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Abstract

The development of in vitro molecular biomarkers to accurately predict toxicological effects has 

become a priority to advance testing strategies for human health risk assessment. The application 

of in vitro transcriptomic biomarkers promises increased throughput as well as a reduction in 

animal use. However, the existing protocols for predictive transcriptional signatures do not 

establish appropriate guidelines for dose selection or account for the fact that toxic agents may 

have pleiotropic effects. Therefore, comparison of transcriptome profiles across agents and studies 

has been difficult. Here we present a dataset of transcriptional profiles for TK6 cells exposed to a 

battery of well-characterized genotoxic and non-genotoxic chemicals. The experimental 

conditions applied a new dose optimization protocol that was based on evaluating expression 

changes in several well-characterized stress-response genes using quantitative real-time PCR in 

preliminary dose-finding studies. The subsequent microarray-based transcriptomic analyses at the 

optimized dose revealed responses to the test chemicals that were typically complex, often 

exhibiting substantial overlap in the transcriptional responses between a variety of the agents 

making analysis challenging. Using the nearest shrunken centroids method we identified a panel 

of 65 genes that could accurately classify toxicants as genotoxic or non-genotoxic. To validate the 

65-gene panel as a genomic biomarker of genotoxicity, the gene expression profiles of an 
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additional three well-characterized model agents were analyzed and a case study demonstrating 

the practical application of this genomic biomarker-based approach in risk assessment was 

performed to demonstrate its utility in genotoxicity risk assessment.
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INTRODUCTION

There is increasing interest in using omics technologies to guide the development of 

biomarker panels that can indicate whether a compound will elicit a specific toxic response, 

such as genotoxicity [Newton et al., 2004; Li et al., 2007; Guyton et al., 2009; Wilson et al., 

2013; Cui and Paules 2010; Hartung and McBride 2011; Goodsaid et al., 2010]. DNA 

microarray technologies can be used to measure transcriptomic perturbations mediated by a 

particular agent, followed by bioinformatics analyses to identify subsets of genes that are 

characteristic of the induced response caused by the agent. A variety of adverse stimuli, both 

genotoxic and non-genotoxic in nature, can trigger complex transcriptional responses (i.e., 

stress response pathways, Fig. S1). Transcriptomic profiles are attractive as biomarkers 

because gene expression technologies are mature and transcript annotation is well defined as 

a result of the human genome project. Furthermore, there is considerable information on 

regulatory events controlling mRNA expression, such that major efforts have been initiated 

to elucidate pathways of toxicity (PoT) [Hartung and McBride 2011]. Transcriptome-based 

approaches have been successful in research applications targeted towards classifying a 

variety of biologic and pathologic states. After measuring the toxicant-induced 

transcriptomic responses, bioinformatics approaches are used to identify a subset of features 

that may be used to classify the potential for toxicity of unknown compounds.

Gene-based biomarker panels have been explored for classifying compounds according to 

whether they will elicit a specific toxic response. Typically, the biomarker panels consisting 

of small gene sets are identified via statistical algorithms based on the ability of the panel to 

discriminate between treated and untreated samples. This approach rarely incorporates 

biological knowledge during the gene selection process. Nevertheless, toxic agents often 

display pleiotropic (Fig. S1) effects, inducing multiple stress response pathways [Wilson et 

al., 2013; Li et al., 2007]. For example, methylmethane sulfonate (MMS) damages DNA and 

results in the induction of a DNA damage response, in parallel with inducing the unfolded 

protein response and other endoplasmic reticulum (ER) associated signaling events [Hyduke 

et al., 2011]. In addition, gene panels that also provide mechanistic insights (i.e., 

mechanism-based genomic biomarkers) should be better suited to deciphering the complex 

array of induced stress response pathways, and help delineate those associated with 

genotoxicity.

Pathway analysis tools are used in conjunction with biomarker panels to develop hypotheses 

for the underlying regulatory events and response pathways perturbed by a specific 

chemical. Unfortunately, these methods often generate multiple hypotheses that are not 
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easily testable given the promiscuity of genes. Integration of multiple omics types, including 

delineation of coordinately regulated transcriptomic responses, may aid in classifying the 

particular stress response pathways that are invoked following chemical exposure, providing 

insight into underlying mechanisms of action and PoT [Magkoufopoulou et al., 2011; 

Jennen et al., 2011; Wilson et al., 2013; Hartung and McBride 2011].

Previously, we and others have investigated transcriptome perturbations to differentiate 

among toxicant modes of action and classify the toxicity potential of new compounds 

[Amundson et al., 2005; van Delft et al., 2005; Lamb et al., 2006]. This has also been the 

subject of many recent reviews [Li et al., 2007; Cui and Paules 2010; Hartung and McBride 

2011]. However, in these examples the dosing of cells with tested chemicals was either 

selected in an ad hoc fashion or was based on the results of cytotoxicity tests. For example, 

in Amundson et al. (2005), a partial-genome survey using a 7,668 element cDNA array in 

TK6 cells and its p53-null derivative NH32 was performed to assess 13 known stress agents. 

In this study, as well as many others, no systematic effort was made to optimize dose 

selection. Without dose optimization, there is a risk that the transcriptomic response will be 

either negligible due to under-dosing or obscured by apoptotic and other general responses 

due to overdosing. In addition, alkylating agents and other protein-damaging agents can 

disrupt the transcriptional machinery and actually attenuate the transcriptional response at 

very high doses [Fornace et al., 1989b; Li et al., 2007]. Furthermore, cellular responses to 

stress detected via mRNA expression changes are also time dependent. The response 

includes many immediate-early genes and other genes whose transcripts accumulate within a 

few hours after exposure to genotoxic [Fornace et al., 1989b; Amundson et al., 2005; 

Ellinger-Ziegelbauer et al., 2009; Hyduke et al., 2011] and non-genotoxic agents (e.g., heat 

shock) [Fornace et al., 1989a]. The early induced stress response can lead to a cascade of 

events that cause later cytotoxicity and associated pathway changes [Amundson et al., 2005] 

that show a similar profile across variety of toxic mechanisms [Ellinger-Ziegelbauer et al., 

2009]. In fact, the lack of the appropriate dose-setting metrics and time of exposure cause 

major problems with interpretation of toxicogenomic studies. Thus, it is critical to establish 

a standardized dose-setting paradigm in order to ensure that comparisons can be made across 

chemicals and studies.

In the present study we utilized an in vitro transcriptomics-based approach to develop 

biomarker gene sets applicable to the assessment of genotoxicity. Our approach measured 

transcriptomic perturbations in the human lymphoblastoid-derived TK6 cell line because it 

is p53 proficient, has been well characterized, has been extensively used in toxicologic 

studies, and provided robust responsiveness in previous stress signaling studies [Amundson 

et al., 2005; Akerman et al., 2004; Islaih et al., 2004]. We developed our model using a 

diverse set of 28 model agents representing DNA-reactive agents that are known to be 

directly genotoxic, indirect-acting agents causing DNA damage either by inhibition of 

topoisomerase action or blockage of DNA synthesis (categorized as ‘genotoxic’), and non 

DNA-reactive agents that are negative in genotoxicity tests (categorized as ‘non-genotoxic’). 

We note that aneugens that operate via interaction with spindle were classified as non-

genotoxic for these purposes.
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Complex cellular stress responses following treatment with chemicals are time- and dose-

dependent. However, toxicogenomic studies evaluating both time course and dose responses 

across a large set of compounds are not economically feasible. Therefore, the experimental 

design necessitated selecting a single dose and time point post-exposure for sample 

collection. Since early gene expression changes have been shown to be indicative of initial 

damage and not to be influenced by subsequent molecular processes such as apoptosis 

[Ellinger-Ziegelbauer et al., 2009], a four hour post-exposure time point was selected for the 

development of the gene set in the present study [Amundson et al., 2005; Hyduke et al., 

2011]. To enable comparison of transcriptome profiles across the whole set of agents at a 

single dose per chemical, and to establish a strategy for setting doses for new test 

compounds, we developed a qRT-PCR molecular phenotyping protocol based on expression 

changes in three known stress response genes in the dose setting experiments; these genes 

included ATF3, GADD45A and CDKN1A (also referred to as p21, Cip1, or Waf1). Previous 

studies have demonstrated that these genes exhibit strong responses to a wide variety of 

agents [Amundson et al., 2005; Fan et al., 2002; Hyduke et al., 2011]. Both GADD45A and 

CDKN1A are known to be p53-regulated, and show robust mRNA induction by genotoxic 

agents, while we have found that ATF3 is responsive to a wide variety of stress agents in 

TK6 cells [Amundson et al., 2005].

Using the above strategy, a database of gene expression profiles was derived from a single 

concentration and time point for each of the chemicals. Within this database there were 

multiple overlapping responses and a clustering approach was used to identify subsets of 

genes showing coordinated responses. Many of these subsets were defined by agents sharing 

known mechanisms of action. This database was also employed to construct an mRNA gene 

signature that discriminates between genotoxic and non-genotoxic agents. To evaluate the 

utility of the gene expression signature as a genomic biomarker of genotoxicity, we tested 

the signature on three model agents: 3-nitropropionic acid (3-NP), isopropyl 

methanesulfonate (iPMS), and tri-methylxanthine (caffeine). Finally, additional validation 

exercises were undertaken, and are presented in a companion paper [Buick et al., this issue], 

to demonstrate that the gene set is also able to accurately classify chemicals as genotoxic or 

non-genotoxic in TK6 cells in the presence of a metabolic activation system (rat liver S9).

MATERIAL AND METHODS

Cell culture and treatments

TK6 cells were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum. 

The cell culture density was maintained at 1–10×105 cells/ml, and was tested periodically 

for mycoplasma contamination; all mycoplasma results were negative. Exponentially 

growing cells were treated at a density of 4–5×105 cells/ml. All chemicals were purchased 

from Sigma-Aldrich, except cadmium chloride and potassium chromate, which were 

purchased from J.T. Baker. The solvents used to prepare the stock solutions are listed in 

Table I. A stock solution of each chemical was added to exponentially growing cells and 

incubated at 37°C for 4 hr. An equal volume of the corresponding solvent for each chemical 

was used to treat cells simultaneously, and labeled as the vehicle control for each 

experiment. Dose response studies were performed using a range of concentrations for all 
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testing agents except γ-ray exposure, heat shock and ethanol treatments (Table I). The 

concentration of each chemical that was used to treat cells for microarray analysis was 

determined based on the dose-response study and is listed in Table I. For γ-ray exposure, 

cells were irradiated at 0.87 Gy/min to a dose of 4 Gy using a γ-ray irradiator. After the 

irradiation, cells were incubated at 37°C, in 5% CO2 for 4 hr. Heat-shock treatment was 

performed by submerging 35 ml cultures in a T175 flask in a 47 °C circulating water bath 

with gentle agitation for 20 min, while the control was held in the same condition but at 37 

°C; this severe heat shock treatment has previously been shown to trigger strong responses 

at the mRNA level [Fornace et al., 1989a]. After 20 min of heat shock, cells were 

maintained in a 37°C, 5% CO2 incubator for 4 hr. At the end of each of the 4 h treatments, 

cells were pelleted by centrifugation and subjected to RNA extraction.

Cell viability assays

The trypan blue exclusion [Amundson et al., 2005] and MTT assays (Cayman Chemical, 

Ann Arbor, MI) were performed after 4 hr and 24 hr treatments respectively to measure cell 

viability.

RNA isolation and quantitative RT-PCR

RNA was extracted using the Trizol protocol (Invitrogen) followed by RNA cleanup with an 

RNeasy column (Qiagen). Purified RNA was subjected to spectrometry and Bioanalyzer 

(Agilent) analysis to determine the quantity and quality, respectively. qRT-PCR was 

performed with an iCycler (Bio-Rad) to measure the expression of individual genes 

including GADD45A, CDKN1A, and ATF3. The assay was done in triplicate. Expression 

levels of genes were normalized with GAPDH for antimitotic agents, histone deacetylase 

(HDAC) inhibitors, and heavy metals, or 18sRNA for the other agents. Both GAPDH and 

18sRNA are standard internal control genes and the results showed that they can be 

interchangeable (Fig. S2). The relative mRNA induction fold change was calculated. The 

expression alteration with fold change more than 1.7 and p-value less than 0.05 was 

considered significant. iScript one-step RT-PCR kit for probes (Bio-Rad, Hercules, CA) was 

used and primers and probe mix of Taqman gene expression assay were purchased from 

ABI (Foster city, CA). Dose-response studies were performed for most agents to determine 

the dose for the microarray experiments.

Gene expression microarrays

Control and exposed RNA for each of the 28 model agents were labeled with SuperScript 

indirect cDNA labeling system (Invitrogen), which does not involve an amplification step, 

and hybridized on Agilent human whole genome 44K oligo microarrays that contain probes 

for more than 41,000 unique human genes and transcripts. Hybridization and washing was 

performed according to the manufacturer’s protocol. Arrays were scanned with an Agilent 

DNA microarray scanner. Feature Extraction (Version 9.1; Agilent) was used to filter, 

normalize, and calculate the signal intensity and ratios. Processed data were loaded onto the 

Rosetta Resolver for data warehousing. All the microarray data were deposited in NCBI’s 

Gene Expression Omnibus and are accessible through GEO Series accession number 

GSE58431 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58431)
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Bioinformatic Analyses

Gene expression data were exported from Rosetta Resolver based on Entrez Gene 

Identifiers. To identify an mRNA signature indicative of whether an agent is genotoxic or 

not (either directly or indirectly), we applied the nearest shrunken centroids method 

(Tibshirani et al., 2002) to our transcriptome data, as implemented in the pamr package in 

the R statistical environment (http://cran.r-project.org). Briefly, the standardized centroid 

computed for each class within a training set, where the standardized centroid is the mean 

expression level for each gene in a class divided by its within-class standard deviation. The 

standard centroid for each class is shrunken toward the overall centroid to produce the 

nearest shrunken centroid. The method employs a shrinkage parameter that is used to control 

the number of features used to construct the classifier.

To identify an appropriate shrinkage parameter, we employed 10-fold cross validation 

[Hastie et al., 2001]. The set of samples was divided into 10 approximately equal-sized parts 

that were each roughly balanced for the two classes. We then assessed classification 

accuracy for each part using the other 9 parts to construct a classifier. With a shrinkage 

threshold of 2.2, we were able to identify a 65-gene panel, hereafter referred to as 

TGx-28.65 (28 refers to the use of 28 chemicals in the training set), with 100% accuracy 

based on cross-validation. With smaller gene panels, methotrexate was misclassified as non-

genotoxic.

Stable gene subclusters were identified using the coupled two-way clustering (CTWC) 

biclustering approach [Getz et al., 2000] with the superparamagnetic clustering (SPC) 

algorithm [Domany 1999]. Briefly, the expression levels for the set of 1628 genes that were 

significantly (P < 0.01) perturbed (1.7-fold or more) by at least one agent were subjected to 

CTWC/SPC. The default parameters for the CTWC software (http://ctwc.weizmann.ac.il/) 

were used for a gene depth of 5 and sample depth of 1.

Pathway analysis

Gene signatures indicative of classic genotoxicity, heavy metals, heat shock, and non-

genotoxicity were identified using two-dimensional clustering. Unique gene identifiers and 

the associated log10 expression ratios were uploaded to Ingenuity Pathway Analysis version 

5.5 to identify gene networks that were significantly over-represented in the different data 

sets.

RESULTS

Description of toxicants used in the study

We examined transcriptional changes in TK6 cells following exposure to a diverse set of 

model agents representing DNA alkylating agents (cisplatin, MMS), DNA strand breaking 

agents (γ-rays, bleomycin, hydrogen peroxide), topoisomerase inhibitors (camptothecin, 

etoposide), nucleotide antimetabolites [cytosine arabinoside (AraC), fluorouracil (5-FU), 

hydroxyurea, and methotrexate], ER stress agents (tunicamysin, thapsigargin), energy 

metabolism inhibitors [2-deoxy-D-glucose (2-DG), antimycin A], HDAC inhibitors 

[trichostatin A (TSA), apicidin, HC toxin, oxamflatin], microtubule inhibitors (colchicine, 
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docetaxel, paclitaxel, vinblastin), and heavy metals (cadmium chloride, potassium chromate 

(VI), sodium arsenite) (Table I). Heat shock and ethanol were also included as additional 

representatives of non-genotoxic stresses. The mechanisms of action for these agents are 

well-established and were derived from the literature (Table I). Genotoxic agents were 

considered to be those causing direct DNA damage or those leading to DNA perturbations 

indirectly. Direct acting genotoxic agents in this group include alkylating agents and other 

DNA strand breaking agents. The indirectly-acting agents are topoisomerase I and II 

inhibitors, and antimetabolites interfering with DNA synthesis: some of the latter agents also 

affect RNA synthesis. These indirect-acting genotoxicants typically induce strand breaks 

indirectly by blocking resealing of transient topoisomerase strand breaks or by accumulation 

of gaps and single strand DNA during DNA synthesis. The heavy metal group has diverse 

mechanisms of action, including DNA damage (e.g. DNA-protein crosslinks) for chromate 

[Fornace et al., 1981]. Finally, microtubule inhibitors were considered non-genotoxic 

because they cause aneugenicity through spindle interference, rather than DNA damage and 

mutations.

Dose and treatment time parameters

To identify an appropriate dose for each agent, we assessed mRNA levels of three well-

characterized stress response genes, ATF3, GADD45A, and CDKN1A, which serve as 

indicators for an effective transcriptional response after toxin exposure.. While we recognize 

that RT-PCR can measure significant increases that are less than 2-fold, we arbitrarily used a 

threshold of 2-fold to indicate robust induction. As a representative example of our results, 

the qRT-PCR results for bleomycin showed an expected dose dependent increase in ATF3, 

GADD45A, and CDKN1A transcript levels (Fig. 1A). The full molecular phenotyping results 

for the agents are summarized in Fig. 1B. In general, treatment with genotoxic agents led to 

the induction of all three genes, whereas the non-genotoxic treatments primarily induced 

ATF3 and GADD45A (Fig. 1B). The doses that showed the highest induction of one or more 

of these genes for each agent were selected for full transcriptomic analysis, after considering 

measures of cytotoxicity. The doses selected showed no appreciable cytotoxicity at 4 h (Fig. 

S3) and only moderate effects on viability at 24 h (Fig. S3). When more than one dose met 

the criteria and behaved similarly, the lower concentration was selected. For example, all 

doses of bleomycin showed increases in relative mRNA levels for all three genes (several 

fold increases or more), but the magnitude of GADD45A induction decreased slightly at 

doses greater than 10 μg/ml. Since all doses showed strong responses for the indicator genes, 

the 10 μg/ml dose was chosen for microarray analysis. All model agents, except for 

paclitaxel, showed at least a 2-fold increase in one or more of the three-gene battery. In the 

case of paclitaxel, induction was less than1.5-fold so a biologically effective dose from 

previous in vitro studies using cultured cells was selected [Fallo et al., 1996].

Global transcriptional analysis

After selecting doses that elicited robust expression of genes in our qRT-PCR battery, we 

measured global transcriptomic response using Agilent human whole genome 

oligonucleotide arrays. To reduce the effects associated with different labeling efficiencies, 

we used a two-channel dye-swapping configuration [Patterson et al., 2006] where the 

vehicle control was used as a reference sample. Visualization of the expression profiles 
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highlighted the pleiotropic nature of these agents (i.e., gene expression profiles consists of 

more than one defined gene cluster (Fig. 2)). In the case of genotoxic agents, hierarchical 

clustering grouped all 13 toxicants together on the right side of this heatmap. Distinct 

subsets of genes showed coordinate expression, such as those in the region designated by 

numerous red sidebars. The non-genotoxic agents represent diverse toxicants but those with 

similar mechanisms of action showed other subsets of responsive genes. For example, the 

HDAC inhibitors (apicidin, oxamflatin, HC toxin, and TSA) are known to have a similar 

mechanism of action and elicited highly similar transcriptome perturbations (error-weighted 

Pearson correlation coefficient range 0.86–0.92) with prominent groupings of induced or 

repressed genes on the left side of the heatmap. The transcriptome profiles of the more 

general category of non-genotoxic agents were not as strongly correlated (error-weighted 

Pearson correlation coefficient range 0.01–0.85), but other clusters can be appreciated by 

visual inspection. For example, the ER stress agents thapsigargin and tunicamycin grouped 

together by hierarchical clustering. Interestingly, a subset of induced genes (designated by 

the arrow in Fig. 2) for these ER stress agents were also strongly induced by a few other 

agents including MMS, which directly damages proteins. Many toxicants can trigger 

multiple stress response pathways (Fig. S1), and one of the most striking examples is the 

case of chromate, which is known to damage DNA upon reduction to chromic anion within 

the cell [Salnikow and Zhitkovich 2008; Whiting et al., 1979; Fornace et al., 1981]. As 

expected, chromate induced a set of genes in common with the other genotoxic agents (Fig. 

2, red bars). However, chromate also strongly induced expression changes in a set of genes 

that was only strongly induced by cadmium and heat shock (which did not elicit genotoxic 

stresses), while these genes were strongly repressed by some of the other genotoxic stress 

agents (bleomycin, cisplatin, MMS, and arsenite) (Fig. 2, blue bars).

Delineation of gene subclusters using a biclustering approach

Although two-dimensional clustering can provide biological insight by organizing large data 

sets for visual inspection, it does not indicate the extent to which genes participate in 

multiple pathways (Fig. S1). To account for the fact that the response to toxicity can involve 

overlapping subsets of genes, a variety of biclustering methods have been developed. One of 

the most promising methods is coupled two-way clustering (CTWC) using 

superparamagnetic clustering (SPC) [Getz et al., 2000; Domany 1999]. Not only does this 

method account for gene products mediating multiple stress response pathways, it also 

provides a metric for assessing the statistical significance of each cluster of genes.

When we applied the CTWC/SPC biclustering algorithm to our transcriptomic data, we 

identified 67 gene groups with stability scores ≥ 40 (Fig. S4); these groups will subsequently 

be referred to as subclusters to avoid confusion with results from hierarchical clustering. 

These gene subclusters were each comprised of 20 to 193 genes, with over 50% of the genes 

participating in multiple clusters and a single gene participating in as many as eight clusters. 

This method revealed a subcluster of genes induced by chromate and the genotoxic agents 

that was further analyzed using a hierarchical cluster approach (Fig. 3A), as well as a set of 

genes induced by chromate, cadmium, and heat shock (Fig. 3B). Ingenuity pathway analysis 

indicated that the chromate/genotoxic agent subcluster was enriched for DNA-damage 

responsive genes, some of which are known to be regulated by p53, such as AEN, C12orf5, 
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EI24, and PHLDA3 (Fig. S5A); whereas, the chromate/cadmium/heat shock cluster included 

genes involved in amino acid metabolism, amino acid transportation, and the unfolded 

protein response (Fig. S5B). Interestingly, the latter subcluster does not include classic heat 

shock protein genes, such as HSPA1A.

Development of a genomic biomarker for genotoxicity

To identify an mRNA signature indicative of genotoxicity, we applied the nearest shrunken 

centroids method [Tibshirani et al., 2002] to our transcriptome data. We identified a panel of 

65 transcripts whose expression resulted in 100% accuracy as assessed by 10-fold cross-

validation (see Material and Methods). This gene panel, designated TGx-28.65, displayed a 

clear-cut separation between genotoxic and non-genotoxic agents (Fig. 4A). A number of 

these genes, such as CDKN1A, GADD45A, and TRIM22, are regulated by p53 [Riley et al., 

2008]. For a complete list of the 65 genes in the TGx-28.65 biomarker refer to Table II.

Validation and a case study on utility of the TGx28.65 biomarker in human health risk 
assessment

To assess the practical utility of this genomic biomarker-based approach in the assessment 

of genotoxic hazard, we evaluated the gene expression profiles of three well-characterized 

agents: 3-nitropropionic acid (3-NP), isopropyl methanesulfonate (iPMS), and tri-

methylxanthine (caffeine). 3-NP is an irreversible inhibitor of succinate dehydrogenase (also 

known as complex II of the mitochondrial respiratory chain) that participates in the TCA 

cycle and electron transport chain. It forms a covalent adduct with Arg297 in the active site 

of succinate dehydrogenase resulting in severe energy (ATP) impairment; therefore, 3-NP is 

considered to be a non-genotoxic agent based on our definition of genotoxicity. iPMS 

belongs to a class of DNA alkylating chemicals that are positive in standard in vitro gene 

mutation and chromosome aberration assays and thus should be readily detectable with our 

genomic biomarker approach as genotoxic. In contrast, the genotoxicity profile of caffeine is 

typical of compounds that present challenges for assessment of potential genotoxic hazard. 

Specifically, caffeine gives negative results in bacterial mutation assays, positive findings in 

in vitro chromosome aberration assays, and is not genotoxic in vivo (discussed in [Goodsaid 

et al., 2010]).

In order to find the appropriate doses for transcriptomic profiling of these agents, we first 

assessed mRNA levels of ATF3, CDKN1A, and GADD45A in cells treated in increasing 

concentrations of the agents. The concentrations that showed the most robust induction of 

one or more of these genes were selected and it was ensured that these were not overtly 

cytotoxic (as described above). As shown in Fig. S7, the optimal dose for transcriptomic 

profiling was 3 mM for 3-NP, 250 μg/ml for iPMS and 2 mM for caffeine, respectively. 

Comparison of the gene expression profiles of these test agents with the TGx-28.65 gene 

panel classified 3-NP as non-genotoxic and iPMS as genotoxic. Analysis of the gene 

expression profile of caffeine resulted in it being classified as a non-genotoxic agent using 

the TGx28.65 gene classifier (Fig. 4B).
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DISCUSSION

In this study, we developed a robust transcriptomic signature for the assessment of 

genotoxicity using a refined in vitro approach. Importantly, we established a protocol for 

optimal dose selection that can be used to ensure that cells are not over- or under-dosed and 

enables more effective comparison across toxicants. We identified a gene signature, 

designated TGx-28.65, generated using 28 model agents and comprised of 65 transcripts 

whose expression resulted in 100% accuracy in classifying genotoxic and non-genotoxic 

agents as assessed by 10-fold cross-validation. This signature was derived from both DNA 

reactive- and DNA non-reactive genotoxic agents (Table I) and clearly distinguished the 13 

genotoxic agents from the 15 non-genotoxic agents with widely varying mechanisms of 

action.

To evaluate the practical utility of this 65-gene panel, we tested three additional agents with 

known mechanisms of action, including caffeine which is known to be positive in the in 

vitro chromosome aberration assay [Weinstein et al., 1975] but is negative in in vivo 

genotoxicity tests [Goodsaid et al., 2010]. iPMS was chosen as a prototypical representative 

of DNA alkylating agents that is positive for all assays in the standard genotoxicity testing 

battery in vitro and in vivo [Segal et al., 1986]. While 3-NP is considered non-genotoxic 

[Oshiro et al., 1991], a contaminant in previous studies may have led to a positive bacterial 

mutation data reported in the earlier literature [Zeiger et al., 1988; Hansen 1984]. Therefore, 

we carried out a Salmonella mutation assay to test the genotoxicity of this agent and the 

results were negative (data not shown). As we expected, both agents with well-characterized 

mechanisms were correctly classified, supporting that this 65-gene panel can be used to 

distinguish genotoxic and non-genotoxic agents (Fig. 4B). Caffeine is well-known to show 

positive findings in the in vitro chromosome aberration assay [Weinstein et al., 1975]; 

however, there was no genotoxic response in cells treated with caffeine suggesting that the 

clastogenicity observed in the in vitro mammalian chromosome damage assay is not likely 

to be caused by DNA reactive mechanisms and is probably the consequence of general 

toxicity or other molecular processes. Finally, we note that the TGx28.65 biomarker also 

classifies genotoxicity correctly for chemicals requiring metabolic activation 

(benzo[a]pyrene, aflatoxin B1, dexamethasone and phenobarbital) in TK6 cells co-exposed 

to the aforementioned chemicals and rat liver S9 in a companion paper (Buick et al., 

accompanying paper).

One important consideration is that our genotoxic classifier does not include some 

prominent aneugens in the antimitotic agent group. While the taxels and vinblastine are 

effective cancer chemotherapy agents, their properties are distinct from typical cytotoxic 

chemotherapy agents that damage DNA. For example, the cellular responses in the NCI60 

cell line panel substantially differed as exemplified by lack of correlation with p53 status 

with cytoxicity for antimitotic agents [Weinstein et al., 1997; O’Connor et al., 1997].

The strategy used here builds on our earlier report in TK6 cells and its p53-null derivative 

NH32 cells where seven genotoxic agents were compared to three non-genotoxic agents and 

three oxidizing agents. In this earlier study using a smaller custom cDNA array with 7.7k 

features [Amundson et al., 2005], some separation between agent classes was observed, but 
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the contribution by p53 was minimized by inclusion of the p53-null cell line and a robust 

classifier for genotoxicity was not further developed. When a 16-gene signature was defined 

to discriminate p53 status, only four genes overlapped with our current 65-gene classifier. 

This earlier limited study did not employ dose optimization or the current bioinformatics 

approach, but did assess early responses to stress at 4 h. As seen previously, there was also 

no appreciable cytotoxicity detected by trypan blue staining at 4 h (Fig. S3) and assessment 

of viability at 24 h showed only moderate effects on viability for most agents (Fig. S3) in the 

present study. A collaborative effort (Buick et al., accompanying manuscript) demonstrated 

the utility of our TGx-28.65 biomarker by accurately classifying benzo[a]pyrene and 

aflatoxin B1 as genotoxic and dexamethasone and phenobarbital as non-genotoxic in the 

presence of rat liver S9 at 4 h and 8 h in TK6 cells. These results support the use of early 

time points (up to 8 hours) in the presence of S9, but suggest that later time points (24 hours) 

may reveal false classification for non-genotoxic agents under conditions of high 

cytotoxicity. However, the companion paper also reveals that TGx-28.65 is 100% accurate 

in classifying genotoxicity in human liver HepaRG cells at much later time points.

Compared to previous studies [discussed in [Li et al., 2007; Cui and Paules 2010; Godderis 

et al., 2012]], our approach benefited by combining dose optimization, an informatics 

approach that takes into account overlapping signaling events (Fig. S1), duration of response 

time (4 h), and choice of cell line. As discussed previously [Li et al., 2007; Amundson et al., 

2005], many toxicants, including DNA-damaging agents, trigger transcriptional and post-

transcriptional responses resulting in high and frequently maximal mRNA accumulation 

within several hours These toxicants usually show a dose-dependence until very high 

concentrations at which point transcriptional machinery or cell integrity is compromised. 

The aim here is to generate clear responses and accurate stress-response signatures rather 

than assess cellular parameters such as lethality and cell cycle redistribution per se. Many 

studies have relied on toxicological parameters, such as micronucleus formation, 

mutagenesis, or long-term (> 24 h) cytotoxicity for dose determination, so subtle changes in 

gene expression can impact these parameters but give an unreliable signal for 

transcriptomics. Thus, a few marginal or sub-threshold responses can compromise classifier 

development, and even with very large surveys [Lamb et al., 2006], lead to some false 

negatives. Our qRT-PCR dose optimization approach was effective for both genotoxic and 

non-genotoxic agents using only three well-characterized stress genes, and, as shown in Fig. 

1B, the pattern of responses tended to differ for these two classes particularly with more 

robust CDKN1A induction for genotoxic agents. While GADD45A is a p53-regulated gene 

[Kastan et al., 1992], it can be induced by many stresses and was initially isolated in p53-

deficient rodent cells [Fornace et al., 1988]. GADD45A mRNA has been found to increase 

following exposure to many non-genotoxic agents, but elements of this gene’s promoter may 

show more specificity [Lynch et al., 2010]. Taken together, our dose optimization procedure 

provides a standard condition for every agent’s effect at the selected dose, and decreases the 

likelihood of false negatives.

Several mammalian cell lines are commonly used in toxicology screening assays, but TK6 

cells have characteristics that make them attractive for transcriptomic genotoxicity testing. 

For example, the commonly used mouse lymphoma and HepG2 lines are tumor-derived with 
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compromised tumor suppressor pathways while TK6 is a spontaneously transformed 

lymphoid line [discussed in [Amundson et al., 2005; Li et al., 2007]]. Moreover, the mouse 

lymphoma line [Storer et al., 1997] is p53-deficient and HepG2 cells exhibit less robust 

responses of stress genes (in particular those where p53 contributes to their regulation, data 

not shown). While TK6 cells have limited capacity for metabolic activation, the approach by 

Buick et al. clearly shows its broad utility for genotoxicity assessment in the presence of rat 

liver S9. Our approach can be applied in the future to screen for additional effective lines 

from other tissue types.

In order to associate cellular function related to particular gene clusters, sets of genes from 

some of the major clusters in Fig. 2 were subjected to Ingenuity Pathway Analysis. The 

pathways that were affected in the various agent clusters differed significantly, and suggest 

that pathway analysis can provide mechanistic insight into the action of the agents based on 

the cellular responses. The pathways of ‘p53 signaling’ and ‘cell cycle: G2/M DNA damage 

checkpoint regulation’ are highly overrepresented in our genotoxic signatures, with P-values 

of 1.6×10−7 and 7.9×10−4, respectively. The same pathways were also the most enriched in 

our TGx-28.65 classifier gene set (Table SII). It is possible that two or more categories 

affect the same function, but from a different aspect. For example, functional analysis 

revealed that both genotoxic agents and microtubule inhibitors affect genes involved in 

DNA replication, recombination, and repair. However in the genotoxic group, the processes 

involved in this function are DNA damage recognition and processing, while in the 

microtubule group the processes are involved in chromosomal structure and organization.

Transcriptome data have been used to classify pharmacologic agents with different 

mechanisms of action such as in Lamb et al. (2006), where a collection of drug-response 

transcriptome profiles was termed the Connectivity Map (CMAP). While no dose 

optimization was carried out, it was possible to use CMAP to identify compounds that may 

have similar effects on a set of genes selected using the gene set enrichment algorithm 

(GSEA) [Subramanian et al., 2005]. GSEA identifies genes that are strongly expressed, or 

repressed, across a set of transcriptome profiles. While GSEA will indicate whether a set of 

genes is strongly perturbed in a transcriptome database, it is not designed to account for 

genes participating in multiple gene sets. In this study we used a deconvolution method to 

address the challenge encountered with multiple mechanisms activated by one compound, 

by using a CTWC/SPC algorithm to define the stable subclusters. Biclustering approaches, 

such as CTWC/SPC [Getz et al., 2000], allow genes to participate in multiple subclusters in 

line with pleotropic activities. Pathway analysis of gene subclusters may serve to more 

effectively associate them with existing biological knowledge (Fig. S6).

Even though non-genotoxic agents represent a wide diversity of stresses and probably a 

myriad of PoT, our approach should have utility in the development of robust classifiers for 

distinct stress responses. For example, since HDAC inhibitors are known to trigger broad 

transcriptional responses [Lamb et al., 2006], they showed a pronounced signature in Fig. 2, 

as expected. Other signatures or subclusters can also be discerned visually in Fig. 2 or by 

CTWC/SPC, such as for ER stress agents or heat shock. Unanticipated subclusters were also 

delineated including a prominent one triggered by Cd, Cr, and a rather severe HS treatment 

[Fornace et al., 1989a], and probably represent a response to some perturbation of protein 
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structure and/or function (Fig. S5B). Since ethanol has major public health consequences, it 

was added to the panel of agents even though it typically is studied in longer exposure 

studies in hepatic cells, typically at 0.1% or less or in vivo. While TK6 cells lack many of 

metabolic pathways present in hepatic cells, alcohol did elicit an appreciable response and a 

clear non-genotoxic signature. An ER stress response signature is unsurprising considering 

the relatively high concentrations of alcohol, but pathway analysis in Table SIII also showed 

TNF-related signaling, which has also been described in vivo.

In summary, we developed a toxicogenomics approach for differentiation of genotoxic 

agents from other toxicants based on the analysis of cellular stress responses. Our approach 

demonstrates the importance of the qRT-PCR molecular dose-selection protocol that 

established the appropriate dose by monitoring the expression of several known stress 

response genes to exposure with tested agents in a dose setting experiment. The approach 

yielded a panel of 65 biologically relevant genes that differentiate whether a particular agent 

is genotoxic or non-genotoxic. Our method was further independently confirmed by Buick et 

al. (companion paper) in the presence of metabolic activation. While limited in scope, our 

approach should have the ability to classify such toxicants considering the diversity of non-

genotoxic agents assessed in this study, especially as additional agents are assessed in the 

future.

We propose that our TGx-28.65 genomic biomarker is useful for risk assessment of 

genotoxic effects, in particular to provide mechanistic insight into positive findings in the in 

vitro chromosome aberration assays for compounds with otherwise clean genotoxicity 

profiles. Since the majority of such compounds are also negative in carcinogenicity tests, the 

risk assessment of these positive in vitro findings is a challenge to industry and regulatory 

agencies [Goodsaid et al 2010]. Considering that thirty percent of drug candidates with 

otherwise clean genotoxicity profiles in the Salmonella assay and in the in vivo 

micronucleus assay show positive test results in the in vitro chromosome aberration assays, 

the application of genomic biomarker-derived information would add significant value to the 

current genotoxicity testing. In our case study, caffeine as a prototypical agent with positive 

findings in the chromosomal aberration assay and absence of documented human cancer risk 

was evaluated by applying our toxicogenomics approach as shown schematically in Fig. 5. 

In this approach the absence of the genotoxic signature is considered as a lack of 

genotoxicity relevant to human health [Goodsaid et al., 2010]. Although additional studies 

are necessary, the genomic biomarker approach as demonstrated in the case of caffeine has 

the potential to complement and/or replace a number of assays currently used for developing 

a ‘weight of evidence’ assessment by offering essential mechanistic information that is 

difficult or impossible to obtain using current methods. Since our biomarker approach is also 

simple, inexpensive and rapid it could be easily integrated into the evaluation of lead 

compounds and chemical series in early research stages of drug development. Furthermore, 

broad incorporation of a genomic biomarker-based genotoxic risk assessment into the new 

product development process would significantly reduce animal testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Quantitative RT-PCR measurements for a panel of known stress response genes (ATF3, 

CDKN1A, and GADD45A) were used to guide stress agent dose selection. Doses were 

selected by measuring perturbations of this panel as a function of agent dose; fold change is 

relative to vehicle control cells done at the same time. The assay was done in triplicate 

cultures within one experiment. (A) The dose response profile for bleomycin illustrates 

increased expression of the stress response genes for 5, 10, 20, and 40 μg/ml with an 

observable reduction in GADD45A up-regulation at the two highest doses. (B) Stress gene 

panel expression profiles for the doses of chemical agents eliciting a robust response.
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Fig. 2. 
Heatmap of transcriptome profiling data illustrating co-expressed sets of genes associated 

with various toxicants, such as genotoxic agents (red side bars). Some agents also exhibit 

obvious pleiotropy; e.g., chromate induced expression of genes associated with genotoxic 

agents (red side bars) and genes associated with cadmium and heat shock (blue side bars). 

This heatmap contains 1628 genes that were significantly (P < 0.01; t-test) perturbed at least 

1.7-fold, relative to the control, by at least one stress agent. The genes in the heatmap were 

organized by hierarchical clustering with complete linkage based on their error-weighted 

Pearson distances. The genotoxic (red side bars) and cadmium and heat shock (blue side 

bars) were identified using coupled two-way clustering. The arrow highlights a cluster of 

genes responding to ER stress agents thapsigargin and tunicamycin as well as certain other 

agents.
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Fig. 3. 
Chromate induces pleiotropic stress responses that involve genotoxic and non-genotoxic 

modes. (A) Cluster of chromate-responsive genes that tend to be upregulated in response to 

genotoxic agents. (B) Genes that are upregulated in response to chromate, cadmium, and 

heat shock but are either repressed or not perturbed by other genotoxic agents. The genes 

and toxicants in the heatmaps were organized by hierarchically clustering with complete 

linkage based on their error-weighted Pearson distances after selection using the 

CTWC/SPC biclustering algorithm.
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Fig. 4. 
Discrimination of genotoxic and non-genotoxic agents based on gene expression. (A) 

Heatmap of a 65-gene panel that was able to discriminate genotoxic from non-genotoxic 

agents with 100% accuracy after 10-fold cross validation. The genes were identified 

applying the nearest shrunken centroids (NSC) algorithm to the 28 treatments and 1628 

genes that were significantly (P < 0.01; t-test) perturbed at least 1.7-fold, relative to the 

control, by at least one stress agent. The NSC threshold was set at 2.2 to ensure 100% 

accuracy. The genes in the heatmap were organized by hierarchically clustering with 

complete linkage based on their Pearson distances. (B) Classification of three test agents 

using the TGx-28.65 gene panel. The agents 3-NP and iPMS showed correct classification 

compared to their known mechanisms of action. Caffeine was classified as a non-genotoxic 

agent. Bars above the heatmap: belief indicates the genotoxicity of agents based on their 

known mechanisms; prediction designates the probability of genotoxicity or non-

genotoxicity using Tgx28.65. Red: genotoxic, blue: non-genotoxic, white: unclassified.
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Fig. 5. 
Proposed scheme for incorporation of transcriptomics biomarker component into 

genotoxicity risk assessment. As discussed in the text, up to 30% of non-genotoxic agents 

give a positive result for chromosome aberrations as determined by micronucleus formation, 

and thus require further extensive evaluation. With the proposed toxicogenomics approach, 

non-reactive compounds would then be treated similarly to those that are negative in the 

chromosome aberration assay (designated by blue arrow).
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Table 1

Standard agents used in this study

Categories Compound names Solvent Dose range Conc. for array

alkylating agents cisplatin
methyl methane sulfonate (MMS)

0.9% NaCl
H2O

10 ~ 80 μM
20 ~ 200 μg/ml

80 μM
100 μg/ml

topoisomerase I inhibitors camptothecin DMSO 62.5 ~ 500 nM 125 nM

topoisomerase II inhibitors etoposide DMSO 50 ~ 400 nM 200 nM

RNA/DNA antimetabolites 5-fluorouracil (5-FU)
methotrexate

DMSO
DMSO

6.25 ~ 50 μg/ml
0.05 ~ 1 mM

25 μg/ml
100 μM

DNA antimetabolites arabinofuranosyl cytidine (AraC)
hydroxyurea

H2O
H2O

12.5~ 50 μM
0.25 ~ 1 mM

50 μM
0.5 mM

causing DNA strand break by other mechanisms γ-rays
bleomycin
hydrogen peroxide

N/A*

H2O

N/A*

4 Gy
5 ~ 40 μg/ml
20 ~ 80 μM

4 Gy
10 μg/ml
80 μM

antimitotic agents colchicine
docetaxel
paclitaxel
vinblastin

Ethanol
DMSO
DMSO
DMSO

62.5 ~ 1000
25 ~ 100 nM
12.5 ~ 200 nM
50 ~ 800 ng/ml

250 ng/ml
50 nM
50 nM
200 ng/ml

histone modification inhibitors trichostatin A (TSA)
apicidin
HC toxin
oxamflatin

DMSO
DMSO
Methanol
DMSO

5 ~ 80 ng/ml
0.25 ~ 4 μg/ml
5 ~ 80 ng/ml
0.25 ~ 4 μM

20 ng/ml
1 μg/ml
20 ng/ml
1 μM

endoplasmic reticulum modulator tunicamysin
thapsigargin

Methanol
Ethanol

1.25 ~ 10 μg/ml
62.5 ~ 500 nM

2.5 μg/ml
250 nM

glycolysis inhibitor 2-deoxy-D-glucose (2-DG) H2O 0.16 ~ 20 μM 20 μM

energy metabolism inhibitor (uncoupling agent) antimycin A Ethanol 25 ~ 200 μM 100 μM

heavy metals cadmium chloride
potassium chromate (VI)
sodium arsenite

H2O
H2O
H2O

50 ~ 800 μM
25 ~ 400 μM
10 ~ 90 μM

50 μM
100 μM
30 μM

other stresses heat shock
ethanol

N/A*

N/A*

47°C
2%, 4%

47°C
2%, 4%

*
N/A: not applicable
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Table 2

Genes in TFx-28.65 classifier

Entrez ID GeneSymbol response p53 regulated

59 ACTA2 yes

64762 AEN yes

7832 BTG2 yes

57103 C12orf5 yes

1026 CDKN1A yes

1643 DDB2 yes

11072 DUSP14 yes

144455 E2F7 yes

9538 EI24 V yes

26263 FBXO22 yes

1647 GADD45A yes

121457 IKBIP yes

4193 MDM2 yes

23612 PHLDA3 yes

8493 PPM1D yes

51065 RPS27L yes

50484 RRM2B yes

9540 TP53I3 yes

51499 TRIAP1 yes

10346 TRIM22 yes

91947 ARRDC4

10678 B3GNT2

282991 BLOC1S2

84312 BRMS1L

868 CBLB V

9738 CCP110

1052 CEBPD V

1062 CENPE

8161 COIL V

23002 DAAM1 V

196513 DCP1B

79733 E2F8

139285 FAM123B V

283464 GXYLT1 V

3008 HIST1H1E

3018 HIST1H2BB

8347 HIST1H2BC
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Entrez ID GeneSymbol response p53 regulated

8339 HIST1H2BG

8346 HIST1H2BI

8342 HIST1H2BM

8341 HIST1H2BN

8351 HIST1H3D

3398 ID2 V

80271 ITPKC

3708 ITPR1 V

353135 LCE1E

9209 LRRFIP2 V

84206 MEX3B

79671 NLRX1 V

5100 PCDH8

1263 PLK3

5564 PRKAB1

5565 PRKAB2

5734 PTGER4 V

9693 RAPGEF2

389677 RBM12B V

6400 SEL1L V

6407 SEMG2

29950 SERTAD1

4090 SMAD5

51768 TM7SF3

608 TNFRSF17

10210 TOPORS V

373856 USP41

Observed transcriptomics responses to genotoxic agents by members of the TGx28.65 dataset. Upregulated genes, “ ”, represent those showing 

more than 1.5-fold induction for more than one third of tested genotoxic agents; downregulated genes, “ ”, designate those showing more than 
1.5-fold repression in more than one third of tested genotoxic agents; remaining genes showed more variable responses and are designated with 
“V”. Genes known to be p53-regulated are indicated in the last column.
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