5.21 U/mg and 17.05±1.35 U/mg, and the levels of MDA (Fig 3F) were
significantly elevated from 0.77±0.08 nmol/mg to 2.18±0.13 nmol/mg (P<0.01). Administra-
tion of CUR significantly restored SOD (49.29±3.71 U/mg) and CAT (22.34±2.01 U/mg) activ-
ities, and decreased MDA content (1.39±0.13 nmol/mg) in the femur (P<0.01). NAC
supplementation preserved the SOD and CAT activities and decreased MDA content in the
brain and femur.

3.4 CUR improved BMD and maintained bone structural properties of
the femurs
The micro-CT images of the distal femoral diaphysis showed BMD and bone structural properties
of the trabecular bone in femurs in Fig 4A. Compared with the wild mice group, BMD (Fig 4B)
of the femurs in APP/PS1mutated transgenic mice decreased from 310.6±22.1 mg/mm3 to

Fig 1. CUR prevented spatial memory deficit of APPPS1mutated transgenicmice.Morris water maze was used to test the spatial learning and memory
(n = 10). (A): CUR reduced the time to find the platform during the hidden sessions of the water-maze. (B): CUR treatment showed memeroy retention and
spent most of their time in the target quadrant (SW 3) during the probe trial. (C): The route of the mice. Results are represented as the mean ± SD. #: P<0.05
compared to the wild mice group; ##: P<0.01 compared to the wild mice group *: P<0.05 compared to the APP/PS1mutated transgenic mice group; **:
P<0.01 compared to the APP/PS1 mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g001
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254.3±15.9 mg/mm3 (P<0.01). As shown in Fig 4C–4F, the femurs in APP/PS1 mice decreased
BVF (from 25.6±1.77 to 13.4±1.65 percentage), trabecular thickness (from 42.30±2.87 μm to
33.41±3.19 μm), and trabecular number (from 5.49±0.40 to 2.91±0.49), as well as a concomitant
increase in trabecular spacing (from 159.70±8.69 μm to 231.40±12.54 μm). CUR treatment
improved BMD (280.7±17.3 mg/mm3, P<0.01), decelerated the degeneration of trabecular bone,

Fig 2. CUR reduced the levels of Aβ both in the brain and bone. Total Aβ plaques (red) were detected with antibodies in the cortex (A), and hippocampus
(B). Cell nuclei were stained with DAPI (blue). Scale bars represented 100 μm. Number of total Aβ plaques plaques in the cortex (C) and hippocampus (D).
CUR decreased the levels of Aβ40 (E) and Aβ42 (F) in brain, and decreased the levels of Aβ40 (G) and Aβ42 (H) in femur. Results are represented as the
mean ± SD (n = 10). #: P < 0.05 compared to the wild mice group; ##: P<0.01 compared to the wild mice group *: P<0.05 compared to the APP/PS1mutated
transgenic mice group; **: P<0.01 compared to the APP/PS1mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g002
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significantly increased BVF (20.21±2.05 percentage, P<0.01), trabecular thickness (37.08
±2.09 μm, P<0.05), trabecular number(4.74±0.51, P<0.01), and decreased trabecular separation
(175.62±11.67 μm, P<0.01) compared with model controls.

3.5 CUR improved the mechanical properties of the femurs
A significant reduction in elastic load (Fig 5A), elastic stress (Fig 5B), maximum load (Fig 5C)
and maximum stress (Fig 5D) of the femurs was observed between the APP/PS1 mice and the
wild mice (P<0.01). The mechanical properties of the femurs, elastic load, elastic stress, maxi-
mum load and maximum stress were reduced from 15.37±1.38 N, 38.85±2.75 N/mm2, 17.25
±1.25 N and 45.19±3.24 N/mm2 to 8.49±1.68 N, 24.71±3.11 N/mm2, 13.66±1.01 N and 29.78
±3.12 N/mm2 respectively. The mice administered with 100 mg/kg/d CUR showed significant
improvements in in elastic load (12.67±1.39 N, P<0.05), elastic stress (31.62±2.91 N/mm2,
P<0.01), maximum load (15.64±1.11 N, P<0.01) and maximum stress (38.11±2.27 N/mm2,
P<0.01) compared to model controls.

3.6 CUR reduced serum levels of TRACP 5b, IL-6 and TNF-α
The serum levels of cytokines IL-6 (Fig 6A), TRACP 5b (Fig 6B) and TNF-α (Fig 6C) were sig-
nificantly elevated from 87.50±6.34 pg/ml, 0.674±0.040 ng/ml and 73.22±5.38 pg/ml to 178.41
±7.21 pg/ml, 1.533±0.061 ng/ml and 132.51±10.25 pg/ml respectively in APP/PS1 mice com-
pared with the wild group (P<0.01). CUR treatment reduced the levels of osteoclast activity
markers TRACP-5b (0.842±0.066 ng/ml, P<0.01), and significantly decreased the levels of IL-
6 (118.29±7.34 pg/ml, P<0.01) and TNF-α (104.70±5.67 pg/ml, P<0.01). These results

Fig 3. The antioxidant effect of CUR in brain and femur. The activities of antioxidant enzymes SOD (A), CAT (B) and the concentration of MDA (C) in
brain, and SOD (D), CAT (E) and the concentration of MDA (F) in femur were assayed according to the instructions of the manufacturer. Results are
represented as the mean ± SD (n = 10). #: P<0.05 compared to the wild mice group; ##: P<0.01 compared to the wild mice group *: P<0.05 compared to the
APP/PS1 mutated transgenic mice group; **: P<0.01 compared to the APP/PS1 mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g003
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suggested that CUR treatment was sufficient to decrease osteoclastogenesis induced by produc-
tion and deposition of Aβ. As shown in S1 Fig, the serum levels of C-terminal cross-linking tel-
opeptide oftype I collagen (CTx) and cathepsin K in APP/PS1 mice were significantly higher
compared with the normal group. CUR and NAC reversed reduced the levels of osteoclast
activity markers cathepsin K and CTx. CUR significantly reversed iron Aβ-induced down-reg-
ulated expression of osteocalcin (S2 Fig, P<0.01).

Discussion
Alzheimer's disease (AD) and osteoporosis are two main multifactorial progressively degenera-
tive diseases that predominantly affect the elderly. These two diseases share some common risk
factors including old age, being female, smoking, excessive drinking, low estrogen, and vitamin
D3 levels [27]. In agreement with the clinical and epidemiological evidence, oxidative damage

Fig 4. CUR improved BMD andmaintained bone structural properties of the femur. Representative three-dimensional reconstructed images derived by
micro–computed tomography (A). CUR treatment significantly improved Trabecular volumetric BMD (B) and increased BVF (C), trabecular number (C),
trabecular thickness (E) and decreased trabecular separation (F). Results are represented as the mean ± SD (n = 10). #: P<0.05 compared to the wild mice
group; ##: P<0.01 compared to the wild mice group *: P<0.05 compared to the APP/PS1mutated transgenic mice group; **: P<0.01 compared to the APP/
PS1 mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g004
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and the dysfunction of the antioxidant system play an important role in the pathogenesis of
osteoporosis and AD. In this study, we mimicked the prodromal stage of AD using APP/PS1
mutated transgenic mice, and proved the protective effect of CUR on the memory impairment
and bone loss via anti-oxidative character.

Extracellular in the amyloid plaques and intracellular neurofibrillary tangles in the brain are
primary characters for AD [28]. Amyloid plaques are more specific for AD, while

Fig 5. CUR improvedmechanical properties of the femur. Elastic load (A), elastic stress (B), maximum
load (C) and maximum stress (D) of the femurs were derived from the three-point bending test. Results are
represented as the mean ± SD (n = 10). #: P<0.05 compared to the wild mice group; ##: P<0.01 compared to
the wild mice group *: P<0.05 compared to the APP/PS1 mutated transgenic mice group; **: P<0.01
compared to the APP/PS1 mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g005

Fig 6. CUR reduced serum levels of IL-6, TRACP 5b and TNF-α. The serum concentrations of bone resorption markers including IL-6 (A), TRACP 5b (B)
and TNF-α (C) were assayed using an ELISA kit. Results are represented as the mean ± SD (n = 10). #: P < 0.05 compared to the wild mice group; ##:
P<0.01 compared to the wild mice group *: P<0.05 compared to the APP/PS1 mutated transgenic mice group; **: P<0.01 compared to the APP/PS1
mutated transgenic mice group.

doi:10.1371/journal.pone.0133289.g006
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neurofibrillary tangles occur in various neurodegenerative diseases [29]. It has been demon-
strated that the mutations in the APP gene, presenilin (PS) 1, or PS 2 potentially lead to early-
onset forms of AD [26]. In mice, the APP transgene combined with a PS1 transgene yielded Aβ
plaques with earlier onset than the single transgenic sample [30]. Aβ directly or indirectly mod-
ulates mitochondrial function and induces oxidative stress which in turn enhances the Aβ syn-
thesis and aggregation [26,31]. In our study, the administration of curculigoside significantly
reduced the accumulation of Aβ and enhanced learning performance. Therefore, utilizing anti-
oxidants may be a more successful strategy for the treatment of AD and osteoporosis.

In AD patients, SOD and CAT activities were found to be significantly lower in both the
central nervous system and peripheral tissues[32]. The transgenic mice with overexpressing
the APP mutant and a deficiency in Mn-SOD had elevated oxidative stress and significantly
increased brain Aβ levels and Aβ plaque burden[33]. Conversely, the APP-overexpressing
mutant mice with the overexpression of Mn-SOD, exhibited increased antioxidant defense
capability in brains and reducing Aβ plaque burden [34]. In our study, APP/PS1 mice had sig-
nificantly lower SOD, CAT activities, and higher levels of lipid peroxidation both in brain
hemispheres and femurs. The anti-oxidative effects of CUR may be involved in the prevention
of memory impairment and bone loss.

In bone tissue, oxidative stress associated with aging and estrogen deficiency may be a piv-
otal pathogenetic mechanism of bone loss [35]. Women with postmenopausal osteoporosis
have significantly lower SOD, GPX, CAT activity and higher levels of lipid peroxidation end-
product MDA, and the antioxidant enzymes levels are significantly associated with BMD val-
ues of the femoral neck, lumbar spine, and total hip [36,37,38]。. In bone marrow stromal cell
and calvarial osteoblast, oxidative stress inhibits osteoblastic differentiation mainly through the
activation of extracellular signal-regulated kinase (ERK) and ERK-dependent NF-κB signaling
pathways [39].

Osteoblasts can also produce receptor activator for nuclear factor-κ B Ligand (RANKL) and
osteoprotegerin (OPG) to modulate osteoclast differentiation and bone resorption. In our pre-
vious study, CUR significantly down-regulated the increased level of RANKL in H2O2-stimu-
lated osteoblast, and exhibited potential effects on restraining bone absorption [15].

In addition, Aβ also plays a crucial role in the demineralization process of bone tissues of
older people and women with menopause. The mRNA and protein expression levels of Aβ42
and APP were elevated remarkably in the osteoporotic bone tissues both from human and
ovariectomized rats [7]. In our study, the levels of Aβ in the femurs of APP/PS1 mutated trans-
genic mice were significantly elevated. Aβ40 and Aβ42 levels were significantly decreased in
the CUR treated group. In addition, the elevated level of Aβ induced higher levels of bone
resorption marker cathepsin K and CTx, and lower level of biochemical marker of bone forma-
tion (osteocalcin).

In APP/PS1 mice, the elevation of TNF-α and IL-6 is closely related to bone loss [40]. The
concentrations in the serum of IL-6 and TNF-α were associated with increased ROS and bone
resorption [41]. In our research, the serum levels of the osteoclast activity markers (TRACP
5b), IL-6 and TNF-α were significantly higher in APP/PS1 mice than in the wild mice. IL-6
and TNF-α not only directly stimulate osteoclastogenesis and bone resorption but also stimu-
late RANKL production in osteoblastic cells in a synergistic fashion [42]. CUR treatment
reduced the levels of osteoclast activity markers TRACP-5b, and significantly decreased the lev-
els of IL-6 and TNF-α. These results suggested that CUR treatment was sufficient to decrease
osteoclastogenesis induced by production and deposition of Aβ.

In conclusion, the administration of CUR can significantly enhance learning performance
and ameliorate bone loss in APP/PS1 mutated transgenic mice, and the mechanism may be
related to its antioxidant effect.
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Supporting Information
S1 Fig. CUR reduced serum levels of cathepsin K and CTx. The serum concentrations of
cathepsin K and C-terminal cross-linking telopeptide oftype I collagen (CTx) were assayed
using an ELISA kit. Results are represented as the mean ± SD (n = 10). #: P< 0.05 compared to
the wild mice group; ##: P<0.01 compared to the wild mice group �: P<0.05 compared to the
APP/PS1 mutated transgenic mice group; ��: P<0.01 compared to the APP/PS1 mutated trans-
genic mice group.
(TIF)

S2 Fig. CUR reduced serum level of osteocalcin. The serum concentration of osteocalcin was
assayed using an ELISA kit. Results are represented as the mean ± SD (n = 10). #: P< 0.05
compared to the wild mice group; ##: P<0.01 compared to the wild mice group �: P<0.05 com-
pared to the APP/PS1 mutated transgenic mice group; ��: P<0.01 compared to the APP/PS1
mutated transgenic mice group.
(TIF)
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