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Purpose: In x-ray computed tomography (CT), a violation of the Tuy data sufficiency condition leads
to limited-view artifacts. In some applications, it is desirable to use data corresponding to a narrow
temporal window to reconstruct images with reduced temporal-average artifacts. However, the need to
reduce temporal-average artifacts in practice may result in a violation of the Tuy condition and thus
undesirable limited-view artifacts. In this paper, the authors present a new iterative reconstruction
method, synchronized multiartifact reduction with tomographic reconstruction (SMART-RECON),
to eliminate limited-view artifacts using data acquired within an ultranarrow temporal window that
severely violates the Tuy condition.
Methods: In time-resolved contrast enhanced CT acquisitions, image contrast dynamically changes
during data acquisition. Each image reconstructed from data acquired in a given temporal window
represents one time frame and can be denoted as an image vector. Conventionally, each individual
time frame is reconstructed independently. In this paper, all image frames are grouped into a
spatial–temporal image matrix and are reconstructed together. Rather than the spatial and/or temporal
smoothing regularizers commonly used in iterative image reconstruction, the nuclear norm of the
spatial–temporal image matrix is used in SMART-RECON to regularize the reconstruction of all
image time frames. This regularizer exploits the low-dimensional structure of the spatial–temporal
image matrix to mitigate limited-view artifacts when an ultranarrow temporal window is desired
in some applications to reduce temporal-average artifacts. Both numerical simulations in two
dimensional image slices with known ground truth and in vivo human subject data acquired in a
contrast enhanced cone beam CT exam have been used to validate the proposed SMART-RECON
algorithm and to demonstrate the initial performance of the algorithm. Reconstruction errors and
temporal fidelity of the reconstructed images were quantified using the relative root mean square
error (rRMSE) and the universal quality index (UQI) in numerical simulations. The performance of
the SMART-RECON algorithm was compared with that of the prior image constrained compressed
sensing (PICCS) reconstruction quantitatively in simulations and qualitatively in human subject
exam.
Results: In numerical simulations, the 240◦ short scan angular span was divided into four consecutive
60◦ angular subsectors. SMART-RECON enables four high temporal fidelity images without limited-
view artifacts. The average rRMSE is 16% and UQIs are 0.96 and 0.95 for the two local regions of
interest, respectively. In contrast, the corresponding average rRMSE and UQIs are 25%, 0.78, and
0.81, respectively, for the PICCS reconstruction. Note that only one filtered backprojection image
can be reconstructed from the same data set with an average rRMSE and UQIs are 45%, 0.71, and
0.79, respectively, to benchmark reconstruction accuracies. For in vivo contrast enhanced cone beam
CT data acquired from a short scan angular span of 200◦, three 66◦ angular subsectors were used
in SMART-RECON. The results demonstrated clear contrast difference in three SMART-RECON
reconstructed image volumes without limited-view artifacts. In contrast, for the same angular sectors,
PICCS cannot reconstruct images without limited-view artifacts and with clear contrast difference in
three reconstructed image volumes.
Conclusions: In time-resolved CT, the proposed SMART-RECON method provides a new method
to eliminate limited-view artifacts using data acquired in an ultranarrow temporal window, which
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corresponds to approximately 60◦ angular subsectors. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4926430]
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1. INTRODUCTION

Over the past decade or so, significant progress has been made
in tomographic reconstruction using either analytical image
reconstruction formulae (see Ref. 1 and references therein)
or model based iterative image reconstruction methods.2–5

Many of these new reconstruction methods have been directly
exploited to either improve temporal resolution6,7 or reduce
radiation dose.8

Regarding the reconstruction of a static image object using
an analytical reconstruction method, the Tuy data sufficiency
condition9 is of fundamental importance. It states that, to
enable a mathematically exact reconstruction of a point inside
the image object, every plane passing through that point must
intersect the scanning trajectory at least once.10 This data
sufficiency condition determines the minimum angular span
of view angles in a data acquisition required for accurate
reconstruction of a region of interest inside an image object.
Violation of the Tuy condition leads to image object distortion
and shading artifacts in the reconstructed images (these
multifaceted artifacts are referred to as limited-view artifacts
in this paper). To accurately reconstruct the entire image object
from fan beam projections, the Tuy condition becomes the so-
called short scan condition, requiring that the angular span of
view angles must be at least 180◦+γm, where γm is the full fan
angle. In the case where the angular span is less than 180◦+γm,
new analytical image reconstruction algorithms have been
developed11–16 to accurately reconstruct a portion of the image
object albeit not the entire image object. This has been referred
to as super-short scan reconstruction in literature. However,
when the angular span falls below 180◦−γm, using the Tuy
data sufficiency condition, it is straightforward to show that
even the super-short scan reconstruction algorithms fail to
reconstruct the relevant image content inside the scanned field
of view (FOV) without limited-view angle artifacts.

A new challenge encountered in time-resolved computed
tomography (CT) is the inevitable temporal-average effects
during data acquisition and image reconstruction processes
even if the angular span of the acquired data does satisfy the
Tuy condition, as the acquired data are not compatible with the
most fundamental assumption in tomographic reconstruction:
the image object does not change during the acquisition of
a complete data set for reconstruction. A consequence of
violating the above static object assumption is that only a
temporally averaged image can be reconstructed using data
acquired from a certain span of view angles, no matter if the
angular span of the acquired data satisfies the Tuy data suffi-
ciency condition or not. The image artifacts associated with
this temporal averaging process include distortion, shading,
and streak artifacts in the reconstructed images. These artifacts
are collectively referred to as temporal-average artifacts in this
paper. The temporal window, i.e., the time elapsed during the

acquisition of data within a certain angular span, is used as a
surrogate metric to indicate the severity of temporal-average
artifacts: a wider temporal window results in more severe
temporal-average artifacts in the reconstructed images.

In current CT data acquisition systems, once the gantry
rotation speed and detector readout rate are selected for a
data acquisition, a wider temporal window allows the tube-
detector assembly to travel through a greater angular span
and vice versa. Thus, the temporal window and the angular
span of a CT data acquisition are inherently correlated with
one another. This inherent correlation dictates a coupling
between temporal-average artifacts and limited-view artifacts.
Specifically, when the temporal window width of the acquired
data used in a reconstruction increases, the temporal-average
artifacts become more severe and the associated limited-
view artifacts become less pronounced. On the contrary, a
narrower temporal window results in less severe temporal-
average artifacts but more pronounced limited-view artifacts.

When a prior CT image of the same image object can be
properly incorporated into the dynamic CT reconstruction pro-
cess, the aforementioned coupling between temporal-average
artifacts and limited-view artifacts can be somewhat decou-
pled from one another in some specific applications.7,17,18

Recently, it has been shown that, when the angular span
is not significantly shorter than 180◦− γm (for a 60◦ fan
angle, this coincides with one half of the short scan angular
span), the entire image object may be reconstructed without
limited-view angle artifacts using the prior image constrained
compressed sensing (PICCS) algorithm provided that the prior
image used to constrain the reconstruction is not contaminated
by the limited-view artifacts.7,18 However, to the best of the
authors’ knowledge, there is no work published yet to show
that time-resolved CT images can be reconstructed without
severe limited-view angle artifacts when the angular span of
the data is significantly below 180◦−γm.

The purpose of this paper is to present a model based
iterative image reconstruction algorithm that allows one to
reconstruct dynamically changing objects with negligible
limited-view artifact using data from an angular span much
shorter than 180◦− γm. The proposed algorithm, synchro-
nized multiartifact reduction with tomographic reconstruction
(SMART-RECON), utilizes both spatial and temporal simi-
larity information among different time frames to eliminate
limited-view artifacts with data acquired over an angular span
as short as approximately 60◦.

2. METHODS AND MATERIALS
2.A. Mathematical notation
for iterative reconstruction

In this paper, a monochromatic x-ray beam is assumed.
This allows the CT reconstruction problem to be linearized,
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so that the spatial distribution of the attenuation coefficients
of an image object, µ(x⃗), can be reconstructed from a set of
line integral measurements,

yi =


ℓi

µ(x⃗)dℓ, (i = 1,2,. . .,N), (1)

where N is the total number of line integrals. In a digital image
representation, the image function, µ(x⃗), can be represented
by the superposition of a series of basis functions, Bj(x⃗),

µ(x⃗)=
M
j=1

X jBj(x⃗), ( j = 1,2,. . .,M). (2)

As a result, the image is represented by M numbers, X j,
and these numbers can be arranged as a column vector
X⃗ = (X1,X2,. . .,XM)tr to represent the image, where (·)tr denotes
a matrix transpose operation. Substituting Eq. (2) into Eq. (1)
yields

yi =

j

Ai jX j = [AX⃗]i, (3)

where the N ×M matrix, Ai j =

ℓi

dℓiBj(x⃗), is referred to as
the image system matrix. Therefore, the forward model of the
tomographic image reconstruction problem [Eq. (1)] can be
written as

y⃗ =AX⃗ , (4)

where the column vector y⃗ = (y1,y2,. . .,yN)tr.

2.B. Spatial–temporal image matrix for time-resolved
CT imaging

In time-resolved contrast enhanced CT image acquisitions,
contrast material progressively enhances the vasculature while
the x-ray tube travels from the starting angular position, θ0,
to the ending angular position, θ f , resulting in an angular
span of Θ = [θ0,θ f ]. In practice, regardless of the actual
value of the total angular span, Θ, the temporal window
can be retrospectively shortened in image reconstruction. For
example, the total angular span Θ = [θ0,θ f ] may be evenly
divided into a union of disjoint segments Θτ (τ = 1,2,. . .,T)
each covering a temporal window ∆t,

Θ= [θ0,θ f ]=
T
τ=1

Θτ, (5)

where Θτ = [θtτ−0.5∆t,θtτ+0.5∆t]. Each small segment of view
angle span Θτ corresponds to an image time frame to be
reconstructed and thus there are a total number of T image
frames to be reconstructed. Using the column vector notation
introduced in Subsection 2.A, these image time frames are
denoted as X⃗τ(τ = 1,2,. . .,T). All image time frames can be
grouped together to form the following M×T spatial–temporal
image matrix:

X= (X⃗1,X⃗2,. . .,X⃗T)=
*......
,

X1
1 X2

1 · ·· XT
1

X1
2 X2

2 · ·· XT
2

...
...

. . .
...

X1
M X2

M · ·· XT
M

+//////
-

. (6)

In this spatial–temporal image matrix, each column of the
spatial–temporal matrix X represents one image vector at
a given time frame while each row of the spatial–temporal
matrix represents the dynamic change of a given pixel/voxel
from one time frame to another. Thus, the spatial–temporal
matrix X gives a complete spatial and temporal representation
of the image object.

2.C. Forward model of the spatial–temporal
image matrix

For each individual time frame, X⃗τ, the projection data
acquired within the temporal window, [tτ−0.5∆t,tτ+0.5∆t],
form a subcolumn data vector y⃗τ. The corresponding rows in
system matrix A in Eq. (4) form a subsystem matrix Aτ for the
τth time frame. (Note, in this paper, superscripts denote the
time frame, while subscripts denote the vector component.)
Using this notation, we have the following forward projection
model for each time frame:

*......
,

y⃗1

y⃗2

...

y⃗T

+//////
-

=

*......
,

A1X⃗1

A2X⃗2

...

AT X⃗T

+//////
-

. (7)

The above T individual forward models can be written in a
compact form as follows:

Y⃗ =AX⃗. (8)

Here, we introduced the following notations:

Y⃗ =
T
τ=1

êτ


y⃗τ, A = IT


Aτ, X⃗= vec(X). (9)

In these equations,


denotes the Kronecker direct prod-
uct operation, êτ = (0,0,. . .,0,1τ,0,. . .,0)tr is the τth standard
column basis in a T dimensional space, IT is the T ×T
identity matrix, and vec(X) is the vectorization operation of
the spatial–temporal matrix introduced in Eq. (6). Note that
the dimension of the column vector Y⃗ is N and the dimension
of the column vector y⃗τ for an individual time frame is N/T .
The dimension of the vector X⃗ is MT and the dimension of
the modified system matrix A in Eq. (8) is N ×MT .

2.D. Nuclear norm of the prior image augmented
spatial–temporal image matrix: Regularizer
in SMART-RECON

As discussed in the Introduction, when the angular span of
the acquired data in a temporal window does not satisfy the
Tuy condition, limited-view artifacts appear. When a prior CT
image of the same image object without limited-view artifacts
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is available for use in the reconstruction, limited-view artifacts
can be mitigated using the PICCS algorithm4,7,18 for an angular
span greater than 180◦−γm. In this paper, the core idea is still
to use the prior image to help reduce limited-view artifacts,
but in a fundamentally different way such that the proposed
algorithm may be used to eliminate limited-view artifacts
down to an angular span much shorter than 180◦−γm. In this
paper, the prior image column vector, X⃗ p, is used to augment
the target spatial–temporal image matrix X to generate an
augmented spatial–temporal matrix XA as follows:

XA= (X⃗ p |X)C
*......
,

X p
1 X1

1 X2
1 · ·· XT

1

X p
2 X1

2 X2
2 · ·· XT

2
...

...
...

. . .
...

X p
M X1

M X2
M · ·· XT

M

+//////
-

, (10)

where C stands for a definition. The nuclear norm of this
matrix, i.e., ∥XA∥∗, is used to regularize the reconstruction
of the spatial–temporal matrix, X; namely, the regularizer is
given as

Ψ(X)= ∥XA∥∗= ∥UΣVtr∥∗=

r

σr , (11)

where XA=UΣVtr is the singular value decomposition (SVD)
of the matrix XA. In this decomposition, U and V are two
orthogonal matrices, Σ = diag{σr} is a diagonal matrix. The
values σr (r = 1,2,. . .) are also known as the singular values
of the prior image augmented spatial–temporal image matrix
XA. Throughout this paper, although it is not necessary, the
filtered backprojection (FBP) reconstruction from all available
time-frames was used to generate the prior image.

2.E. SMART-RECON: Objective function
and numerical implementation

In CT data acquisitions, noise always presents in acquired
data. Using a quadratic approximation,2,3 noise can be
incorporated into the iterative image reconstruction process
by introducing a statistical weight to the data fidelity term. In
this paper, the same strategy was used to handle the noise in
the measured data. Using the notation introduced above, the
proposed statistical model based iterative reconstruction algo-
rithm, SMART-RECON, can be formulated as the following
convex optimization problem:

X= arg min
X


1
2
(Y⃗ −AX⃗)trD(Y⃗ −AX⃗)+λ∥XA∥∗


. (12)

The parameter λ is introduced to control the balance between
the data fidelity term and the regularizer strength and the
diagonal noise matrix D has the inverse of the noise variance
of the log-transformed data as its diagonal elements.

The above convex optimization problem can be solved
using the recently developed alternated updating method19

to decompose the original optimization problem into two
subproblems,

X⃗
(k)
= arg min

X⃗

1
2
(Y⃗ −AX⃗)trD(Y⃗ −AX⃗), (13)

X(k+1)= arg min
X

1
2
∥X−X(k)∥2

F+λΨ(X), (14)

where ∥X∥2
F C


i j X2
i j is the Frobenius norm of the real

matrix X. In the first equation, a noise weighted data
fidelity constraint was imposed on the reconstruction of each
individual time frame to generate an intermediate image
column vector X⃗

(k)
with MT rows. This image vector was

converted back to its M ×T dimensional spatial–temporal
matrix form, X(k). In the second equation, the nuclear norm
∥XA∥∗ was then used as the regularizer to define a modified
denoising problem, Eq. (14). In the context of this paper, this
modified denoising problem is solved to suppress both limited-
view artifacts and image noise. To help gain some intuitive
understanding, one can consider the static case, namely, there
is no dynamic change of the image content from one time
frame to another. In this case, there should be no difference
between the prior image and the individual image columns,
as both the prior image column and each individual column
represent the same image object. In other words, the rank
of the matrix XA should be one to minimize its nuclear norm
since there is only one independent image column. In practice,
however, since each individual image column can only be
generated using the acquired data within a narrow angular
span, these individual image columns are thus contaminated
with limited-view artifacts. As a result, the rank of the limited-
view artifacts contaminated matrix XA deviates from the ideal
value of one and thus the nuclear norm of the matrix increases.
Therefore, the result of enforcing a minimal nuclear norm is to
mitigate the limited-view artifacts. In this sense, the parameter
λ is used to control trade-off between the temporal fidelity and
the level of limited-view artifacts in the reconstructed images.

Although a closed-form solution (the pseudoinverse) does
exist for the problem in Eq. (13), we use the following gradient
descent update sequence to iteratively solve the problem in
Eq. (13) together with the problem in Eq. (14) as shown in the
pseudocode of the numerical workflow. The quadratic problem
in Eq. (13) can be easily solved iteratively using the following
update sequence:

X⃗
(k)
= X⃗

(k−1)
+δAtrD


Y⃗ −AX⃗

(k−1)
. (15)

After the kth iteration of the image column vector X⃗, i.e., X⃗
(k)

,
is computed using the above formula, it is converted back to
its spatial–temporal matrix form X(k). The parameter δ is the
updating step size. It was empirically fixed to 0.25 in this
study. The modified denoising problem in Eq. (14) is then
solved to obtain the denoised spatial–temporal matrix denoted
by X(k+1),

XA
(k+1)=SVTλ(XA

(k))C (⃗X p |X(k+1)), (16)

where the singular value thresholding (SVT) function
SVTλ(X) is defined as follows:20

SVTλ(X) = U(Σ−λI)+Vtr, (17)

(Σ−λI)+ =



σi−λ, σi ≥ λ

0, σi < λ
, (18)
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where U, V, and Σ = diag{σr} are the SVD of X and I is
an identity matrix. This two-step optimization strategy has
been proven to be linearly convergent.19 For convenience,
the pseudocode of the algorithm is summarized as follows:

A I. SMART-RECON algorithm.

1: k = 0

2: X(k )
A
←


X⃗ p |X(k )

3: while ���
���X⃗

(k )
− X⃗

(k−1)���
���
2

2
≥ ε do

4: X⃗
(k )
← X⃗

(k−1)
+δAtrD


Y⃗ −AX⃗

(k−1)

5: X(k )
A
←


X⃗ p |X(k )

6: X(k+1)
A

← SVTλ


X(k )

A



7: X(k+1)← X(k+1)
A

8: k = k +1

9: end while

In this paper, the SMART-RECON algorithm was imple-
mented using compute unified device architecture (CUDA)
technology on a local workstation equipped with two graphic
processing unit (GPU) cards (GTX Titan Z and GTX 980,
NVIDIA Corporation). The SVD procedure was implemented
using the CULA linear algebra library (EM Photonics, Inc.).
Note that there is no need to perform a full SVD in
SVTλ(X), since only those singular values above the selected
regularization parameter λ are needed as shown in Eq. (18).
However, in the application presented in our paper, the
difference between a full SVD and an economical SVD is
negligible from computation load standpoint since we only
have 3–5 time image columns and thus only 3–5 singular
values. Therefore, in this paper, we performed a full SVD in
our GPU implementation of the algorithm.

2.F. Validation methods

To validate that the proposed SMART-RECON method
is able to eliminate limited-view and to mitigate temporal-
average artifacts, both numerical simulations with ground
truth and in vivo experimental data were used.

2.F.1. Numerical simulations

In numerical simulations, a sequence of time-resolved
human cerebral angiograms with a peak iodinated contrast
enhancement of 400 HU were used to generate synthesized
fan-beam projection data by a forward projection procedure.
The peak enhancement is similar to a CT angiography
acquisition at 80 kVp (mean beam energy at 50 keV) using
an intravenous contrast injection protocol and a 350 mg I/ml
contrast solution. Poisson noise was added to the numerical
simulation data by assuming of an entrance photon fluence
of 5.5×105 photons/ray to make the noise level in the FBP
image of the angiogram similar to the noise level in a clinical
CT angiogram. The total view angle span in the numerical
simulations was restricted to the short scan angular span with
a fan angle of γm = 60◦. An image matrix size of 320×320,
corresponding to a 0.5 mm2 pixel size, was used in image

reconstruction. Over the short scan angular span with 888
detector elements crossing the entire scanning field of view,
656 view angles were acquired.

To validate the proposed SMART-RECON method, the
projection data for each of the four 60◦ angular sectors were
generated from angiograms with an abrupt change in contrast
enhancement from one angular sector to another. Note that the
purpose of this validation was to demonstrate the following
two key points: (1) SMART-RECON is able to reconstruct
images without noticeable limited-view artifacts from data
acquired in an ultranarrow temporal window corresponding
to one quarter of the short scan angular span; (2) temporal
fidelity within each ultranarrow temporal window can be
reconstructed with high accuracy. The purpose of selecting
such an abrupt intersector contrast change in the simulations
is to provide a more challenging test for the algorithm and
also to have known truth for contrast enhancement at each
individual time frame.

Limited-view artifacts are primarily assessed by subjective
visual assessment and further quantified using the relative
root mean square error (rRMSE) metric with the noiseless
angiograms as ground truth for each of the four image frames.
The rRMSE is defined as follows:

rRMSE=


i

�
Ii− I truth

i

�2
i

�
I truth
i

� ×100%, (19)

where I is the image being assessed, I truth is the ground truth
reference image, and the subscript i denotes the pixel location
in the image. Although the rRMSE metric also provides a
quantification of temporal fidelity, it is well-known that the
rRMSE metric is not sensitive to local reconstruction errors.
In this paper, the temporal fidelity of two sampled regions of
interest (ROIs) in the reconstructed angiograms was further
quantified by the universal quality index (UQI)21 relative to
the ground truth angiograms. The UQI is defined as follows:

UQI=
4σxy x̄ ȳ(

σ2
x+σ

2
y

) �(x̄)2+ ( ȳ)2� , (20)

where the subscripts x and y denote the input image and
the ground truth image for comparison, σ2

x/y denotes the
variance of x or y , x̄ and ȳ denote the mean values of x
and y , respectively, and σxy denotes the covariance of x and
y , defined as follows: σxy = (1/(N −1))N

i=1(xi− x̄)(yi− ȳ).
The UQI has a dynamic range of [−1,1] and is unitless.

For comparison, the rRMSE and UQI were calculated for
the short scan FBP reconstruction result (where only a single
image can be reconstructed), for the PICCS reconstruction for
each of the four time frames, and for the SMART-RECON
images at each of the four time frames. More details of the
PICCS implementation are described in Refs. 7, 18, and 22.

2.F.2. Validation using in vivo experimental data

Although these numerical simulations have the advantage
of including a known ground truth to quantify performance
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F. 1. Image results for four time frames for the numerical simulation studies. All images are shown with a W/L: 2000/100.

of the SMART-RECON algorithm, they do have poten-
tial limitations: the assumption of an unrealistically abrupt
contrast enhancement change from one time frame to another,
relatively sparse image content in the angiograms, an overly
simplified Poisson noise model, and it is a purely two
dimensional simulated image slice, not the more clinically
relevant cone beam image volume case. To address these
potential limitations in numerical simulations and to demon-
strate the applicability of SMART-RECON to in vivo human
subject case, a deidentified clinical contrast enhanced cone-
beam C-arm CT data set was retrospectively reconstructed
using SMART-RECON. Data were acquired using a C-arm
image acquisition platform (Artis zee, Siemens AX, Forcheim,
Germany). The angular span of the data acquisition was the
short scan angular span with a 20◦ cone angle (Θ = 180◦

+γm = 200◦ total). The total data acquisition time was 4.3 s
and a total of 248 cone beam projections were acquired.
Each cone beam projection includes 1024×960 measured line
integrals. An image matrix size of 512×512×400 was used
to reconstruct the entire image volume for each time frame.
Using the conventional FBP reconstruction, only one image
volume with a reconstruction temporal window of 4.3 s can be
reconstructed. The endpoint of applying the SMART-RECON
method to the same data set is to demonstrate that three
image time frames can be reconstructed with clear difference
in contrast enhancement and without noticeable limited-view
artifacts. For comparison, both CT numbers and noise standard
deviations were measured in different ROIs in the FBP, PICCS,
and SMART-RECON images.

3. RESULTS
3.A. Numerical results

Numerical simulation results are presented in Fig. 1. The
first row shows the reference angiographic images for each
time frame, the second and third rows show the corresponding
time frames reconstructed with the PICCS and SMART-
RECON methods, respectively. The reference images were
reconstructed using FBP from noisy projection data covering
the entire short scan angular span for each of the individual
image time frames. As one can visually observe in Fig. 1,
SMART-RECON enables a clear reconstruction of arteries
and veins with good quality for all four time frames. On
the other hand, although images reconstructed with PICCS
demonstrate reduced limited view artifacts and image noise,
the reconstruction quality of smaller arteries and veins in
local areas is poor. Additionally, the PICCS images still
demonstrate noticeable temporal averaging artifacts, which
the SMART-RECON images do not. To help visualize the
differences, two different regions of interest were magnified
and presented in Fig. 2.

The rRMSEs were calculated for the respective time frames
reconstructed with PICCS and SMART-RECON to provide
an overall quantification of reconstruction accuracy. Only
by using the entire angular range, Θ, can a FBP image be
reconstructed without limited-view artifacts, but this averages
all the temporal information in the temporal window in which
data are acquired, thus introducing a temporal error between
this temporally averaged FBP image and the noiseless ground
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F. 2. The ROIs indicated in Fig. 1 are displayed here enlarged.

truth at each time frame. The rRMSE of this temporally
averaged FBP image was calculated for the corresponding
noiseless ground truth image at four time frames. The rRMSE
for the short scan FBP from temporal-averaged projection data
and PICCS and SMART-RECON from projection data for one
specific time frame are presented in Fig. 3. As one can observe
in this figure, the short scan FBP images from the temporally
averaged projection data deviate from the truth with significant
temporal averaging errors. As a comparison, one can observe
in Fig. 3 that SMART-RECON enables the reconstruction of
all four time frames with the lowest rRMSE since the SMART-
RECON suppresses both limited-view artifacts and temporally
average artifacts during reconstruction. To benchmark the
potential impact of the added noise in projection data on

the rRMSE of the reconstructed image without temporal
average, a FBP reconstruction was applied to the ground truth
projection data with added noise to generate a reference FBP
image and its rRMSE was calculated and presented in Fig. 3.

The differences between the PICCS reconstruction and
SMART-RECON for the two marked ROIs were highlighted
by the calculation of local UQI indices over two marked
regions on time frames 1 (ROI 1) and 4 (ROI 2) (Fig. 1)
presented in Fig. 3. As one can observe that SMART-RECON
enables almost perfect reconstruction for the marked ROIs
with a UQI of 0.95 and 0.96 while the corresponding UQIs
for PICCS reconstruction are 0.78 and 0.81, respectively. The
results indicate that SMART-RECON enables reconstruction
with high temporal fidelity. In comparison, the temporally
averaged FBP reconstruction had a UQI of 0.71 and 0.79 in
the same two ROIs.

In numerical simulations, it has been found that 15−20
iterations of data fidelity enforcement are sufficient to reach
the empirical stopping criterion, i.e., difference between two
consecutive iterations is negligible in visual observations.
Using our computational facility described at the end of Sec. 2,
it takes 1 s to execute a complete iteration. In all presented
results, to be more conservative, 50 iterations of data fidelity
enforcement were used. As a result, the total reconstruction
time for all four time frames is 50 s. Note that no specific
code optimization has been applied to the current numerical
implementation.

3.B. In vivo cone beam CT results

Rather than the single image volume that can be recon-
structed by FBP using the acquired short scan data, SMART-
RECON enables us to reconstruct several different image
volumes with clear changes in the contrast of the vasculature.
In this in vivo human subject case, three time frames, each time
frame corresponds to a temporal window of 1.43 (= 4.3/3)
s and an angular span of 66◦ (= 200◦/3), were found to
be an excellent balance between limited-view artifacts and
temporal-average artifacts that are reflected in the difference
in contrast enhancement in each individual reconstructed time
frame. As an example, the mean measured value of a major
vessel in the FBP average image was 349 HU, but the mean

F. 3. Quantitative comparison between temporal averaged FBP image, FBP reconstructed image for each segments, and SMART-RECON images for each
segments was plotted.
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F. 4. Image results for three time frames from the in vivo human study. All images are shown with W/L: 1000/300 HU.

value for the same vessel in the three SMART-RECON time
frames was 218, 383, and 302 HU. Representative axial and
sagittal image slices from the reconstructed SMART-RECON
image volumes were presented in Fig. 4. To help visualize
the contrast differences in the three time frames, a thin slab
(10× 0.5 mm = 5 mm) maximal intensity projection (MIP)
was used in Fig. 4. As one can observe in the presented
images, there are no limited-view artifacts present in SMART-
RECON, and the difference in vascular contrast can be
clearly observed from time frames 1 to 3. To estimate noise
performance, the standard deviation in a ROI placed over the
relatively uniform soft tissue area was measured for the three
reconstructed image frames. The noise standard deviation for
the FBP reconstruction over the entire short scan angular
range is 126 HU while the noise standard deviations for the
three time frames are 39, 41, and 38 HU, respectively. On
average, a factor of 3.1 noise reduction has been achieved in

SMART-RECON reconstruction. For comparison, PICCS
images were also generated for the three time frames and
are compared to the SMART-RECON images in Fig. 5. As
clearly shown in this figure, using the same short scan FBP
image volume as the prior image and the same projection
data set from the three 66◦ angular span, PICCS algorithm
does not enable an acceptable reconstruction of the three
time frames with clear difference in contrast enhancement
and without limited-view artifacts. In contrast, the presented
SMART-RECON method in this paper does enable time-
resolved reconstruction of three image volumes with clear
difference in contrast enhancement and without limited-view
artifacts.

To reconstruct the three image volumes with matrix
size of 256× 256× 256 (FOV diameter = 25.6 cm) using
248× 616× 480 line integrals, it takes 30 s to execute a
complete iteration for a total computation time of 7.5 min

F. 5. A comparison between PICCS reconstructions for the three time frames and those reconstructed with SMART-RECON. All images shown with W/L:
1000/300 HU.
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with 15 iterations of the data fidelity enforcement to achieve
empirical convergence, i.e., the difference between the two
iterations is negligible in visual observations.

4. DISCUSSION AND CONCLUSIONS

In this paper, a new iterative image reconstruction method,
SMART-RECON, was developed and validated to enable
time-resolved CT reconstruction without limited-view arti-
facts using data from an angular span that is significantly
below 180◦−γm. The mitigation of the limited-view artifacts
in SMART-RECON was achieved by minimizing the nuclear
norm of the augmented spatial–temporal image matrix. The
temporal fidelity was maintained by imposing data fidelity on
each given time frame using the data from the corresponding
temporal window. A balance is sought by SMART-RECON by
varying the regularization parameter λ to eliminate limited-
view artifacts while to maintain temporal fidelity for each
temporal window.

Numerical simulations in two dimensional time-resolved
angiograms with Poisson noise added to the projection data
were performed to quantify the performance of SMART-
RECON in a case with known ground truth. The potential
limitations of numerical simulations were complemented with
the retrospective in vivo human subject study from a contrast
enhanced cone beam CT data set. Validation results from
numerical simulations demonstrate that SMART-RECON is
able to eliminate limited-view artifacts for an angular span as
short as 60◦when the Tuy data sufficiency condition is severely
violated. Numerical simulation results also demonstrated high
reconstruction accuracy for SMART-RECON which indicates
that the contrast dynamics of the image object have been
restored with high accuracy quantified by both rRMSE and
UQIs. In vivo experimental results demonstrated that SMART-
RECON may be readily applied to clinical cone beam CT
data acquisitions as well. With a single short scan acquisition,
the current FBP can only generate one image volume with
temporal-average artifact over a temporal window of 4.3 s.
Using the proposed SMART-RECON, three image volumes
without limited-view artifacts, each volume corresponds to
an angular span of 66◦, can be reconstructed to show the
contrast dynamic change and each time frame corresponds to
a temporal window of about 1.43 s.

There are several limitations to the current study. (1)
The selection of reconstruction parameters is empirical in
this preliminary study; specifically, the updating step size
δ was fixed at 0.25 in both numerical simulation and in
vivo human subject cases to guarantee convergence. The
regularizer strength λ was also fixed to be 10% of the
largest singular value (0.12 for numerical simulations and
0.1 for human studies). (2) The minimum viable angular
span will have to be systematically investigated for a specific
clinical application/task to determine a meaningful lower
limit. (3) The multitude of spatial and temporal regularizers
presented in the literature has not yet been investigated
but could be readily incorporated into SMART-RECON to
potentially further improve image quality. (4) In addition to

the time-resolved CT scenario presented here, other potential
applications of the SMART-RECON algorithm will have to
be further investigated. These concerns are beyond the scope
of this short communication, but we hope to address them in
future studies.

In conclusion, a new method was proposed and validated
in this paper to enable the reconstruction of time-resolved
CT images using data from an angular span of significantly
below 180◦−γm that severely violates the Tuy data sufficiency
condition.
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