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Background: The CXCL10/CXCR3 signalling mediates paracrine interactions between tumour and stromal cells that govern
leukocyte trafficking and angiogenesis. Emerging data implicate noncanonical CXCL10/CXCR3 signalling in tumourigenesis and
metastasis. However, little is known regarding the role for autocrine CXCL10/CXCR3 signalling in regulating the metastatic
potential of individual tumour clones.

Methods: We performed transcriptomic and cytokine profiling to characterise the functions of CXCL10 and CXCR3 in tumour cells
with different metastatic abilities. We modulated the expression of the CXCL10/CXCR3 pathway using shRNA-mediated silencing
in both in vitro and in vivo models of B16F1 melanoma. In addition, we examined the expression of CXCL10 and CXCR3 and their
associations with clinical outcomes in clinical data sets derived from over 670 patients with melanoma and colon and renal cell
carcinomas.

Results: We identified a critical role for autocrine CXCL10/CXCR3 signalling in promoting tumour cell growth, motility and
metastasis. Analysis of publicly available clinical data sets demonstrated that coexpression of CXCL10 and CXCR3 predicted an
increased metastatic potential and was associated with early metastatic disease progression and poor overall survival.

Conclusion: These findings support the potential for CXCL10/CXCR3 coexpression as a predictor of metastatic recurrence and
point towards a role for targeting of this oncogenic axis in the treatment of metastatic disease.

Interferon-g-inducible protein CXCL10 (IP-10) is a small (10 kDa)
secretable protein in the CXC subfamily of cytokines. Consistent
with known functions of CXC cytokines, CXCL10 mediates
leukocyte trafficking, adaptive immunity, inflammation, haemato-
poiesis and angiogenesis (Groom and Luster, 2011; Liu et al, 2011;
Zlotnik and Yoshie, 2012). The CXCL10 induces the chemotaxis of
various subtypes of leukocytes including T and B lymphocytes, NK
cells, dendritic cells and macrophages (Luster and Ravetch, 1987;
Loetscher et al, 1998; Qin et al, 1998; Lo et al, 2010). The CXCL10

signals through the G-protein-coupled seven-transmembrane recep-
tor CXCR3 (Clark-Lewis et al, 2003; Billottet et al, 2013). In human
cells, CXCR3 exists in three major isoforms – CXCR3-A, CXCR3-B
and CXCR3-alt – that are associated with alternative splicing and
potentially different functions (Clark-Lewis et al, 2003; Liu et al,
2011). Signalling occurs through the recruitment of GTP-binding
proteins with downstream activation of multiple pathways involved
in the regulation of cell survival, proliferation and motility. The
CXCR3-A has been associated with pro-survival functions, whereas
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CXCR3-B is thought to mediate suppressive effects on cell growth
and migration; however, these effects are cell and stimuli specific
(Liu et al, 2011; Wu et al, 2012; Utsumi et al, 2014).

Recent data implicate CXCL10 in tumourigenesis through
different mechanisms. The CXCL10 produced by tumour or host
cells can recruit CXCR3þ tumour-infiltrating T cells and NK cells
associated with tumour suppression (Luster and Leder, 1993;
Wenzel et al, 2005; Fujita et al, 2009; Harlin et al, 2009; Dengel
et al, 2010; Antonicelli et al, 2011; Wennerberg et al, 2014).
In contrast, CXCR3þ tumour clones, as compared with
CXCR3� clones, have an increased propensity to metastasise
potentially because of increased ligand signalling from the pre-
metastatic niche (Kawada et al, 2004; Walser et al, 2006; Kawada
et al, 2007; Monteagudo et al, 2007; Zipin-Roitman et al, 2007;
Cambien et al, 2009; Ma et al, 2009). Little is known about the
metastatic abilities of tumour clones coexpressing CXCL10 and
CXCR3 and the effects of constitutively activated autocrine
signalling on the development and phenotypic properties of
metastatic cells invading the bloodstream.

In the current report, using melanoma tumour cells
with different metastatic abilities we demonstrate that the
CXCL10/CXCR3 axis expressed by melanoma cells independent
of the host microenvironment is sufficient for the regulation of
melanoma metastasis to the lung. In addition, analysis of currently
available expressional and clinical data sets demonstrates that
expression of the CXCL10/CXCR3 axis is associated with increased
metastatic potential in melanoma, as well as in colon and renal cell
carcinoma patients. These data support the potential for
CXCL10/CXCR3 coexpression to be used not only as a predictor
for metastatic disease progression, but also as a target for directed
therapies in patients with metastatic disease.

MATERIALS AND METHODS

Cell culture. The generation of B16F1 melanoma cell line
derivatives with differing metastatic potentials (P2M3C: high
potential; P2M5B: low potential) has been previously described
(Khodarev et al, 2009). Cells were cultured in RPMI-1640 media
(Life Technologies Corporation, Grand Island, NY, USA) supple-
mented with 10% fetal bovine serum, 100 U ml� 1 penicillin and
100 mg ml� 1 streptomycin. All cell lines were maintained in
culture with 5% CO2 at 37 1C.

Animal studies. Tumour cells (105 in 100 ml PBS) were injected
via tail vein into C57BL/6 or athymic nude mice (n¼ 5 per group)
at 5–6 weeks of age (Harlan, Madison, WI, USA). Mice were killed
at specified time points and surface lung tumours were manually
counted. The care and treatment of experimental animals was in
accordance with the institutional guidelines at the University of
Chicago.

Proliferation experiments. Primary tumours were established by
injection of tumour cells (5� 105 in 100 ml PBS) into the hind
limbs of C57BL/6 mice (n¼ 8 per group). Tumour volumes were
serially measured and calculated assuming a spherical tumour
volume. Cells were also plated (5� 104 cells per well in 6-well
plates or 2� 104 cells per well in 24-well plates) in triplicate to
assess in vitro growth rate. Cell count was manually determined
using a cytometer.

Gene expression analysis. The P2M3C and P2M5B cells grown in
culture and as lung metastases were collected in cell lysis buffer and
homogenised. RNA was isolated using the RecoverAll Total
Nucleic Acid Isolation kit (Ambion, Austin, TX, USA). Three
representative in vivo samples for P2M3C lung metastases were
generated using 15 homogenised metastases for each sample
obtained from 3 individual mice. Similarly, three in vivo samples

for P2M5B cells were generated using 5 homogenised metastases
for each sample obtained from 3 to 5 individual mice. The RNA
(100 ng) was labelled as per the manufacturer’s instructions and
profiled with the Illumina Mouse WG6v2 array in triplicate using
the iSCAN software (Illumina, Inc., San Diego, CA, USA).
Background subtraction, quantile normalisation and log transfor-
mation was performed across arrays using the limma Bioconductor
package (Smyth, 2005). Differential gene expression between
groups was determined using multiple linear regression via the
limma package with a Bonferroni post hoc multiplicity correction
(corrected P-value p0.05) and a fold-change threshold of 1.5. Data
were deposited in Gene Expression Omnibus (GEO, accession
number pending). Ingenuity Pathway Analysis (IPA, Redwood
City, CA, USA) was used for functional gene annotation.
Significance was determined using Fisher’s exact P-value of p0.05.

Mouse cytokine antibody array. Samples were obtained from
P2M3C and P2M5B cell lines grown in vitro and in vivo. Three
in vitro samples for each cell line were generated by plating cells
(2.5� 105) in a 6-well plate in triplicate. At 48 h, culture media
were collected (2 ml) and combined for triplicate samples. In vivo
samples were generated by collecting five homogenised metastases
for each cell line from three individual mice and pooling equal
quantities of homogenised material from each mouse. Samples
were analysed with the Mouse Cytokine Antibody Array Panel A
that measures 40 different cytokines (R&D Systems, Minneapolis,
MN, USA). The density of the arrays was normalised to in assay
controls and measured with ImageJ (version 1.46r software; http://
imagej.nih.gov/ij/).

Interferon-g stimulation. Tumour cells were seeded overnight on
a 96-well plate (2� 104 cells per well in RPMI). Recombinant
mouse interferon-g (R&D Systems) was added at either 1000 or
5000 Units ml� 1 for 24 or 48 h and media were collected. Samples
were assayed in triplicate using a Quantikine ELISA kit for murine
CXCL10 (R&D Systems).

The shRNA-mediated gene silencing. Stable CXCL10 gene
suppression was performed using TRC Lentiviral shRNA clones
TRCN0000068210 (sequence: 50-TAGATTCCGGATTCAGA-
CATC-30; referred as CXCL10 KD #1) and TRCN0000068212
(sequence: 50-TTGATGGTCTTAGATTCCGGA-30; referred as
CXCL10 KD #2) (Dharmacon, Pittsburgh, PA, USA). Stable
CXCR3 gene suppression was achieved using TRC Lentiviral
shRNA clones TRCN0000027391 (sequence: 50-TTCTCTCCGTG
AAGATGACGG-30; referred as CXCR3 KD #1) and TRCN000002
7383 (sequence: 50-TTTCTCGACCACAGTTGCGGG-30; referred
as CXCR3 KD #2). Scrambled shRNAs served as nontargeting
controls. Suppression was confirmed using western blot analysis
and the Quantikine ELISA kit for murine CXCL10 (R&D Systems).

Western blot analysis. Total cellular protein was extracted and
normalised as previously described (Khodarev et al, 2004). Protein
concentrations were adjusted to 1 mg ml� 1 and equal amounts of
protein were loaded in each well. For total CXCL10, CXCR3 and
ERK proteins, 20–25 mg of proteins per well were loaded, whereas
for phosphorylated proteins (pERK), 30–35 mg of proteins per well
were loaded. Proteins were separated on 7.5%–10% SDS–PAGE
and transferred to polyvinylidene difluoride (PVDF) membranes.
For loading control, we used antibodies for b-actin and a-tubulin
(sc-47778 and sc-12462-R; Santa Cruz, Santa Cruz, CA, USA). The
CXCL10 and CXCR3 antibodies were purchased from R&D
Systems (AF-466-NA and MAB160–100), ERK from Santa Cruz
(sc-1647) and pERK from Cell Signaling (Danvers, MA, USA).
Images were quantified using ImageJ by integration of pixel values
across the area of specific bands.

Migration, invasion and adhesion assays. Costar Transwell
Permeable 8.0mm/6.5 mm membranes 3422 (Corning, Corning,
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NY, USA) were coated with either rat tail type I collagen (200ml of
100 mg ml� 1 mixture in PBS) and 354236 (Corning, Tewksbury,
MA, USA) for migration assays or Growth Factor Reduced and
Phenol Red-Free Matrigel (200 ml of 1 : 40 dilution in PBS) for
invasion assays and allowed to harden overnight. Then, PBS was
removed from the inserts and replaced with 2� 105 tumour cells
in 200 ml RPMI-1640 media without additives. Next, 500 ml
RPMI-1640 media supplemented with 10% fetal bovine serum,
100 U ml� 1 penicillin and 100 mg ml� 1 streptomycin were added
into each main well chamber causing a serum gradient. After 4–6 h,
the media inside and outside of the insert were carefully removed.
The inside of the insert was carefully scraped with a sterile
polyester tipped applicator to remove any nonmigrating cells. The
insert was placed in 100 ml of 4% paraformaldehyde in PBS and
allowed to sit for 15 min. Each insert was then rinsed twice in a
24-well filled with 600 ml PBST (500 ml PBS with 250 ml Tween 20
(Sigma-Aldrich, St Louis, MO, USA)) for 2 min. Each insert was
then coated with 100 ml of a 1 : 1000 40,6-diamidino-2-phenylindole
dihydrochloride (DAPI, Life Technologies Corporation) solution
in PBS. This was allowed to sit for 20 min and then each insert was
rinsed twice in 600 ml PBST for 2 min. Any remaining solution was
shaken off and the inserts were imaged at � 20 magnification
under UV light and 3 images per insert (9 per well) were taken.
The number of cells present on each image was counted and
averaged for each cell line.

For adhesion assays, Growth Factor Reduced and Phenol Red-
Free Matrigel 356231 (Corning, Tewksbury, MA, USA) were
thawed in an ice bucket for 30 min. Then, 200 ml of a 1 : 16 000
dilution of Matrigel was placed in each well of a 96-well plate. The
plates were incubated overnight to allow for hardening. The
following day, the PBS was removed from the 96-well plates,
leaving only the Matrigel in each well. Cells (5� 104 cells per well
in PBS) were incubated for 4 h. Each well was washed twice with
RPMI-1640 media and then filled with 100 ml media and 20 ml
CellTiter-Blue (Promega, Madison, WI, USA) and allowed to
incubate at 37 1C in 5% CO2 for 1 h. The relative fluorescence level
of each well was then measured and averaged across 10 wells per
cell line.

Clinical database analysis. Multiple clinical data sets were
examined to assess the relationship between CXCL10 and CXCR3
gene expression, metastatic development and survival in three
types of human cancer. The data sets are listed in Supplementary
Table S1. Expression was defined as a relative gene expression
value greater than the median value across samples. Coexpression
denoted expression of both CXCL10 and CXCR3 in a given
sample. Rapid metastatic recurrence was defined as a distant
metastasis recurrence-free interval less than the median distant
metastasis recurrence-free interval across patients. Rapid death was
defined as an overall survival less than the median overall survival
across patients.

Statistical analysis. Data are presented as mean±s.e.m. Two-
tailed Student’s t-tests were used to determine differences between
means. A P-value of p0.05 determined statistical significance.

RESULTS

Metastatic ability of tumour cell clones is independent of growth
rate. We previously described the derivation of a panel of B16F1
tumour cell lines with different capacities to colonise the lung
(Khodarev et al, 2009). In the current study, we utilised two B16F1
derivatives with high and low metastatic potentials, designated
P2M3C and P2M5B, to investigate the potential molecular
mechanisms contributing to the observed metastatic phenotypes.
At 4 weeks following tail vein injection, P2M3C cells rapidly
colonised the lungs of syngeneic C57BL/6 mice with a

mean±s.e.m. number of 127.3±13.9 metastases, whereas
P2M5B cells formed 45-fold fewer lung metastases with a mean
number of 2.8±2 metastases (P¼ 0.011, Figure 1A and B). At 6
weeks following tail vein injection, the mean number of P2M5B
lung metastases had not significantly increased when compared
with that at 2 or 4 weeks; however, all C57BL/6 mice injected with
P2M3C cells had succumbed to death because of metastatic
tumour burden (Figure 1B). To assess whether the high metastatic
potential of P2M3C cells was due to an increased growth rate,
tumour cells were injected into the hind limbs of C57BL/6 mice
(Figure 1C) or grown in tissue culture (Figure 1D). These
experiments showed no significant differences in growth kinetics
either in vivo or in vitro between P2M3C and P2M5B cells.
In addition, we tested the hypothesis that P2M3C cells have
increased tumour growth in the lung microenvironment as
compared with P2M5B cells. To this end, we compared the sizes
of individual lung metastases produced by each cell line, a measure
of their tumour growth potential. Consistent with the previous
results, this analysis demonstrated no increase in lung colony size
in P2M3C cells as compared with P2M5B cells (Supplementary
Figure S1). Taken together, these results supported a model in
which two tumour cell derivatives exhibited differential abilities to
colonise the lung microenvironment that, at least in large part, is
independent of growth rate.

High metastatic potential is associated with increased CXCL10
secretion. To assess the molecular differences between tumour
cells with high and low metastatic phenotypes, we performed gene
expression profiling of P2M3C and P2M5B cells grown in vitro and
in vivo from macroscopically resected lung colonies. Using
Illumina Mouse WG6v2 gene expression arrays, we identified
153 differentially expressed genes between the two cell lines grown
in vitro, of which 117 genes were overexpressed and 36 were
suppressed in P2M3C relative to P2M5B. Similarly, we identified
230 differentially expressed genes between in vivo metastatic
lesions in P2M3C as compared with P2M5B, of which 167 were
overexpressed and 63 were suppressed. Consistent with the
observed differences in metastatic phenotypes between P2M3C
and P2M5B cells, a large number of pathways involved in ‘Cellular
Movement’ were significantly overexpressed in P2M3C cells and
lung metastases as compared with corresponding P2M5B cells
(Supplementary Tables S2 and S3). Overall, 30 differentially
expressed genes were common to both the in vitro and in vivo
conditions and, therefore, considered intrinsic tumour genes. Of
these, 25 genes were upregulated and 5 were downregulated in
P2M3C relative to P2M5B (Figure 2A and Supplementary Table S4).

Among the differentially expressed genes, CXCL10 was over-
expressed by two-fold in P2M3C cells as compared with P2M5B
cells (P¼ 0.0004, Figure 2B). The CXCL10, also known as
interferon-g-induced protein 10, is secreted by several cell types
in response to host-derived interferon-g and has known roles in
immune modulation and antitumour activity. Given these
recognised functions of CXCL10, we explored a potentially
unexpected role for CXCL10 in mediating the metastatic
phenotype. We measured the secretion of 40 different cytokines
by P2M3C and P2M5B cells using the Mouse Cytokine Antibody
Array Panel A. These data demonstrated that CXCL10 was the
most differentially secreted cytokine by P2M3C cells as compared
with P2M5B cells (Figure 2C and D). We found similar results,
although to a lesser extent, from P2M3C and P2M5B lung
metastases. We also quantified the induction of CXCL10 secretion
as a function of exogenous interferon-g stimulation in P2M3C and
P2M5B cells. At 24 and 48 h after stimulation with varying doses of
interferon-g, P2M3C cells consistently secreted significantly greater
levels of CXCL10 as compared with P2M5B cells (Supplementary
Figure S2). These results demonstrated that the increased
production of tumour cell-derived CXCL10 is associated with a

CXCL10 signalling drives metastasis development BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2015.193 329

http://www.bjcancer.com


high metastatic potential and suggest a role for host-derived
interferon-g in the induction of CXCL10 expression in metastatic
tumour cells.

CXCL10/CXCR3 axis promotes tumour cell metastasis. The
predominant actions of CXCL10 on target cells occur through the
binding of its cell surface cognate receptor CXCR3. The CXCR3
also binds other CXC cytokines, including CXCL9, CXCL11 and
CXCL4; however, none of these CXC cytokines were differentially
expressed in P2M3C cells as compared with P2M5B cells. In this
context, we examined whether the CXCL10/CXCR3 axis directly
mediates the metastatic phenotype of tumour cells. Using
lentiviral-based shRNA constructs we stably suppressed CXCL10
or CXCR3 in P2M3C and P2M5B cells. As determined by western
blot analysis, shRNA-mediated silencing led to significant
suppression of CXCL10 and CXCR3 protein levels (Figure 3A).
Suppression of CXCL10 also led to a significant reduction in
CXCL10 secretion in both P2M3C and P2M5B cells (Po0.001,
Figure 3B).

Suppression of CXCL10 in P2M3C cells significantly decreased
lung colonisation after tail vein injection into C57BL/6 mice by
approximately three-fold (KD #1: 27.8±7.9; KD #2: 26.7±6.4) as
compared with nontargeting control cells (89.7±5.4, Po0.001,
Figure 3C). Interestingly, the number of lung colonies in P2M3C
cells after suppression of CXCL10 was similar to that of P2M5B
control cells. Knockdown of CXCL10 in P2M5B cells also led to a
significant reduction in lung colonisation (KD #1: 9.4±2.3; KD #2:
2.8±0.06) as compared with nontargeting control cells (25.4±4.1,
Po0.01, Figure 3C). We obtained similar results when shCXCL10
P2M3C and P2M5B cells were injected into the tail veins of
athymic nude mice, suggesting that the effect of CXCL10 on
metastatic potential in both P2M3C and P2M5B cells was largely
independent of an intact host immune response on metastatic
tumour cells (Supplementary Figure S3A and B). Suppression of
CXCR3 led to a similar phenotypic reduction in lung colonisation
in both P2M3C and P2M5B cells (Figure 3D). As compared
with a nontargeting control (134.4±14.7), CXCR3 knockdown
significantly reduced P2M3C lung metastases (KD #1: 86.1±12.2,
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P¼ 0.03; KD #2: 77.3±7.5, P¼ 0.005). In P2M5B cells, suppres-
sion of CXCR3 also reduced lung colonisation (KD #1: 14.7±2.8,
P¼ 0.14; KD #2: 1.7±0.3) as compared with control cells
(31.3±9.6, P¼ 0.02). To test the functional activity of the
CXCL10/CXCR3 axis, we examined ERK1/2 phosphorylation in
response to CXCL10 stimulation of P2M3C and P2M5B cell lines
(Bonacchi et al, 2001). These data demonstrated increased
phosphorylation of ERK1/2 in both cell lines at 4 h following
CXCL10 treatment (Supplementary Figure S4). This result
supports active CXCR3-mediated signalling in P2M3C and
P2M5B cell lines. Taken together, these data demonstrated that
the CXCL10/CXCR3 axis enhances the metastatic phenotype of
tumour cells.

CXCL10 regulates cell-autonomous properties of metastatic
tumour cells. The CXCL10 has been implicated in several cellular
functions including the regulation of cell growth and motility. We
examined the effects of CXCL10 in mediating such functions in
metastatic tumour cells. Cells were grown either in tissue culture
(Figure 4A) or injected into the hind limbs of C57BL/6 mice
(Figure 4B). The data showed that suppression of CXCL10 resulted
in significant decreases in cell and tumour growth of both P2M3C
and P2M5B cell lines, although the effect of CXCL10 suppression
was more pronounced in P2M3C as compared with P2M5B cells
(Figure 4A and B). We also examined the effect of CXCL10 on
cellular migration, invasion and adhesion. Control P2M3C cells
exhibited increased cell migration (Figure 4C) and adhesion
(Figure 4D), but not invasion (Figure 4C), as compared with
control P2M5B cells. Suppression of CXCL10 resulted in
significant decreases in cell migration, invasion and adhesion
properties of P2M3C cells but only a reduction in cell adhesion of
P2M5B cells. Consistent with these results, suppression of CXCR3
resulted in significant decreases in adhesion properties of both cell
lines (Supplementary Figure S5). Taken together, these data

demonstrated that the CXCL10/CXCR3 axis mediates properties
of metastatic tumour cells through regulation of adhesion, invasion
and migration phenotypes.

Coexpression of CXCL10/CXCR3 in clinical tumours is
associated with metastatic disease. In the context of the above
findings, we hypothesised that CXCL10/CXCR3 expression is
associated with metastasis in clinical cancer samples. We explored
multiple human cancer types for which CXCL10 has been
implicated in mediating metastasis, including melanoma, renal
cell carcinoma and colon carcinoma. Utilising The Cancer Genome
Atlas (CGA) data set consisting of 328 primary and metastatic
melanoma samples, we found that CXCL10 and CXCR3 gene
expression values were significantly correlated (Pearson’s correla-
tion coefficient r¼ 0.47, Po0.0001, Figure 5A). We examined
primary melanomas and melanoma metastases and found that
CXCL10/CXCR3 coexpression occurred more than twice as
frequently in melanoma metastases (43%) as compared with
primary melanoma tumours (20%, P¼ 0.0016, w2 test, Figure 5B).
In the CGA data set, information regarding disease recurrence was
available for 172 patients, and of these, distant metastasis
accounted for 48% of subsequent disease recurrences during the
follow-up period. The incidence of CXCL10/CXCR3 coexpression
was 50% greater in samples with distant metastases at the time of
recurrence (left panel, Figure 5C, 60% vs 40%, P¼ 0.050, w2 test).
In a subset analysis of patients with known metastatic disease,
CXCL10/CXCR3 coexpression rates were 13-fold less in patients
who did not develop distant metastasis at the time of recurrence
(right panel, Figures 5C, P¼ 0.018, w2 test). In a logistic regression
analysis of distant metastatic disease recurrence, only CXCL10/
CXCR3 coexpression and nodal involvement were significant
covariates on univariate analysis when compared with other
traditional clinical variables, including tumour stage, ulceration,
mitotic rate and age. On multivariate analysis, coexpression of
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Figure 3. Suppression of the CXCL10/CXCR3 axis reduces lung metastatic colonisation. (A) Stable shRNA-mediated suppression of CXCL10 and
CXCR3 as confirmed by western blot analysis. Two shRNA constructs (KD #1 and KD #2) were tested for each gene of interest. Nontargeting
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CXCL10/CXCR3 remained an independent predictive factor of
distant metastatic disease recurrence when lymph node involve-
ment was considered (P¼ 0.027, Likelihood Ratio Test,

Supplementary Table S5). Based on these findings, we hypothesised
that CXCL10/CXCR3 coexpression in melanoma metastases would
be associated with an increased potential for subsequent distant
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Figure 5. Coexpression of CXCL10/CXCR3 in clinical tumours predicts early metastatic recurrence and reduced survival. (A) Pearson’s correlation
analysis of CXCL10 and CXCR3 gene expression values derived from The Cancer Genome Atlas (TCGA) data set. Data are plotted on a log-log
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metastatic recurrence. We compared CXCL10/CXCR3 coexpres-
sion in consecutive recurrent metastases derived from two
independent clinical data sets. The results demonstrated that
coexpression of CXCL10/CXCR3 was associated with a 2.6- to 5.1-
fold greater incidence of rapid metastatic recurrence as compared
with samples lacking expression of CXCL10 and/or CXCR3
(Figure 5D left panel, P¼ 0.0091, w2 test). In concert with these
findings, CXCL10/CXCR3 coexpression in melanoma metastases
was associated with significantly inferior overall survival times for
patients with metastatic disease (Figure 5D, right panel, P¼ 0.034,
w2 test). Kaplan–Meier survival analysis of distant metastasis-free
survival (DMFS) demonstrated significant differences (log-rank
P¼ 0.0050) between patient groups based on coexpression of
CXCL10 and CXCR3 (Supplementary Figure S6). Taken together,
these results demonstrated that co-expression of CXCL10/CXCR3
is independently associated with distant metastatic disease
recurrence and inferior patient outcomes.

We extended these findings in clinical data sets of renal cell and
colon carcinoma. In primary colon cancers (n¼ 186) and
corresponding lung metastases (n¼ 20), CXCL10 and CXCR3
gene expression values were also significantly correlated (r¼ 0.44,
Po0.0001, Supplementary Figure S7A). In addition, CXCL10/
CXCR3 coexpression occurred 30% more frequently in lung
metastases (70%) as compared with primary colon cancers (40%,
Supplementary Figure S7B, P¼ 0.010, w2 test). In primary renal cell
carcinomas (n¼ 24) and matched lung metastases (n¼ 24), we
again found a significant correlation between CXCL10 and CXCR3
gene expression values (r¼ 0.61, Po0.0001, Supplementary Figure
S8A). Notably, lung metastases exhibiting overexpression of
CXCL10 had 1.6-fold higher expression of CXCR3 (Student’s
t-test P¼ 0.045) and were 2.2-fold more likely to develop rapid
metastatic recurrence as compared with low CXCL10 expressors
(78% vs 36%, P¼ 0.036, w2 test, Supplementary Figure S8B).

Taken together, these results demonstrated that CXCL10 and
CXCR3 are coexpressed in clinical samples of melanoma as well as
renal cell and colon cancers. Both CXCL10 and CXCR3 are
coexpressed more frequently in metastases than in primary
tumours. Importantly, the coexpression of CXCL10/CXCR3
predicted early metastatic disease recurrence and poor overall
survival.

DISCUSSION

In the current report, we demonstrated that autocrine CXCL10/
CXCR3 signalling in tumour cells with equal growth potential
contributes to metastasis primarily through regulation of cellular
adhesion, invasion and migration (AIM) properties. The AIM
properties of tumour cells are key determinants in the final stages
of metastatic colonisation of distant organ sites (Uppal et al, 2015).
In multiple clinical data sets derived from patients with melanoma,
colon carcinoma or renal cell carcinoma, CXCL10 and CXCR3
were frequently coexpressed in metastases as compared with
primary tumours. In addition, coexpression of CXCL10/CXCR3
was associated with rapid metastatic disease progression and poor
overall survival.

Traditionally, CXCL10/CXCR3 signalling has been associated
with paracrine interactions regulating leukocyte trafficking and
angiogenesis (Luster and Ravetch, 1987; Loetscher et al, 1998; Qin
et al, 1998; Groom and Luster, 2011; Liu et al, 2011; Zlotnik and
Yoshie, 2012). However, recent data have begun to elucidate
noncanonical functions of CXCL10 and CXCR3 in the contexts
of tumourigenesis and metastasis (Luster and Leder, 1993;
Kawada et al, 2004, 2007; Jöhrer et al, 2005; Walser et al, 2006,
2007; Monteagudo et al, 2007; Zipin-Roitman et al, 2007; Cambien
et al, 2009; Fujita et al, 2009; Ma et al, 2009; Dengel et al, 2010;

Lo et al, 2010; Antonicelli et al, 2011; Liu et al, 2011; Lee et al, 2012;
Wu et al, 2012; Billottet et al, 2013; Murakami et al, 2013; Utsumi
et al, 2014; Wennerberg et al, 2014). The CXCL10 has been shown
to induce tumour cell migration, invasion and survival in various
human cancer cell lines (Clark-Lewis et al, 2003; Kawada et al,
2004; Zipin-Roitman et al, 2007; Lee et al, 2012). Importantly,
some of these publications relied on the effects of exogenous
CXCL10 rather than intrinsic production of CXCL10 by cancer
cells. It was also demonstrated that tumour clones expressing
CXCL10, but not CXCL9, grew rapidly as cutaneous tumours
because of the lack of a T cell-mediated antitumour response
(Gorbachev et al, 2007). However, the autocrine effects of CXCL10
were not characterised. In concert with these findings, previous
reports have demonstrated that CXCR3 is often overexpressed in
some tumours as compared with normal tissue. Whether this
receptor is regulated in a cell-autonomous tumour-dependent
context or is activated by host-derived ligands remains largely
unknown. Our data indicate that modulation of the CXCL10/
CXCR3 axis in tumour cells disseminating through the blood-
stream leads to consistent effects on metastasis development in
both immunocompetent and immunocompromised hosts.

Our experimental data are also consistent with analysis of
available clinical data sets and revealed three important features.
First, the coexpression of CXCL10/CXCR3 was more likely to be
associated with poor clinical outcome as compared with expression
of either CXCL10 or CXCR3. In addition, CXCL10 and CXCR3
were significantly correlated in multiple human cancer types.
Second, in different data sets derived from various cancer types
encompassing more than 670 specimens, there was an enrichment
of CXCL10/CXCR3 coexpressing cells in metastatic samples as
compared with primary tumours. These data support a critical role
for autocrine CXCL10/CXCR3 signalling in the development of
metastases. Third, our analysis demonstrated that in distant
metastases, CXCL10/CXCR3 coexpression is associated with an
increased risk of metastatic disease recurrence. Taken together,
these data converge on the direct effects of CXCL10-CXCR3
signalling on the metastatic ability of cancer cells.

Emerging data have also revealed that in certain cellular
contexts interferon-stimulated genes (ISGs) may paradoxically
mediate oncogenic properties (Weichselbaum et al, 2008;
Khodarev et al, 2010; Cheon et al, 2011; Khodarev et al, 2012;
Cheon et al, 2013; Kufe, 2013; Boelens et al, 2014). The CXCL10 is
a prototypical ISG and a member of the Interferon-Related DNA
Damage Signature (IRDS). Genes in this signature are constitu-
tively expressed in different types of cancers and are often
associated with metastatic dissemination, poor prognosis and/or
resistance to anticancer therapies (Khodarev et al, 2004, 2009,
2012; Weichselbaum et al, 2008; Schultz et al, 2010; Duarte et al,
2012). Specific oncogenic functions of IRDS genes are not well
understood; however, many of these genes are well characterised in
the context of antiviral responses (Khodarev et al, 2012; Cheon
et al, 2013; Sistigu et al, 2014). The data presented in the current
report support a role for constitutively expressed CXCL10 as
conferring pro-metastatic functions in tumour cells that may, at
least in part, explain the association between IRDS and poor
prognosis. Taken together, these findings strongly support a
strategy to target the CXCL10/CXCR3 axis in the treatment of
metastatic disease.
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