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Abstract

Although it is widely known that high-pass filters can reduce the amplitude of slow ERP 

components, these filters can also introduce artifactual peaks that lead to incorrect conclusions. To 

demonstrate this and provide evidence about optimal filter settings, we recorded ERPs in a typical 

language processing paradigm involving syntactic and semantic violations. Unfiltered results 

showed standard N400 and P600 effects in the semantic and syntactic violation conditions, 

respectively. However, high-pass filters with cutoffs at 0.3 Hz and above produced artifactual 

effects of opposite polarity before the true effect. That is, excessive high-pass filtering introduced 

a significant N400 effect preceding the P600 in the syntactic condition, and a significant P2 effect 

preceding the N400 in the semantic condition. Thus, inappropriate use of high-pass filters can lead 

to false conclusions about which components are influenced by a given manipulation. The present 

results also lead to practical recommendations for high-pass filter settings that maximize statistical 

power while minimizing filtering artifacts.
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The progress of science requires that experimental results are valid, replicable, and 

generalizable. In any domain of experimental inquiry, however, decisions must be made 

about data cleaning and processing procedures, and the choices made in any given study 

could potentially impact whether these goals are realized. In the domain of human 

electrophysiology, researchers using electroencephalography (EEG) and event-related brain 

potentials (ERPs) to study cognition must make numerous choices about recording and post 
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processing parameters, including when and how to apply filters to their data.1 Although all 

filters distort time-domain data to some extent, filtering can be beneficial by removing 

frequency components unlikely to be of cortical origin (e.g., muscle activity, skin potentials, 

or electrical line noise) thereby improving signal-to-noise in the data and statistical power 

(Kappenman & Luck, 2010). Additionally, some filtering of high frequencies is necessary 

during digitization in order to avoid aliasing artifacts (see Luck, 2014). In other words, the 

benefits of filtering outweigh the costs when appropriate filter parameters are used.

However, to meet the goals of producing valid findings that accurately reflect the brain 

processes being recorded, it is important for researchers to understand how some filter 

settings may lead to significant distortion of the ERP waveforms and thereby result in 

misleading conclusions. Whereas some recent discussion has focused on low-pass filters 

(i.e., filters that attenuate high frequencies) and how they may impact conclusions about the 

time course of ERP effects (e.g., Rousselet, 2012; VanRullen, 2011; Widmann & Schröger, 

2012), our goal here is to assess the impact of high-pass filters (i.e., filters that attenuate low 

frequencies) on slower cortical potentials such as the N2, the P300, the N400, the late 

positive potential, etc (cf. Acunzo, MacKenzie, & van Rossum, 2012; Widmann, Schröger, 

& Maess, in press). For the sake of concreteness, we will focus our analyses on ERP 

components that are commonly studied in language comprehension (the N400 and P600), 

demonstrating that misapplication of high-pass filters can distort the ERP waveform in ways 

that lead to spurious conclusions about the engagement of the cognitive processes under 

investigation. However, our conclusions apply broadly to all slow components.

Since the seminal paper of Duncan-Johnson and Donchin (1979), it has been widely known 

that excessive use of high-pass filters can reduce the amplitude of late, slow endogenous 

components. They showed that as the high-pass filter cutoff frequency became progressively 

higher, the amplitude of the P300 elicited by deviant tone bursts became correspondingly 

smaller. This amplitude reduction was apparent already with time constants as long as 1 

second (∼0.16 Hz high-pass cutoff). More recently, Hajcak and colleagues (Hajcak, 

Weinberg, MacNamara, & Foti, 2012) provided a similar caution about amplitude 

reductions caused by high-pass filters in the context of the late positive potential (LPP) 

elicited by emotionally arousing stimuli. In their study, LPP amplitude was markedly 

attenuated with a .5 Hz high-pass filter and virtually eliminated with a 1 Hz filter. While 

these effects on ERP amplitudes are of clear methodological significance, they also have 

larger implications for theory building, in that cross-study comparisons and meta-analysis of 

ERP effect magnitudes become difficult when filter cutoffs vary across reported 

experiments. Although filtering requirements will necessarily differ depending on factors 

such as the ERP component under investigation, the recording environment, and the 

participant population, it is important for researchers to have a clear understanding of how 

their filter settings might distort their waveforms and lead to incorrect or misleading 

conclusions.

1The term “filter” can be applied to many types of signal processing procedures. We use the term in this paper to refer to the most 
common class of filters used in EEG/ERP processing, which can be described in terms of a frequency response function that specifies 
the amount of attenuation for each frequency band.
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Although it is widely known that high-pass filters may attenuate ERP effects, it is less 

widely known that these filters may induce artifactual effects into the ERP waveform. In 

other words, high-pass filters may not merely lead to the absence of an effect, they may lead 

to the presence of a statistically significant but artifactual effect. More specifically, high-

pass filters can produce artifactual deflections of opposite polarity and/or artifactual 

oscillatory activity before and after an elicited experimental effect of interest.

Figure 1 shows examples of these filter distortions with an artificial ERP waveform 

consisting of a single cycle of a cosine wave, which resembles a P600 waveform (see 

below).2 When this waveform is low-pass filtered with a half-amplitude cutoff of 2 Hz (to 

remove high frequencies), this effectively “spreads out” the voltage in time, causing the 

onset to start earlier and the offset to end later (Figure 1A). Panel B depicts the result of 

applying a high-pass filter with the same half-amplitude cutoff at 2 Hz. The filters depicted 

in Panels A and B are exactly opposite; one passes low frequencies and the other attenuates 

low frequencies. Consequently, the distortion produced by the high-pass filter has the 

opposite polarity of the distortion produced by the low-pass filter(see Luck, 2014, for a 

detailed discussion of these filtering artifacts; see also Widmann et al., in press, for a more 

technical overview of digital filter implementation). In other words, whereas the spreading 

of the waveform produced by the low-pass filter in Panel A is positive in polarity (because 

the waveform being filtered consists of a single positive peak), the spreading of the 

waveform produced by the high-pass filter in Panel B is negative.

The “inverted spreading” produced by high-pass filters is particularly problematic, because 

it introduces new peaks into the waveform, and this may lead researchers to conclude that a 

given experimental manipulation is impacting multiple components rather than a single 

component. Thus, high-pass filtering does not merely reduce the amplitude of a slow 

component, it can create artifactual peaks that lead to completely invalid conclusions. Note 

that filters with steeper roll-offs may produce oscillating artifacts and not just single peaks 

(Bénar, Chauvière, Bartolomei, & Wendling, 2010; Yeung, Bogacz, Holroyd, Nieuwenhuis, 

& Cohen, 2007).

It is important to note that the magnitude of these filter distortions depends on the cutoff 

frequencies of the filters, with greater distortion as more of the signal is attenuated by the 

filter. For example, Figures 1C and 1D show that almost no visible distortion is produced in 

this P600-like waveform by a 30 Hz low-pass filter or a 0.01 Hz high-pass filter. Thus, high-

pass filtering with reasonably low filter cutoffs may be a useful procedure that attenuates 

low-frequency noise without introducing meaningful distortion of the waveforms.

To show how the distortion depends on the specific cutoff frequency, Figure 2 overlays the 

effects of six different filter settings (0.01 Hz, 0.1 Hz, 0.3 Hz, 0.5 Hz., 0.7 Hz, and 1 Hz; 24 

dB/octave roll-off) on the same simulated P600 effect. There were virtually no differences 

between the 0.01 and 0.1 Hz filters (and these waveforms were nearly identical to the 

unfiltered waveform; see Figure 1). However, beginning with the 0.3 Hz filters and above, 

2Note that this waveform is similar in properties to other slower cortical potentials, such as the P300, LPP, etc.
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the peak amplitude decreased approximately linearly as the cutoff increased, and this was 

accompanied by artifactual negative peaks on either side of the positive peak.

The negative peak preceding the simulated P600 wave has a latency that is very similar to 

the latency of the N400 component (see below). Consequently, the use of a high-pass filter 

cutoff of 0.3 Hz or higher may create an artifactual peak that is interpreted as being an 

N400. Moreover, the artifactual N400-like peak causes the apparent onset of the true P600 

peak to increase in latency, and this latency shift increases as the high-pass filter cutoff 

increases, with a 1 Hz filter delaying the onset of the positivity by approximately 200 ms. 

Similarly, the application of such a filter to a P300 wave could lead to an artifactual peak at 

200 ms that is interpreted as an N2 wave, and this would also increase the apparent onset 

latency of the P300. Thus, even a relatively ‘mild’ 0.3 Hz filter can produce artifactual peaks 

and alter the time course of a real effect onset.

Not all variation in high-pass filters necessarily leads to excessive distortions. High-pass 

cutoff frequencies of 0.1 Hz and lower have relatively little effect on ERP components, 

including slower endogenous components like the P300 and LPP (Acunzo et al., 2012; 

Hajcak et al., 2012; Kappenman & Luck, 2010; Widmann et al., in press). Indeed a widely 

cited methodological review for the elicitation of commonly-studied slower ERP 

components—including the mismatch negativity (MMN), P300, and N400—recommends 

data recording parameters with high-pass filter settings between 0.01 and 0.1 Hz (Duncan et 

al., 2009), and similar recommendations are made in a widely-used introductory text on 

ERPs (Luck, 2005, 2014). Some recent studies and methodological reviews in the clinical 

and cognitive EEG literature have also cautioned against the use of excessive high-pass 

filters precisely because of the possibility for introducing artifacts (Acunzo et al., 2012; 

Bénar et al., 2010; Yeung et al., 2007; see also Widmann et al., in press). Whereas the vast 

majority of studies report filter cutoffs within the recommended range of 0.01 – 0.1 Hz, even 

a brief survey of papers published in highly regarded journals, including respected 

neuroscience and electrophysiology journals, will turn up numerous ERP papers with filters 

exceeding these values, including cutoff values as high as 2 Hz despite these cautions (e.g., 

Nenonen, Shestakova, Huotilainen, & Näätänen, 2005). Part of the problem may be that 

artifactual effects induced by filtering may not readily be recognized as artifactual, as they 

could resemble theoretically relevant and/or expected ERP effects. Empirical data are 

needed to demonstrate that these artifacts have a practical impact. The goal of the present 

study is therefore to make the problems associated with excessive high-pass filtering more 

concrete by showing how they may lead to inappropriate conclusions about cognitive 

processing in real data from a typical language ERP paradigm. We will also provide 

evidence about filter settings that optimize statistical power without producing significant 

distortion.

Although the conclusions of the present study are not specific to language research, it is 

necessary to provide some background about language-related ERP components so that the 

implications of the present results are clear. Much language-related ERP research has 

focused on characterizing two ERP components: N400 and P600. This dichotomy is 

important, because the N400 and P600 effects have traditionally been associated with 

different levels of linguistic processing. Modulations of the N400 are traditionally associated 
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with processing at the semantic level, where amplitude is typically inversely related to the 

ease of accessing or integrating words and their semantic features in a given context (e.g., 

Holcomb, 1993; Kutas & Federmeier, 2011; Kutas & Hillyard, 1980, 1984). The N400 is 

often contrasted with the P600, which has most frequently been associated with difficulty in 

processing grammar or morphosyntax (e.g., Hagoort, Brown, & Osterhout, 1999; Osterhout 

& Holcomb, 1992), and more recently, syntactically well-formed but propositionally 

impossible sentences (e, g, Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout, 2005; 

Kuperberg, 2007; Paczynski & Kuperberg, 2012; van de Meerendonk, Kolk, Vissers, & 

Chwilla, 2010; van Herten, Chwilla, & Kolk, 2006). In some reports, lexical/semantic and 

grammatical manipulations have had independent and additive effects on the N400 and 

P600, respectively, indicating that these two components reflect—at least to a first 

approximation—separable and independent neurocognitive processes (Allen, Badecker, & 

Osterhout, 2003; Osterhout & Nicol, 1999).

Because of this property, many studies have used the N400/P600 dichotomy as a criterion 

for establishing whether a given linguistic manipulation engages processing mechanisms 

that are primarily semantic in nature (producing an N400 effect) or primarily syntactic in 

nature (producing a P600 effect) (e.g., Hagoort, Wassenaar, & Brown, 2003; Kim & 

Osterhout, 2005; Osterhout & Mobley, 1995). Other studies have used these two effects as 

indices of stages of neurocognitive development for language processing in language 

learners(e.g., Morgan-Short, Steinhauer, Sanz, & Ullman, 2012; Osterhout, McLaughlin, 

Pitkänen, Frenck-Mestre, & Molinaro, 2006; Tanner, McLaughlin, Herschensohn, & 

Osterhout, 2013). Thus, theoretical inferences often crucially rely on determining whether a 

given manipulation impacts primarily the N400, primarily the P600, or both components.

The artifactual, opposite-polarity peaks that can be produced by high-pass filters are 

particularly problematic for experiments that require distinguishing between N400 and P600 

effects. As shown in Figures 1 and 2, high-pass filters can take a late positive effect such as 

the P600 and introduce an artifactual negative component at an earlier latency that might be 

mistaken for an N400. In other words, a purely syntactic P600 effect might be distorted to 

produce an artifactual negative peak after filtering, which in turn might lead to an incorrect 

conclusion about the presence of an N400 effect in the waveform. Similarly, a purely 

semantic N400 effect might be preceded by an artifactual positive peak that would be 

interpreted as an unusually early P2 effect, or it might be followed by an artifactual positive 

peak that would be interpreted as a P600. This potential for confusion is especially likely 

given that the N400 and P600 exhibit a large degree of overlap in their scalp topographies.

As mentioned above, reported filter settings in ERP studies of language comprehension (as 

well as in other cognitive domains) vary widely. Although most filter cutoffs are at or below 

0.1 Hz, numerous reported studies from prominent labs in high profile journals use filter 

settings ranging from .25 Hz to .5 Hz, with some reports using cutoffs as high as 1 or 2 Hz, 

with no clear justification provided for these relatively high cutoff values. One possible 

justification is that higher cutoffs might more effectively remove skin potentials and 

therefore increase statistical power (Kappenman & Luck, 2010; see Loerts, Stowe, & 

Schmid, 2013, for an example of this sort of justification). However, it is necessary to 
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balance the improvement in statistical power with the possibility of introducing artifactual 

effects.

For these reasons, it is therefore necessary to empirically determine exactly how various 

high-pass filter settings can both lead to spurious effects and improve statistical power for 

late, slow endogenous ERP components, such as the N400 and P600. To accomplish this, we 

conducted an experiment using well-studied semantic and syntactic violations to elicit N400 

and P600 effects, respectively. We then applied a broad range of different high-pass filters 

to the resulting data to assess how these filters distorted the ERP waveforms. We also used 

these data to perform Monte Carlo simulations of experiments with different numbers of 

participants, which allowed us to determine how statistical power varied across different 

filter settings. Together these two sets of analyses made it possible to determine the optimal 

balance between statistical power and waveform distortion.

Method

Participants

Participants were 33 native English speakers. All were right-handed (Oldfield, 1971), had 

normal or corrected-to-normal vision, and reported no history of neurological impairment. 

As described in detail below, data from nine participants were excluded from analysis 

because of artifacts, leaving 24 participants (mean age = 19 years, SD = 1.17; 11 female) in 

the final analysis. All participants provided informed consent and received course credit for 

taking part.

Materials

Experimental materials were English sentences that were well-formed, or contained a 

subject-verb agreement or lexical-semantic violation (presented in an unpredictable order). 

For subject-verb agreement sentences, 70 sentence pairs were created. One version of each 

pair was well-formed, and the other contained a violation of subject-verb agreement (e.g., 

Many doctors claim/*claims that insurance rates are too high). All sentences had plural 

subjects, such that ungrammatical verbs were in singular form, and there were no cues to 

sentence grammaticality prior to the onset of the critical verb.3 Sentence pairs were 

counterbalanced across two lists in a Latin square design, such that each list had 35 well-

formed and 35 ill-formed items, and no single participant saw the same version of each 

sentence.

For the semantic condition, 70 sentences were created with passive structures (e.g., The 

rough part of the wood was sanded to perfection). Violation sentences were created by 

exchanging the verb in one sentence with the verb in another (e.g., The unpleasant cough 

syrup was swallowed while the boy held his nose), such that the verb was no longer 

semantically coherent with the preceding context (e.g., The rough part of the wood was # 

swallowed to perfection/The unpleasant cough syrup was # sanded while the boy held his 

3We use the * and # symbols to indicate stimuli that are ungrammatical and semantically/pragmatically anomalous, respectively. 
Critical words for ERP averages are underlined here to make the critical ERP word apparent to the reader, but were presented without 
underlines or */# symbols during the experiment.
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nose). Sentence pairs were counterbalanced across two lists, such that there were 35 

semantically well-formed and 35 ill-formed sentences per list. Each participant saw each 

critical verb twice, once in a well-formed and once in an ill-formed sentence. However, each 

sentence frame was only presented to each participant once.

Each list of sentences contained 140 total sentences. Both lists were pseudorandomized such 

that no more than three well-formed or ill-formed sentences followed in immediate 

succession, and no more than two sentences from the same condition followed in succession. 

The two lists were presented either in forward or reverse order, to avoid list order effects 

across participants.

Procedure

Participants were tested individually in a single session. Each participant was randomly 

assigned to one of the stimulus lists and seated in a comfortable chair at a viewing distance 

of 120 cm from a CRT monitor. Participants were instructed to read each sentence silently 

while remaining relaxed and minimizing movements. Each trial began with “Ready?” 

displayed in the center of the monitor, and participants pressed a button on a mouse to begin 

the trial. The trial sequence consisted of a fixation cross, followed by each word of the 

sentence presented one at a time in rapid serial visual presentation format. The fixation cross 

and each word were presented in the center of the screen, and remained on the screen for 

350 ms with a 150 ms blank screen between words. Words were presented in Arial font 

(approximately .5° of visual angle high and no more than 3°wide). Sentence-ending words 

were presented with a period, followed by a “Good/Bad” screen, instructing participants to 

give an acceptability judgment for the sentence via mouse button press. Participants were 

instructed to respond “good” if they felt the sentence was well-formed in English or “bad” if 

they felt the sentence was in any way anomalous (e.g., grammatically or semantically odd). 

After each response, the “Ready?” screen appeared again, allowing participants to begin the 

next trial at their own pace. Experimental trials were preceded by ten practice trials.

EEG recording and analysis—Continuous EEG was recorded from 30 Ag/AgCl 

electrodes embedded in an elastic cap (ANT Waveguard caps) from standard and extended 

10-20 locations (Jasper, 1958: FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, 

C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2), as well as from 

electrodes placed on the left (M1) and right (M2) mastoids. EEG was recorded on-line to a 

common average reference, and re-referenced off-line to the averaged activity over M1 and 

M2. Vertical eye movements and blinks were recorded from a bipolar montage consisting of 

electrodes placed above and below the left eye, and horizontal eye movements were 

recorded from a bipolar montage consisting of electrodes placed at the outer can thus of each 

eye. Impedances at each electrode site were held below 5 kΩ. The EEG was amplified with 

an ANT Neuro bioamplifier system (AMP-TRF40AB Refa-8 amplifier), digitized with a 

512 Hz sampling rate and filtered with a digital finite impulse response low-pass filter with a 

138.24 Hz cutoff (sampling rate * .27), as implemented by ASA-lab recording software 

(v4.7.9; ANT Neuro Systems). No high-pass filter was applied during data acquisition (i.e., 

recordings were direct coupled).
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All offline data processing was carried out using the EEGLAB (Delorme & Makeig, 2004) 

and ERPLAB (Lopez-Calderon & Luck, 2014) Matlab toolboxes. Filtering was 

accomplished via ERPLAB's Butterworth filters, which are infinite impulse response filters 

that are applied bidirectionally to achieve zero phase shift. Fourth order filters were used to 

achieve an intermediate roll-off slope of 24 dB/octave (after the second pass of the filter). 

The filters were applied to the continuous EEG to avoid edge artifacts. The data were low-

pass filtered at 30 Hz in all cases, and with seven different high-pass cutoffs: DC (no filter), 

0.01 Hz, 0.1 Hz, 0.3 Hz, 0.5 Hz, 0.7 Hz, and 1 Hz. Note that the half-amplitude (-6 dB) 

point is used to describe all filter cutoffs in the present paper.

ERPs were computed off-line for each participant in each condition, time-locked to the onset 

of the critical verb in each sentence (underlined, above), relative to a 200 ms prestimulus 

baseline. Trials characterized by excessive ocular, motor, or other artifact were excluded 

from analysis. Artifact detection was carried out on epochs in two stages beginning 200 ms 

prior to and ending 1000 ms following the onset of the critical word. In stage one, a moving 

window peak-to-peak threshold criterion was applied to the two bipolar eye channels. The 

window was 200 ms wide and was advanced in 100 ms increments. Epochs with peak-to-

peak amplitudes exceeding 50μV were marked for exclusion. This screening targeted large, 

rapid ocular artifacts, such as blinks and eye saccades. Second, scalp channels were screened 

for large drifts or deviations (e.g., large skin potentials, excessive motor artifact, excessive 

alpha); specifically, epochs in which the voltage exceeded an absolute threshold of ±100μV 

were excluded from analysis. So that an identical set of trials was included for each high-

pass filter setting, artifact rejection was carried out on the DC-30 Hz filtered data for each 

participant, and then applied to each of that participant's subsequent filtered datasets. Data 

from any participant with more than 25% rejected trials overall were excluded from analysis 

(see Luck, 2014), resulting in the exclusion of nine participants from the final analyses (see 

above). Approximately 5.6% of trials were excluded in the 24 remaining participants.

Because the N400 and P600 effects are most prominent over centro-parietal scalp sites, we 

focused our ERP analyses on a centro-parietal region of interest (ROI) consisting of eight 

electrodes, where the N400 and P600 effects are typically largest (e.g., Tanner & Van Hell, 

2014): C3, Cz, C4, CP1, CP2, P3, Pz, and P4. The waveforms from these sites were 

averaged prior to mean amplitude measurement. As syntactic and semantic manipulations 

have been shown to impact P2, N400 and P600 effects (see e.g., Osterhout & Mobley, 1995; 

Tanner, Nicol, & Brehm, 2014), we computed mean amplitudes for each condition in three 

time windows: 150-300 ms, 300-500 ms, and 500-800 ms, corresponding to the three 

components, respectively. These windows were chosen a priori as canonical time windows 

for the P2, N400, and P600 components. To simplify our analytical approach, our primary 

analyses focused on experimental effects by computing mean amplitudes from difference 

waves in the ill-formed minus well-formed sentences, separately for the semantic and 

syntactic conditions. Difference wave data were analyzed with one-sample t-tests for each 

time window and each filter setting, investigating whether the mean difference differed 

significantly from zero (i.e., whether an experimental effect was present or not). No 

correction for sphericity violations was needed for these single-df analyses. We additionally 

conducted a set of Monte Carlo analyses to investigate the effects of high-pass filter settings 
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on statistical power to detect effects. Monte Carlo simulations will be described with the 

results, below.

Results

Figure 3 shows grand mean ERP waveforms for the well-formed and ill-formed words in 

both the semantic and syntactic violation conditions in combination with each filter setting. 

Results from the one-sample t-test analyses are presented in Tables 1 and 2. The DC 

waveforms show the data without any contamination from high-pass filtering and provide a 

reference against which the other waveforms can be compared. In the DC waveforms, brain 

responses to ill-formed sentences in the syntactic conditions showed a large positive-going 

effect beginning approximately 500 ms poststimulus (a P600 effect), and brain responses to 

ill-formed sentences in the semantic condition showed a negative-going effect beginning at 

approximately 300 ms poststimulus (an N400 effect), which also continued throughout the 

recording epoch. Statistical analysis confirmed these observations (Tables 1 and 2): 

syntactic violations led to a significant positivity in the 500-800 ms time window, and 

semantic violations led to a significant negativity in the 300-500 ms window. Note that the 

N400 effect extended beyond the canonical measurement, leading to significant effects in 

the later time window; extended N400 effects of this nature have been reported in some 

previous studies in subsets of individuals (Kos, van den Brink, & Hagoort, 2012; Tanner & 

Van Hell, 2014). These results confirm that our experimental paradigm elicited the same 

pattern of syntactic (P600) and semantic (N400) violation effects that have been observed in 

numerous previous ERP studies (see Swaab, Ledoux, Camblin, & Boudewyn, 2012, for a 

recent review).

The effects shown in Figure 3 with no high-pass filtering were very similar when a 0.01 or 

0.1 Hz high-pass filter was applied, and there was no qualitative change in statistical 

significance with these filters (Tables 1 and 2). However, the effects changed markedly as 

the cutoff was increased to 0.3 Hz and above. The effects of the filters can be compared 

more easily in Figure 4, in which difference waves for the ill-formed minus well-formed 

comparison are overlaid for the different filter cutoffs. The waveforms are very similar for 

DC, 0.01 Hz, and 0.1 Hz, but clear reductions in the amplitude of the N400 and P600 effects 

in the semantic and syntactic conditions, respectively, can be seen as the filter cutoff 

increases above 0.1 Hz. In addition, these amplitude reductions were accompanied by effects 

of opposite polarity in the time window preceding the standard effect. That is, beginning 

with high-pass filters above 0.3 Hz, there was a significant N400-like negativity preceding 

the P600 in the syntactic condition (see Table 1), and with filter settings at and above 0.7 Hz 

there was a significant positivity in the P2 time window preceding the N400 in the semantic 

condition (see Table 2). Neither of these effects (the N400 in the syntactic condition and the 

P2 in the semantic condition) was significant with the more conservative high-pass filter 

settings (i.e., those settings that attenuate only the very lowest frequencies).

Although it was not statistically significant, a small N400 effect was visible in the syntactic 

condition even with no high-pass filtering. This effect was due to individual differences in 

participants' brain responses to syntactic violations, with a subset of participants primarily 

showing an N400 effect to subject-verb agreement violations. These sorts of individual 
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differences have been previously documented (Tanner & Van Hell, 2014). This raises the 

possibility that the significant N400 effect observed in this condition with cutoffs of 0.3 Hz 

and higher is not artifactual, but instead reflects a true effect that was “revealed” by the 

filter. Two findings argue against this possibility. First, Figure 2 shows that high-pass filters 

with cutoffs of 0.3 Hz and higher produce an artifactual negativity in the N400 latency range 

when the waveform is know to contain only a P600-like positive wave. Second, we repeated 

our analyses of the syntactic condition of the experiment, using only those participants who 

primarily showed a P600 effect (n = 16; see Tanner & Van Hell, 2014), and filtering still 

produced an N400 in these participants. This is illustrated in Figure 5, which shows the 

grand average data from these 16 participants with no high-pass filtering (DC) and with a 

0.5-Hz high-pass filter. The filter led to a more negative potential in the N400 latency range 

for the ill-formed sentences compared to the well-formed sentences even though no sign of 

this effect was present in the DC wave forms. Thus, high-pass filtering truly creates 

artifactual effects.

Having shown that filtering can reduce true effects and induce artifactual components, we 

additionally investigated whether filtering alters the scalp topographies of these effects. 

Topographic plots are presented in Figure 6 for anomalous minus well-formed words in the 

syntactic (panel A) and semantic conditions (panel B) for three filter settings: 0.1, 0.5, and 1 

Hz. Visual inspection shows attenuation of the true effects, as well as the induced effects at 

higher filter settings, which reflects our analysis above. Visual inspection also shows that the 

topographies of the effects differed slightly across the different filter settings. For example, 

the voltage from 400-500 ms in the semantic condition (Figure 6B) was broadly distributed 

when a 0.1 Hz cutoff but had a clear posterior focus at higher filter settings.

To assess the statistical significance of these changes in topography, we quantified mean 

amplitudes in the syntactic condition in the 300-500 ms and 500-800 ms time windows for 

data in the 0.1 and 0.5 Hz filter conditions over four lateral ROIs: left frontal (F7, F3, FC5, 

FC1), right frontal (F8, F4, FC6, FC2), left posterior (P7, P3, CP5, CP1), right posterior (P8, 

P4, CP6, CP2). We submitted these data to a repeated measures ANOVA with two levels of 

condition (well-formed, anomalous), two levels of anteriority (anterior, posterior), two 

levels of hemisphere (left, right), and two levels of filter (0.1 Hz, 0.5 Hz). Of crucial interest 

was whether the factor of filter setting interacted with any of the topographic factors, and 

whether there were further interactions between filter, topography, and condition. We report 

only the interactions involving filter and the topographic factors.

In the 500-800 ms time window (which corresponds to the P600 effect), the following 

interactions were significant: filter by anteriority (F(1, 23) = 22.492, MSE = 1.195, p< .001), 

filter by condition by anteriority (F(1, 23) = 10.139, MSE = 0.377, p = .004), filter by 

hemisphere (F(1, 23) = 5.593, MSE = 0.411, p = .027), and filter by condition by 

hemisphere (F(1, 23) = 15.715, MSE = 0.089, p< .001). In the 300-500 ms time window 

(corresponding to the N400 effect), the following interactions were found: filter by 

anteriority (F(1, 23) = 28.892, MSE = 0.567, p< .001), filter by condition by anteriority (F(1, 

23) = 5.118, MSE = 0.198, p = .033), filter by hemisphere (F(1, 23) = 10.846, MSE = 0.197, 

p = .003), and filter by condition by hemisphere (F(1, 23) = 9.617, MSE = 0.042, p = .005). 
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Thus, there is clear evidence that filtering altered the scalp distributions of the experimental 

effects of interest, both real and artifactual.

Guides to ERP methods typically recommend applying high-pass filters to continuous EEG 

rather than to segmented EEG or averaged ERP waveforms, which avoids “edge” artifacts 

(Luck, 2014). However, some studies nonetheless report applying high-pass filters to either 

epoched EEG or averaged ERP data. We therefore further investigated whether applying 

high-pass filters to the continuous EEG versus individuals' averaged ERPs might 

differentially impact the present data. Figure 7 compares the effects of applying a 0.1 Hz 

high-pass filter to the continuous EEG and averaged ERPs in the syntactic condition. As can 

be seen, applying this high-pass filter to the averaged ERPs led both to a reduction of P600 

effect size and an increase in N400 effect size, relative to this same filter applied to 

continuous EEG. Note that the filter was exactly the same in both cases; the only difference 

was whether it was applied to the continuous EEG or the segmented and averaged ERPs. 

This provides empirical support for the recommendation that high-pass filters be applied to 

continuous EEG, rather than segmented EEG or averaged ERP waveforms.

Monte Carlo Simulations to Determine Statistical Power

Although high-pass filters can create artifactual effects, they may also increase the statistical 

power for detecting real effects. To provide evidence about the tradeoff between these costs 

and benefits of filtering, we conducted a series of Monte Carlo simulations on the ERP data 

that make it possible to quantify statistical power. The general logic of this approach was to 

simulate experiments with different numbers of participants by randomly selecting subsets 

of the 24 participants from the actual data set and then conducting the statistical analyses on 

these subsets. For example, to simulate an experiment with 10 participants, we randomly 

selected 10 of the 24 participants (with replacement) and conducted the statistical analyses 

on these 10 participants. We then repeated this over and over with different random subsets 

of 10 participants. This allowed us to compute the probability of a significant effect in a 

“generic” experiment with 10 participants. The same process was then repeated with 

different sample sizes so that the function relating statistical power (probability of detecting 

a significant effect) to sample size could be computed (see Kappenman & Luck, 2010, for a 

similar approach). This provides a more general assessment of statistical power than 

examining the significance level with the full sample of 24 participants, because it takes into 

account the sampling error that occurs in real experiments. In our analyses, 10,000 

experiments were simulated for each sample size between 5 and 20 individuals (each 

selecting a random subset of the full sample of 24 participants). Separate simulations were 

carried out for the 300-500 and 500-800 ms time windows in the syntactic condition, and for 

the 150-300 and 300-500 ms time windows in the semantic condition.

Simulation results for the syntactic condition are depicted in Figure 8. The top panel shows 

the probability of a significantly greater positivity for the ill-formed sentences (e.g., a P600) 

in the 500-800 ms window (which presumably reflects a “true” P600 syntactic violation 

effect), and the bottom panel shows the probability of a significantly greater negativity for 

the ill-formed sentences in the 300-500 ms window (which presumably reflects a “bogus” 

N400 syntactic violation effect). The greatest statistical power to detect a true P600 effect in 
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the 500-800 ms window occurred with a high-pass filter of 0.1 Hz. Filter settings at 0.01 and 

0.3 Hz performed somewhat poorer, followed by DC recordings (no high-pass filter) and 0.5 

Hz filters, with 0.7 and 1 Hz filters not even reaching 50% power to detect an effect with 20 

participants. In the 300-500 ms time window, the 0.1 Hz filter setting showed the lowest 

likelihood of producing a significant (but artifactual) N400 effect, followed closely by the 

0.01 Hz filter and the DC recording. Beginning with the 0.3 Hz filter, there was a marked 

increase in likelihood to detect a significant (but artifactual) N400 effect in the syntactic 

violation condition, with a high likelihood of detecting this artifactual effect with filters of 

0.5 Hz and above.

The Monte Carlo results from the semantic condition are depicted in Figure 9. The top panel 

shows the probability of a significantly greater negativity for the ill-formed sentences in 

300-500 ms window (which presumably reflects a “true” N400 semantic violation effect), 

and the bottom panel shows the probability of a significantly greater positivity for ill-formed 

sentences in the 150-300 ms window (which presumably reflects a “bogus” P2semantic 

violation effect). Here, the probability of detecting a true effect (the N400 semantic violation 

effect) was greatest with the lowest filter cutoffs (DC – 0.01 Hz) and declined systematically 

as the cutoff increased. This was particularly striking with the 0.7 and 1 Hz filters, for which 

the power to detect a significant effect fell below 50% in simulated experiments with small 

sample sizes. Note that these less-conservative filters would also presumably lead to poor 

statistical power with larger sample sizes in experiments with smaller effect sizes. At the 

same time, filters with higher cutoff frequencies led to an increase in the probability of 

detecting a significant (but artifactual) P2 effect prior to the N400, just as they led to 

significant but artifactual negative effects prior to the P600 in the syntactic violation 

analyses.

Discussion

This experiment provided concrete evidence about the impact of high-pass filter settings on 

slow ERP components, taking two components commonly studied in language 

comprehension(the N400 and P600) as a case in point. Consistent with the filtering artifacts 

observed in the simulated data shown in Figures 1 and 2, high-pass filters above 0.3 Hz 

induced artifactual components into the ERP waveforms from this experiment, which would 

potentially lead to completely false conclusions about which components were influenced by 

the experimental manipulations.

More specifically, with no high-pass filtering (DC recordings) and conservative high-pass 

filters (≤ 0.1 Hz), syntactic violations elicited a classic P600 effect, and semantic violations 

elicited a classic N400 effect. However, as the high-pass filter cutoff was increased to 0.3 

Hz and above, the amplitude of the P600 to syntactic violations decreased markedly, and the 

P600 was accompanied by a significant (but artifactual) N400 effect. At filter settings above 

0.7 Hz, the P600 ceased to be significant, leaving only a significant but artifactual N400 

effect in the data. Thus, these filters obscured the true effect and created a bogus effect. 

Similarly, in the semantic violation condition, typical and highly significant N400 effects 

were found with a filter cutoff of 0.1 Hz or less, and the amplitude of these effects decreased 

markedly with filter settings above 0.3 Hz. Beginning with filter settings of 0.7 Hz and 
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above, the negativity in the later of our two N400 time windows ceased to be significant, 

and this was accompanied by a significant (but artifactual) positivity in the P2 time window. 

These filtering artifacts were similar to those seen our simulated data, showing that 

misapplication of high-pass filters do indeed have real-life consequences for ERP studies of 

cognition.

It is important to stress that these spurious filter-induced artifacts would substantially change 

the conclusions that would be drawn about the processes engaged during language 

comprehension. This follows from the fact that the N400 and P600 reflect separable 

cognitive processes that have been associated with very different aspects of language 

comprehension (e.g., processing of lexical and semantic features is associated with the 

N400, and processing of (morpho) syntactic and combinatorial information is associated 

with the P600). As we have demonstrated here, inappropriate use of high-pass filters would 

cause enormous problems for studies examining whether a given experimental manipulation 

impacts primarily the N400, P600, or both, or for studies requiring differentiation between 

the N400 and P2 effect. In such cases, researchers would come to false conclusions about 

which components are impacted by their experimental manipulations. Note that these results 

have implications for studies of cognition beyond language, as the N400 and P600 have 

properties similar to several other slower endogenous components commonly studied in 

cognitive ERP experiments (e.g., the N200, MMN, P300, LPP, etc), and are equally 

applicable to analysis and interpretation of data from other electromagnetic methods, such as 

ERFs from magneto encephalography. Moreover, with sufficiently high filter cutoffs (e.g., 1 

Hz or higher), even faster and earlier ERP components such as the N170 and the mismatch 

negativity will be affected in this manner. Indeed, Acunzo et al. (2012) recently provided 

empirical evidence from face processing that filter settings greater than 0.1 Hz can introduce 

artifactual short-latency ERP components. High-pass filters systematically reduced a late, 

slow positive component, and introduced an early-latency deflection in the 50-100 ms 

poststimulus time window, which could be interpreted as a C1 component. Moreover, as in 

our data, they showed that filters can alter the scalp topographies of the measured effects, 

and they concluded that even relatively modest high-pass filter settings can lead to spurious 

conclusions about early sensory components.

Our Monte Carlo simulations additionally provide a detailed estimate of the trade-off 

between the noise reduction provided by high-pass filtering and the possibility of 

introducing artifactual components. In the syntactic condition, the optimal trade-off occurred 

with a 0.1 Hz filter. In this case, power to detect a true P600 effect was maximized, whereas 

the likelihood of detecting a significant (but bogus) N400 effect was minimized. In the 

semantic condition, the picture is somewhat different. The optimal trade-off appeared to be 

best with minimal high-pass filtering (DC or 0.01 Hz); however filters with 0.1 Hz cutoffs 

showed only minimal impacts to detect true N400 effects, and still a low likelihood to detect 

artifactual P2 effects. Kappenman and Luck (2010) performed a similar Monte Carlo 

simulation examining the P300 component in an oddball task, and they also found that 0.1 

Hz provided the optimal tradeoff between waveform distortion and statistical power.

The non-monotonic relationship between filter setting and statistical power in the syntactic 

condition (and in Kappenman & Luck, 2010) and the slight discrepancy in optimal filter 
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settings across conditions likely stems from the fact that high-pass filters will have the most 

benefit the farther away from the baseline period you are. This is because baseline correction 

itself can greatly attenuate low frequency noise, but this attenuation declines as the 

waveform drifts away from the baseline voltage over time. Consequently, low frequency 

noise in the data is likely to have the greatest impact on the slowest potentials, like the P600 

or P300. In these cases, high-pass cutoffs of 0.1 Hz are most likely to attenuate low-

frequency noise, which can contaminate these slow components, while providing minimal 

distortion to the underlying ERP effect. Thus, 0.1 Hz is likely to be optimal for very late 

components. More research is needed to establish the generality of these findings and to 

determine the optimal cutoffs for components with earlier latencies.

Note that although Widmann et al. (in press) generally concur with our recommendation to 

use high-pass filter settings ≤ 0.1 Hz, they also mention that higher filter settings can 

potentially be used in lieu of baseline correction, and that in some cases, attenuation of 

effect amplitudes from high-pass filters can be a reasonable compromise in situations where 

filtering can provide other methodological benefits (e.g., improved source localization). The 

purpose of baseline correction is to remove slow voltage offsets that might otherwise add 

uncontrolled variance to the data and reduce statistical power. Although high-pass filters 

will certainly remove these nonsystematic sources of variance, the present results 

demonstrate that these filters produce systematic distortions of the data that can easily lead 

to statistically significant but bogus conclusions. A major problem with baseline correction 

is that any systematic differences across conditions in the prestimulus voltage can lead to 

bogus effects in the poststimulus period after baseline correction is performed (see Luck, 

2014). However, high-pass filtering will not actually eliminate these poststimulus effects. 

Instead, high-pass filtering will take the prestimulus differences and spread an inverted 

version of them into the poststimulus period (just as they inverted and spread the N400 and 

P600 effects in the present study). Thus, the best solution is typically to use well-controlled 

experimental designs to prevent systematic differences in prestimulus voltage and then to 

use the prestimulus voltage for baseline correction.

Having shown that appropriate use of high-pass filtering can improve statistical power while 

not introducing spurious artifactual effects, we are now in a position to provide practical 

advice regarding the use of high-pass filters in studies of language and other cognitive 

domains. First, mild attenuation of slow frequencies can improve statistical power to detect 

true effects, while providing little or no distortion to these effects. Our Monte Carlo 

simulations showed that high-pass filter settings between 0.01 and 0.1 Hz were optimal for 

statistical power in detecting true effects while not introducing distortions, with the 0.1 Hz 

filter providing the best statistical power for the longest latency ERP effect (the P600). 

Raising the high-pass cutoff above 0.1 Hz not only decreased statistical power for detecting 

true effects, but also increased the likelihood of creating artifactual effects, even when the 

filter was applied to the continuous EEG.

However, note that there are some cases when slow potentials are not necessarily artifactual, 

where even modest high-pass filtering might obscure these potentially meaningful signals. 

Such slow potentials that develop over several seconds include the contingent negative 

variation (Brunia, Van Boxtel, & Böcker, 2012; Walter, Cooper, Aldridge, McCallum, & 
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Winter, 1964) and the contralateral delay activity (Drew & Vogel, 2008), among others. In 

the domain of language comprehension, some studies have shown slow potentials 

developing over several words in a sentence can index meaningful cognitive activity and co-

vary with experimental manipulations (King & Kutas, 1995; Kutas & King, 1996; Phillips, 

Kazanina, & Abada, 2005; Van Petten & Kutas, 1991). For any of these slow potentials, 

high-pass filtering could remove this important signal from the data. Additionally, in some 

cases this slow drift can co-mingle with experimental effects of interest, making it difficult 

to know if changes in component amplitude are due to the experimental manipulation or the 

slow drift. In such cases high-pass comparing filtered and unfiltered waveforms may help 

disentangle this separate sources of activity in the EEG(see e.g., Kutas & King, 1996; Van 

Petten & Kutas, 1991, for examples). However, given that we have shown here that extreme 

filters can introduce meaningful temporal distortions and spurious peaks in ERP waveforms, 

one must be cautious in the interpretation of the resulting filtered waveforms. In particular, 

researchers should empirically demonstrate that any effects detected after the filtering 

procedure were non-artifactual. Moreover, if slow potentials are present in the data, 

researchers should try to identify why they exist, rather than reflexively treating them as 

noise and removing them with filters. That is, researchers can use the slow potentials as a 

source of information about the underlying cognitive processes (i.e., treat them as signal).

Second, high-pass filters should be applied to continuous EEG data, not epoched EEG or 

averaged ERPs. Typical high-pass filters involve computations based on several seconds' 

worth of data, and edge artifacts can occur when the time series is not sufficiently long. 

When the continuous EEG is used, the time series contains a large buffer both before and 

after a given event, providing a sufficient period of time for the filter to operate properly. 

These buffers are missing from typical epoched EEG and averaged ERPs. For example, in 

the present data, high-pass filtering of the averaged ERPs introduced artifacts of a similar 

nature to extreme high-pass filter settings when compared to the same filter applied to 

continuous EEG (Figure 7), though these edge artifacts may manifest themselves differently 

in other datasets.

In conclusion, the present results make it clear that filtering is not a harmless procedure that 

can be applied without concern to the choice of parameters. With the wrong parameters, a 

true effect may not be significant, and a bogus but statistically significant effect may be 

introduced, leading to conclusions that are completely false. However, by following some 

simple guidelines, filtering can improve statistical power without producing meaningful 

distortion of the data, leading to valid conclusions and the ability to compare findings across 

studies. Thus, the use of appropriate high-pass filters is critical to the contribution that ERP 

research can make to advancing scientific inquiry into cognition.
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Figure 1. 
Effects of filtering on a simulated P600-like ERP component. The simulated component is a 

single-cycle cosine wave with an amplitude of 5μV, onset of 500 ms poststimulus, and 

duration of 800 ms. The simulated component was embedded in 20 seconds of zero values 

to avoid filtering edge effects. Panels A and B show distortions caused by 2 Hz low-pass (A) 

and high-pass (B) filters. Panels C and D show no visible distortion to the original waveform 

with 30 Hz low-pass (C) and 0.01 Hz high-pass (D) filters. Filter frequencies correspond to 

the half-amplitude (-6 dB) cut-off (12 dB/octave roll-off).
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Figure 2. 
Effects of different high-pass filter settings (24 dB/octave roll-off) on the simulated P600 

component.
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Figure 3. 
Effects of high-pass filter settings on experimental data for participants' brain responses to 

well-formed (solid line) and ill-formed (dashed line) verbs in the syntactic (left column) and 

semantic (right column) violation conditions. Waveforms reflect the average of activity over 

centro-parietal electrode sites (C3, Cz, C4, CP1, CP2, P3, Pz, P4). Onset of the verb is 

indicated by the vertical bar; 900 ms of activity is depicted. Positive voltage is plotted up.
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Figure 4. 
Difference waves from the syntactic (upper plot) and semantic (lower plot) conditions 

depicting the impact of different high-pass filter settings on experimental effects. 

Waveforms reflect the average of activity over centro-parietal electrode sites (C3, Cz, C4, 

CP1, CP2, P3, Pz, P4). Onset of the verb is indicated by the vertical bar; 900 ms of activity 

is depicted. Positive voltage is plotted up.
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Figure 5. 
Impact of high-pass filtering for only those participants showing predominantly P600 effects 

in the syntactic condition (n = 16). Panel A depicts waveforms with no high-pass filter (DC, 

upper waveform) and a 0.5 Hz high-pass filter (lower waveform). Panel B shows effect 

magnitudes (mean amplitude in the ungrammatical minus grammatical condition) for the 

N400 time window (300-500 ms). Error bars show 95% confidence intervals. ERPs showed 

a significant positive effect with no high-pass filter (p< .05) and a significant negative effect 

with a 0.5 Hz high-pass filter (p< .05) in the 300-500 ms time window.
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Figure 6. 
Topographic distributions of experimental effects for mean amplitude in 100 ms bins for the 

well-formed minus ill-formed words for syntactic (A) and semantic (B) conditions for three 

filter settings (0.1 Hz, 0.5 Hz, and 1 Hz).
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Figure 7. 
Differential effect of applying a 0.1 Hz high-pass filter to the continuous EEG or averaged 

ERPs. Panel A depicts grand averaged ERPs for the well-formed and anomalous verbs in the 

syntactic condition. The upper waveform shows the 0.1 Hz filter applied to continuous EEG; 

the lower waveform shows the 0.1 Hz filter applied to the averaged ERPs. Panel B shows 

difference waves comparing effects of applying filters to the continuous EEG versus 

averaged ERPs.
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Figure 8. 
Probability of detecting significant effects in the syntactic condition as a function of sample 

size and filter setting, as revealed by Monte Carlo simulations across 10,000 simulated 

experiments between five and 20 participants. The upper panel depicts power to detect a 

significant positivity in the 500-800 ms time window (a P600 effect); the lower panel 

depicts power to detect a significant negativity in the 300-500 ms time window (an 

artifactual N400 effect). Smooth lines are fit by local regression (LOESS).
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Figure 9. 
Probability of detecting significant effects in the semantic condition as a function of sample 

size and filter setting, as revealed by Monte Carlo simulations. The upper panel depicts 

power to detect a significant negativity in the 300-500 ms time window (an N400 effect); the 

lower panel depicts power to detect a significant negativity in the 150-300 ms time window 

(an artifactual P2 effect). Smooth lines are fit by LOESS.
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