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Purpose: Recent efforts in the reconstruction of interventional devices from two distinct views
require the segmentation of the object in both fluoroscopic images. Noise might decrease the
quality of the segmentation and cause artifacts in the reconstruction. The noise level depends on
the x-ray dose the patient is exposed to. The proposed algorithm reduces the noise and enhances
the separability of curvilinear devices in background subtracted fluoroscopic images to allow a more
accurate segmentation.
Methods: The algorithm uses a set of binary masks to estimate a line conformity measure that
determines the best direction for a directional filter kernel. If the calculated value exceeds a certain
threshold, the directional kernel is used to obtain the filtered value. Otherwise, an isotropic filter
kernel is used.
Results: The evaluation was performed on a set of 36 fluoroscopic images using a vascular head
phantom with three different guidewires and nine different x-ray dosages from 6 nGy/pulse to
45 nGy/pulse as well as a clinical data set containing ten images. Compared with wavelet shrinkage
and the bilateral filter, the proposed algorithm increased the average contrast to noise ratio by at least
17.8% for the phantom and 68.9% for the clinical images. The accuracy of the device segmentation
was improved on average by at least 17.3% and 14.0%, respectively.
Conclusions: The proposed algorithm was able to significantly reduce the amount of noise in the
images and therefore increase the quality of the device segmentations compared to both the bilateral
filter and the wavelet thresholding approach for all acquired noise levels using rotating directional
filter kernels near line structures and isotropic kernels for the background. The application of the
proposed algorithm for the 3D reconstruction of curvilinear devices from two views would allow a
more accurate reconstruction of the device. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4924266]
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1. INTRODUCTION

The availability of biplane angiography systems in many clin-
ical environment has initiated attempts to reconstruct the 3D
shape of endovascular devices from two orthogonal fluoro-
scopic views.1–4 This would allow creating virtual views from
arbitrary angles or virtual endoscopic renderings in real time.
The reconstruction requires a fast and accurate segmentation
of the device in the fluoroscopic images, which are usually
corrupted by noise. The purpose of this work is to present a
noise reduction algorithm, geared to improve the separability
of curve-linear structures in mask subtracted fluoroscopic im-
ages, to allow a more accurate segmentation of the device.
This section gives a short review on previously published noise

reduction algorithms. The proposed method is described in
detail in Sec. 2.

The bilateral filter as published by Tomasi and Manduchi5

is probably one of the most popular algorithms. It uses two
Gaussian functions to weight pixels in the local neighborhood
according to their distance and the gray scale value difference
with respect to the center pixel, thus reducing noise by re-
taining sharp edges in the image. This algorithm is used as a
reference to evaluate the quality of the proposed algorithm.
Anisotropic diffusion filters first introduced by Perona and
Malik6 simulate a diffusion process of the gray scale values
in an image by iteratively smoothing the image based on the
gradient. The iterative nature of this process increases the
computation time and makes it less suitable for real time
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applications. Wavelet shrinkage, also called wavelet (hard or
soft) thresholding,7 is a family of noise reduction algorithms
that reduces the detail coefficients in the wavelet domain of
an image by a certain threshold reducing the high frequency
noise in the reconstructed image. This method is also used as
a reference in the evaluation.

A multiscale noise reduction filter specialized for the de-
noising of low dose x-ray images was published by Aach
and Kunz,8 which applies a FIR/median hybrid filter to each
high pass band of a Laplacian pyramid. The hybrid filter uses
a cascade of median filters to calculate the denoised gray
level from a linear prefiltering step. A different approach is
taken in Refs. 9 and 10 using spatiotemporal filters, which
include information of previous frames of a fluoroscopic im-
age sequence. In Ref. 9, a Karhunen–Loève transform is used
to calculate correlating components with adjacent frames. A
penalty weighted least squares optimization is then performed
on the component coefficients in order to determine the filtered
image. Chan et al.10 propose a linear minimum mean square er-
ror filter derived from a noise model for the inherent quantum-
limited Poisson noise in fluoroscopic image sequences.

Additionally, noise reduction methods for image sequences
have been published outside the scope of fluoroscopy. A sim-
ple approach to reduce the noise in a series of images is
frame averaging,11 where each pixel is compared to the pre-
vious and/or subsequent image frames instead of the local
neighborhood. In the case of real time applications, obvi-
ously only the previous frames can be used. A multiframe
denoising method based on wavelet soft thresholding was
proposed by Mayer et al.,12 where the wavelet coefficients are
reduced based on the consistency in multiple frames. Within
the work presented here, however, multiframe techniques are
not considered, since fast movements of the devices can cause
artifacts in the denoised images.

The proposed algorithm is motivated by the fact that it is
applied to background subtracted fluoroscopic images. There-
fore, the image contains only the device and noise. The algo-
rithm also takes advantage of the shape of the devices which
are usually represented by a thin curvilinear structure. The
algorithm estimates for each pixel in the image a line confor-
mity measure that determines whether the point is part of a line
using a set of binary masks. Depending on this value either a
directional or isotropic filter kernel is applied. The intention is
to only average pixels that belong to the same class (object or
background).

2. ALGORITHM

The proposed algorithm assumes subtracted fluoroscopic
images where the anatomic background is removed by subtrac-
tion of a single previous image frame without device. It makes
use of the curvilinear device structure using a set of binary
masks Bα, where each represents a line in a different direction.
For every point (x,y) in the image I(x,y), the algorithm
estimates the best direction αmax(x,y) and a line conformity
measure (LCM) to determine whether the point is part of a
line in the respective direction. If LCM(x,y) is above a certain
threshold τ, the angle αmax(x,y) determines the direction for

F. 1. Flow diagram of the proposed directional filter algorithm. Noisy
image is smoothed with Gaussian filter to estimate the best filter kernel
direction for each pixel using binary masks. A line conformity measure is
calculated to determine whether an isotropic or directional kernel is used for
each point of the filtered image.

the filter kernel at this point. Otherwise, an isotropic filter
kernel is used instead. In the latter case, it is assumed that
all pixels in the neighborhood N(x,y) are background pixels.
Figure 1 outlines the work-flow of the algorithm.

2.A. Binary masks

A set of m binary masks Bα of size n × n is created,
where each represents a line through the center of the mask
with angle α and width w. The angles α are determined by
{α = λ ·π/m|λ ∈ {0,1,. . .,m−1}} so that a uniform distribu-
tion on the interval 0 to π is achieved. Note that only the
interval up to π has to be considered, since due to the point
symmetry of the binary masks with respect to the center Bα =

Bα+π. The parameter w is constant for all masks. The values
for each point Bα(x,y) can be defined by

Bα(x,y)=



1 if rxyα ≤ w
0 else

, (1)

with

rxyα =

[x̂−u · sin(α)]2+ [ ŷ−u ·cos(α)]2 (2)

and

x̂ = x− (n−1)/2, (3a)
ŷ = y− (n−1)/2, (3b)
u= x̂ · sin(α)+ ŷ ·cos(α). (3c)

Figure 2 shows an example of a binary mask with angle α and
width w.
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F. 2. Example of a binary mask where white pixels represent ones and
black pixels represent zeros. White pixels form a line with angle α with
respect to the x-axis and width w.

2.B. Line conformity measure

In order to determine the best angle for the filter kernel at
every point (x,y), a prefiltered image IG(x,y) is used, which
is derived from I(x,y) by a convolution with a 2D Gaussian
kernel with mean 0, standard deviation σ, and size g×g. Let
Nxy be the set of pixels in the n× n neighborhood of pixel
(x,y). The set of pixels that contribute to the LCM of direction
α is then defined by Tαxy =

�(i, j) ∈ Nxy |Bα(i− x, j− y)= 1
	
.

The mean squared error Dα(x,y) with respect to IG(x,y) for
all pixels in Tαxy is calculated for all angles α and all points
in the image,

Dα(x,y)= 1�
Tαxy

�


∀(i, j)∈Tαx y

[IG(x,y)− IG(i, j)]2. (4)

The best direction α̌(x,y) for the filter kernel at point (x,y)
can then be determined as the angle that minimizes the mean
squared error,

α̌(x,y)= arg min
α

Dα(x,y). (5)

The line conformity measure, LCM(x,y), that determines
whether a particular point is part of a line in direction α̌ is
defined by Eq. (6), where Dα(x,y) is the arithmetic mean
defined by Dα(x,y)= 1/m


∀αDα(x,y),

LCM(x,y)=
Dα(x,y)−min

α
Dα(x,y)

var[G(x,y)] . (6)

2.C. Filter kernels

Any isotropic low pass filter can be selected as undirected
filter kernel. Within this work, a mean filter and a Gaussian

T I. Filter kernel combinations for isotropic and directional case.

Isotropic kernel Directional kernel

Type A Mean filter Mean filter
Type B Mean filter Gaussian filter
Type C Mean filter if Mean filter if

LCM(x, y) < 0.5 ·τ LCM(x, y) > 1.5 ·τ
Gaussian filter otherwise Gaussian filter otherwise

filter kernel are used. The directional filter kernels can be
derived from the undirected kernel by pixelwise multiplication
with the binary mask Bα̌. Three different filter combinations
are compared and discussed within this work. They are listed
in Table I. The rational behind filter type C is that in the
isotropic case, if p(x,y) is very small it is likely that all pixels
within the neighborhood are part of the background. Likewise,
if p(x,y) is much bigger then τ, all pixels within Bα̌ are likely
to be of the same type (object or background). In these cases, a
mean filter kernel provides the best noise reduction. If p(x,y)
is close to τ, a Gaussian kernel is used to also weight the pixels
according to the distance from the center.

3. MATERIALS AND EVALUATION METRICS

All algorithms are performed on an Intel Core i7 notebook
(4×2.20 GHz) with 16 GB memory and a NVIDIA GeForce
GT 640M graphics adaptor running a Microsoft Windows 7
(64 bit) operating system. The proposed algorithm is imple-
mented for parallel execution on the GPU using the 
 platform.  R2013a (Mathworks, Natick, MA) is
used to evaluate the results.

3.A. Data

The image data for the evaluation are acquired using a clin-
ical biplane angiography system (Artis Zee, Siemens Health-
care AG, Forchheim, Germany) and a vascular head phantom
(Replicator, Vascular Simulations, Stony Brook, NY), provid-
ing a realistic configuration of the larger vessels in the human
brain (see Fig. 3). The following experiment is performed for
three different guidewires with a diameter of 0.014, 0.035,
and 0.038 in. The device is brought into the M2 branch of
the middle cerebral artery [see Fig. 3(b)] where fluoroscopic
image sequences of the static device are acquired from an
anterior–posterior (AP) and a lateral view simultaneously.
Each image sequence is acquired with a different detec-
tor entrance exposure (45, 40, 36, 32, 29, 23, 18, 15, and
6 nGy/pulse) and contains about 50 frames. After remov-
ing the device from the phantom, a set of image sequences
without device is acquired as masks for every x-ray dose.
These mask images are subtracted from the device acquisitions
in order to eliminate the background and allow a threshold
based segmentation of the device. In order to create a high
quality reference image which allows a reliable segmentation
of the actual shape of the device (reference segmentation),
the frames of each image sequence are averaged over time.
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4648 Wagner et al.: Directional denoising using binary masks 4648

F. 3. (a) Vascular head phantom (Replicator, Vascular Simulations, Stony Brook, NY) in the biplane angiography syste (Artis Zee, Siemens Healthcare AG,
Forchheim, Germany). (b) 3D reconstruction of the vasculature in the head phantom. Red line outlines guidewire path to M2 branch of MCA.

The denoising filters are applied to single frames of the image
sequences only. To avoid the influence of motion artifacts,
the mask images are registered to the device images before
subtraction using an elastic grid registration technique based
on the method proposed in Ref. 13. Figure 4 shows an example
of the subtracted noisy image frames at the highest and lowest
x-ray dose.

In addition to the acquired phantom images, a set of 10
clinical cases has been analyzed retrospectively. The data set
includes 8 images showing a microcatheter and a guidewire,
one coil being deployed from a microcatheter and one catheter
filled with contrast agent. Detailed acquisition parameters can
be found in Table II. The images are shown in Figs. 8 and 9.

3.B. Evaluation metrics

To compare the quality of the filtered images, the separa-
bility of object (device) and background using global thresh-
olding is analyzed. Therefore, the accuracy of the segmen-
tation of the device in the filtered images compared to the
reference segmentation is measured in terms of the pixel-

wise misclassification rate (MCR). The reference segmenta-
tion is created from the averaged reference images by manual
threshold selection. For the filtered images, the ideal threshold
that minimizes the misclassification rate is chosen automati-
cally. Given the reference segmentation of the device Sref and
the segmentation of the filtered image Sflt as a binary image,
where device pixels are 1 and background pixels 0, the MCR
can be calculated by

MCR(Sref,Sflt)= |{(x,y)|Sref(x,y), Sflt(x,y)}|
|{(x,y)|Sref(x,y)= 1}| . (7)

The segmentation of the device in the filtered image Iflt is given
by

Sflt(x,y)=



1 Iflt(x,y)> θmin

0 else
, (8)

where

θmin= arg min
θ

MCR(Sref,Sflt(θ)). (9)

The second measure that is used for the quantitative evaluation
of the results is the contrast to noise ratio (CNR) in the filtered

F. 4. Noisy subtracted image frames for evaluation. From left to right: 0.038 in guidewire anterior–posterior (AP) view, 0.035 in guidewire AP view, 0.014 in
guidewire AP view, and 0.014 in guidewire lateral view. The images in the first row were acquired with 45 nGy/pulse and the second row with 6 nGy/pulse.
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T II. Description and acquisition parameters of the clinical data set used
for the evaluation: Frame rate (fr) in fps, pixel size in mm, image size in pixel,
and detector entrance exposure (DEE) in nGy.

No. Device type Fr Pixel size Image size DEE

1 Guidewire 15 0.43 × 0.43 512 × 512 37
2 Guidewire 15 0.43 × 0.43 512 × 512 37
3 Guidewire 15 0.15 × 0.15 512 × 512 38
4 Guidewire 15 0.15 × 0.15 512 × 512 38
5 Guidewire 15 0.15 × 0.15 512 × 512 38
6 Coil 15 0.15 × 0.15 512 × 512 38
7 Guidewire 15 0.22 × 0.22 512 × 512 38
8 Guidewire 7.5 0.15 × 0.15 1440 × 1440 46
9 Guidewire 15 0.31 × 0.31 720 × 720 39

10 Catheter 7.5 0.15 × 0.15 720 × 720 46

images. It is calculated according to

CNR(Iflt)= |v̄0− v̄1|
σn

, (10)

where v̄0 and v̄1 are the arithmetic means of the background
and device region in the filtered image, respectively, and σn is
the standard deviation of the noise.

3.C. Alternative denoising algorithms
for performance evaluation

The algorithm is compared to two different noise reduction
algorithms. The bilateral filter as proposed by Tomasi and
Manduchi5 calculates the denoised image Ibf(x,y) by weight-
ing the pixels in the local (2 · k +1)× (2 · k +1) neighborhood
by a combination of two Gaussian functions GD and GR with
standard deviations σD and σR depending on spatial distance
and gray level difference, respectively. The filtered image is
given by Eq. (11). The algorithm is implemented using the
  environment,

Ibf(x,y) =

x+k
i=x−k

y+k
j=y−k

ω(x,y,i, j) · I(i, j)
x+k

i=x−k

y+k
j=y−k

ω(x,y,i, j)
, (11a)

ω(x,y,i, j) =GD(i− x, j− y |σD) ·GR(I(i, j)− I(x,y)|σR).
(11b)

As a second noise reduction method, wavelet soft thresh-
olding is used for comparison. It decomposes the image
into wavelet coefficients using the double density dual tree
complex wavelet transform.14 The detail coefficients C(x,y,l)
at each decomposition level l are shrunk in order to eliminate
high frequencies caused by noise. The inverse wavelet trans-
form is then applied to the result to obtain the filtered image.
The denoised wavelet coefficients Cflt(x,y,l) can be calculated
by Eq. (12) using a smoothing parameter µ,

Cflt(x,y,l)= max(|C(x,y,l)|− µ,0)
|C(x,y,l)| ·C(x,y,l). (12)

A  implementation of this algorithm is used provided
by the Image Denoising Algorithms Archive (http://www5.cs.
fau.de/research/software/idaa/) of the University of Erlangen-
Nuremberg.

4. RESULTS

A single set of parameters has been used for each algorithm
within this paper, independent of the noise level, the device, or
pixel size. These parameters have been optimized to yield the
best average results for the phantom evaluation. For the kernel
types A and B, m = 11, w = 1.3, and τ = 2.2, as kernel size
n= 25 for type A and n= 35 for B and C were used. Addition-
ally, for kernel type C, the parameters m = 27, w = 1.5, and
τ = 2.0 were used. Figure 5 shows the evaluation results of
the different filter kernels for the directional filter algorithm at
different x-ray dosages. Kernel type B achieves lower MCRs
than kernel A for all x-ray dosages. Type C performs better for
the highest noise level at 6 nGy/pulse but has higher MCRs at
x-ray doses of 15 nGy/pulse and above.

A comparison between the different noise reduction fil-
ters and the unprocessed images is presented in Fig. 6. The
unprocessed images achieve average segmentation errors be-
tween 99.9% and 81.0% from the highest to the lowest noise
level and a CNR between 1.0 and 2.3, respectively. For the
bilateral filter, the best results were achieved using k = 5 and
standard deviations σD = 3.5 and σR = 0.2. For the wavelet
soft thresholding algorithm, a maximum decomposition level
of lmax = 2 and µ = 0.07 was used. The directional filter
approach achieves lower MCRs than both compared filter
algorithms for all acquired noise levels. On average, the MCR
of the proposed algorithm is 25.5% lower than the bilateral
filter results. Compared to the wavelet approach, it is 17.2%
lower on average. The CNR is improved by 29.0% on average
compared to the bilateral filter and by 17.8% compared to the

F. 5. Comparison of different kernel types for the directional filter algo-
rithm for detector entrance exposure values from 6 nGy/pulse to 45 nGy/pulse.
Type A: mean kernel for directional and isotropic case, type B: mean kernel
for directional and Gaussian kernel for isotropic case, and type C: automatic
selection of mean and Gaussian kernel depending on LCM(x, y).
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F. 6. Comparison of proposed directional filter algorithm with the bilateral approach and wavelet soft thresholding for different detector entrance exposure
values from 6 nGy/pulse to 45 nGy/pulse. Quality of the filtered images is measured in terms of the (a) misclassification rate of the device segmentation using
an ideal threshold and (b) the contrast to noise ratio. Significantly better results compared to the second best are marked by ∗ for p < 0.05 and + for p < 0.01.

wavelet approach. A paired t-test was performed to test for
statistical significance of the directional filter results compared
to the second best results achieved by the wavelet thresholding
approach. Significance (p < 0.05) of the MCR and CNR was
achieved for all noise levels, and for detector entrance expo-
sures of 15–29 nGy/pulse, significance of the MCR results
could be shown for p < 0.01. Examples of the filtered images
can be found in Fig. 7, which shows the filtered images and
the device segmentation for each algorithm at an x-ray dose
of 15 nGy/pulse along with the original noisy image and the
reference segmentation. The quantitative results of the clinical
data set are shown in Table III. The proposed filter achieves
the lowest MCR with 28.3% and the highest CNR (10.3),
followed by the wavelet thresholding approach with a MCR
of 42.3% and a CNR of 6.1. Significance (p < 0.01) compared
to the second best results could be shown for the MCR as

well as the CNR results of the directional filter. The filtered
images for all noise reduction algorithms are shown in Figs. 8
and 9.

4.A. Performance

The computation time for a 1024× 1024 image is about
25 ms on average for the hardware used during the evaluation.
The weight limiting step in the proposed algorithm is the
estimation of the best kernel direction and the calculation of
the line conformity measure. The computational effort of this
step is linearly dependent on the number of ones in all binary
masks. For one mask Bα, this can be estimated by calculating
the area of a parallelogram with height n and base sinα ·w,

|{(x,y)|Bα(x,y)= 1}| ≈ n ·w · sinα. (13)

F. 7. First row shows the filtered images of a 0.035 in. guidewire from an AP view at 15 nGy/pulse using the directional filter, bilateral filter, and wavelet
soft thresholding (from left to right). The last image shows the original noisy image. The second row shows the results of the segmentation after applying the
respective filters in the same order and the reference segmentation, obtained by averaging multiple frames of the acquired fluoroscopic image sequence in the
last column.

Medical Physics, Vol. 42, No. 8, August 2015
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T III. Quantitative results of the compared noise reduction algorithms
in terms of the misclassification rate (MCR) in percent and the contrast to
noise ratio (CNR). Significantly better results compared to the second best
are marked by a for p < 0.05 and b for p < 0.01.

Algorithm MCR CNR

Directional filter 28.3a,b 10.3a,b

Wavelet thresholding 42.3 6.1
Bilateral filter 50.1 5.5
Unfiltered 85.5 2.0

In order to approximate the total number of ones o in all masks
the average area over all angles α can be substituted which
leads to

o≈ 1.1222 ·m ·n ·w. (14)

Therefore, a linear relation between the parameters m, n,
and w, and the computational effort of the algorithm can be
assumed.

5. DISCUSSION

The proposed algorithm significantly improves the sepa-
rability of curve-linear structures in subtracted fluoroscopy
images. Although the assumption that the shape of device
can be approximated by piecewise linear segments can be
critical for structures with high curvatures and small radii,
respectively, even in these cases, a filter kernel in the tangential
direction at every point of the curve will result in considerably

less blurring than using an isotropic filter kernel. Addition-
ally, using a Gaussian kernel for the directional case also
assigns lower weights to pixels further from the center of the
local neighborhood where the likelihood of a less accurate
approximation of the curve is higher. In all evaluations, the
proposed algorithm outperforms the compared bilateral filter
and wavelet soft thresholding. The best results are achieved for
the kernel type B, which uses a Gaussian filter kernel for the
directional case. Comparing the optimized filter parameters
for the different kernel types shows that the kernel size is much
larger for types B and C (35 instead of 25), where a Gaussian
kernel is used. This can be explained by the fact that it allows
a better adjustment of the directional filter kernel at points
where the device curves, and none of the binary masks is a
good fit for large kernels. Emphasizing the center of the mask
allows a better trade-off between noise reduction (better in
large kernels) and the ability to fit a directional binary mask
to a block of image pixels. The idea behind kernel type C was
to use a mean filter kernel for points where the binary mask is
a very good fit (p >> τ) or where there is a high probability
for all pixels in the neighborhood to be background pixels
(p << τ) to achieve better noise reduction and to use the
Gaussian filter for all other cases in order to reduce smoothing
between device and background. However, Fig. 5 shows that
only for the highest noise level at 6 nGy/pulse, this filter
achieves the lowest MCR. For all other noise levels, kernel
type B outperforms the other kernel types. The device segmen-
tations that are shown in Fig. 7 for a relatively high noise level
(15 nGy/pulse) also emphasize that the proposed algorithm
improves the accuracy of the segmentation compared to the

F. 8. Columns 1–5 show images of the first five clinical cases. Rows 1–4 show the original unfiltered images, after application of the directional filter, bilateral
filter, and wavelet thresholding. All images show a guidewire and a microcatheter.
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F. 9. Columns 1–5 show images of the clinical cases 6–10. Rows 1–4 show the original unfiltered images, after application of the directional filter, bilateral
filter, and wavelet thresholding. Image 1 shows a coil within a microcatheter, and images 2–4 show a guidewire and a microcatheter. Image 4 shows a
microcatheter filled with contrast agent.

other algorithms. Only small parts at the tip of the guidewire
where diameter of the device gets smaller are missing while for
the bilateral filter and the wavelet thresholding approach, the
amount of missed pixels in the segmentation of the device is
considerably higher in addition to noise which is misclassified
as device. This would allow a more accurate 3D reconstruction
of the device and reduces artifacts caused by noise. An addi-
tional source for artifacts is patient motion due to the fact that
the device segmentation is performed on subtracted images.
If the patient’s position changes between the acquisition of
the mask image and the current frame, curve-linear structures
may arise in the subtracted images along the boundary of
high contrast tissue such as bone. Like the device itself, these
structures would also be enhanced by the proposed algorithm
in terms of the contrast to noise ratio. However, the same is
true for other noise reduction techniques. Even in unprocessed
images, motion artifacts usually have high contrast already and
therefore would cause severe reconstruction artifacts. There-
fore, proper registration between the mask image and the
current frame is essential for the segmentation of the device
in the subtracted images for all noise reduction algorithms.
The presented clinical data support the evaluation results of
the phantom data set. The proposed algorithm performs better
in terms of the misclassification rate as well as the contrast
to noise ratio. The same parameters have been used for all
images independent of the device thickness, the pixel size,
and the detector entrance exposure. This suggests that the
algorithm parameters are not very sensitive to these changes.
The algorithm can also be implemented efficiently to run on

modern graphics processing units and is therefore suitable
for the application in a real time reconstruction frame work.
Although the algorithm is specialized for background sub-
tracted fluoroscopy images, other applications are possible.
The algorithm provides a fast method for edge preserving
noise reduction using directional adaptive filter kernels. The
application of the algorithm as a preprocessing step for other
segmentation task or for general image denoising could be
investigated in the future. It should be mentioned that in cases
where the algorithm is used as a preprocessing step and more
noise robust segmentation methods are available and are com-
pliant with the speed requirements of the application, the
benefits of using the proposed algorithm in terms of the MCR
might be smaller than for the thresholding approach. If the
algorithm is applied to unsubtracted images where a simple
differentiation between object and background pixels is not
possible, the approach would smooth homogeneous areas in
the image and adjust the filter kernel near edges or lines
similar to other edge preserving denoising algorithms. Other
possible enhancements for the proposed algorithms that could
be investigated are the application of different filter kernels,
e.g., a combination with the bilateral filter approach would
be possible. In addition to that the set of binary masks could
be extended to other shapes like curves or fuzzy masks could
be used instead of binary masks with values between 0 and
1 to allow better adjustment of the masks to the underlying
image pixels. Finally, the proposed algorithm could be easily
extended to use multiple image frames of a dynamic image
sequence. In this case, the kernel direction estimation and

Medical Physics, Vol. 42, No. 8, August 2015



4653 Wagner et al.: Directional denoising using binary masks 4653

the line conformity measure calculation would be done on an
average image of multiple frames. The denoised image would
then be calculated on the average image for background pixels
and on the current frame only for device pixels.

6. CONCLUSION

The proposed algorithm was able to successfully reduce
the amount of noise in the images and therefore increase the
quality of the device segmentations compared to both the
bilateral filter and the wavelet thresholding approach for all
acquired noise levels using rotating directional filter kernels
near line structures and isotropic kernels for the background.
The noise reduction method was evaluated using phantom as
well as clinical data and showed a significant improvement of
the segmentation accuracy and the image quality in terms of
the contrast to noise ratio. The application of the proposed
algorithm for the 3D reconstruction of curvilinear devices
from two views would allow a more accurate reconstruction
of the device. Additionally, it can be implemented efficiently
on modern graphic processing units in order to use it within
real time reconstruction frameworks. Other applications of the
algorithm as a preprocessing step before segmentations or for
general image denoising with a modified set of binary masks
would also be possible and should be further investigated.

ACKNOWLEDGMENTS

Research reported in this publication was supported by
the National Heart, Lung, and Blood Institute of the National
Institutes of Health under Award No. R01HL116567. The
content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.

APPENDIX: NOMENCLATURE

α angle for line in binary mask
α̌ direction with lowest mean squared error
σ standard deviation of Gaussian smoothing kernel
σD standard deviation of GD

σn standard deviation of the noise
σR standard deviation of GR

τ threshold for directional or isotropic filter kernel
θmin segmentation threshold
Bα binary mask with angle α
C detail coefficients of wavelet decomposition of

image I
Cflt filtered detail coefficients of wavelet decomposition
Dα directional mean squared error
GD Gaussian function for spatial distance weight

(bilateral filter)
GS Gaussian function for gray level difference weight

(bilateral filter)

I original noisy image
Ib f image after applying the bilateral filter
Iflt filtered image
IG smoothed version of image using Gaussian filter
g size of Gaussian smoothing kernel
LCM line conformity measure
m number of binary masks
MCR misclassification rate
n size of binary mask
o number of ones in all binary masks
Sref reference segmentation of the device
Sflt threshold segmentation of the device in filtered

image Iflt

Tαxy set of pixels in the neighborhood of point (x,y)
where Bα is 1

v̄z arithmetic mean of the device region (z = 1) or
background region (z = 0) in the filtered image

w width of line in binary mask
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