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Abstract

Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent 

antigen presenting properties of DCs makes them a valuable target for the delivery of 

immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibodymediated 

targeting of DC receptor through DEC-205 provide new opportunities for the clinical application 

of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate 

antigens and adjuvants within the same compartment and be targeted against diverse DC subsets 

also represent an attractive strategy for targeting DCs. This review provides a brief summary of 

the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on 

these vaccines and challenges faced by the next generation DC-targeted vaccines.
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1. Introduction

Vaccines represent one of the major success stories of modern medicine [1]. However in 

spite of considerable effort, it has proven harder to develop effective vaccines against certain 

pathogens (such as human immune deficiency virus and tuberculosis), and chronic diseases 

(such as cancer) wherein strong cell-mediated immunity is desired [2-4]. The major goal of 

vaccination against these conditions is generation of high avidity antigen-specific CD8+ T 

cells capable of cytotoxic T lymphocyte (CTL) response and generation of long-lived 

memory cells [4,5].

Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that play a central role 

in initiating and regulating immunity [6]. DCs efficiently capture both foreign and self-

antigens from the environment and process and present them to T cells [6]. They induce 

differential immune responses according to the accompanying stimulus and thus regulate 

development of immunity or tolerance [7,8]. Owing to their potent antigen presentation 
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capacity and ability to generate distinct T cell responses, they have received particular 

attention in the field of immunotherapy.

2. Dendritic cells as potent antigen presenting cells

Dendritic cell regulate innate as well as acquired immunity and serve as a bridge between 

these two arms. They possess intrinsic specialized features which make them particularly 

efficient to capture, process and present antigens [9]. Firstly, DCs are present at the self-

environment intersection (i.e. skin and mucosal surfaces) and hence strategically located to 

encounter pathogens and other foreign material. Secondly, they have specialized uptake 

receptors and downstream endocytic system for antigen processing and presentation 

(classical MHC molecules I and II for presentation of peptides, and CD1d system for 

presentation of lipid antigens). The specialized surface or intracellular receptors, called 

pattern recognition receptors (PRRs), include C-lectin type receptors (CLRs), Toll-like 

receptors (TLRs), NOD-like receptors (NLRs), RIG-1 like receptors (RLRs) and helicases 

[7,10,11]. Thirdly, they undergo a process called maturation on exposure to a wide range of 

stimuli or ‘danger signals’ (bacterial lipopolysaccharide, viral nucleic acids etc.) which are 

recognized by TLRs, NLRs and RLRs. It is now well appreciated that vaccine adjuvants act 

by inducing DC maturation, which improves antigen processing and presentation [9]. 

Several TLR agonists [Poly I:C (TLR3 agonist), MPLA (TLR4 agonist), CpG ODN (TLR9 

agonist) and Resiquimod/ R848 (TLR7/8 agonist)] have thus been administered along with 

vaccines to deliver concomitant DC activation signals. Lastly, they comprise of multiple 

subsets with distinct location, phenotype and function, and differential expression of 

specialized receptors [12,13]. These receptors can be used to target specific subsets through 

incorporation of monoclonal antibodies in the vaccines [14,15]. These subsets respond 

uniquely to different stimuli and thus contribute to the generation of a broad spectrum of 

immune responses.

3. Diversity and biology of human dendritic cell subsets

Human dendritic cells have been typically divided into blood and cutaneous subsets for 

classification purposes, largely because these compartments are easier to study in humans. 

Blood DCs are further sub-classified into three categories- BDCA2 (CD303)+ plasmacytoid, 

BDCA1 (CD1c)+ myeloid and BDCA3 (CD141)+ myeloid DCs [16-19]. Cutaneous DCs 

comprise of epidermal (Langerhans cells) and dermal (CD14+ DCs and CD1a+ myeloid) 

DCs [16]. Another distinct category, inflammatory DCs are putatively derived from 

monocytes unlike the above mentioned DC subsets which are derived from bone marrow 

precursors [16,20]. These inflammatory DCs have distinct functions, dependent upon the 

inflammatory environment [16,21]. The properties of different DC subsets have been 

succinctly described in reviews [3,16,22,23], with some key features described below and in 

Table 1.

Myeloid DCs (MDCs) are the major antigen-presenting cells. Out of the BDCA1+ and 

BDCA3+ MDCs, the latter constitutes a minor, yet significant subset with superior cross 

antigen-presentation capacity [24-27]. Plasmacytoid dendritic cells (PDCs), on the other 

hand, secrete large amounts of interferon-alpha on exposure to viruses [28,29] as well as 
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maintain tolerance against self-antigens [30,31]. This may explain why their dysfunction has 

been linked to the pathogenesis of autoimmune conditions such as systemic lupus 

erythematosus and immune thrombocytopenic purpura [32,33]. Langerhans cells (LCs) 

display a striking duality of function. They can prime T cell immunity as well as induce 

regulatory and IL-22 secreting T cells [34-36]. Therefore the role of LCs has evolved in 

recent years to include their tolerogenic function and broader roles in epithelial homeostasis 

[16]. Dermal CD14+ DCs, on the other hand, primarily stimulate humoral immunity 

[34,36-38].

4. Human versus mouse dendritic cell subsets

The human counterparts for the two most studied mouse DC subsets - CD8α+ and CD8α- 

DCs are BDCA3+ MDCs [26,27] and BDCA1+ MDCs respectively. Plasmacytoid DCs, on 

the other hand, are shared by both human and murine immune system. Although the 

majority of TLRs and CLRs on the major DC subsets are common in both human and mouse 

counterparts, clear differences exist. TLR9 which is found in all murine major DC subsets, is 

expressed only by PDCs in humans [12]. Other examples include CLRs DC-SIGN [39] and 

DC-ASPGR [40] whose biology differ between murine and human DCs.

The major murine DC subsets - CD8α+/DEC205+ and CD8α-/DCIR+ DCs show a 

remarkable division of labor in terms of their predominant response. While CD8α+ DCs 

efficiently cross-prime CD8+ T cell immunity through MHC class I antigen presentation 

[41], CD8α- DCs stimulate predominant CD4+ T cell response through MHC class II 

presentation [42]. This has been explained partly by some inherent characteristics of CD8α+ 

DCs- high endosomal pH, low antigen degradation, high antigen export to cytosol and more 

pre-synthesized stores of MHC class I molecules [22,43]. In humans, BDCA3+ MDCs were 

initially described to have superior cross-presentation capability than other DC subsets, 

however the cross-presentation capacity is not restricted to this subset [27]. Chatterjee et al 

found that cross-presentation capacity of human DCs was highly influenced by antigen 

delivery and whether antigens were delivered to early or late endosomes [44]. While late 

endosomal delivery through DEC205 maintained the superiority of BDCA3+ MDCs over 

BDCA1+ MDCs, this was eliminated on antigen delivery to early endosomes through CD40 

or CD11c [45]. Another study showed all freshly isolated tonsilresident DC subsets – 

BDCA1+ MDCs, BDCA3+ MDCs and PDCs- possessed similar antigen cross-presentation 

capacity [46]. All three DC subsets could export proteins into cytosol efficiently and both 

BDCA1+ and BDCA3+ MDCs displayed similar phagosomal pH and production of reactive 

oxygen species. These findings are supported by numerous other studies where other DC 

subsets – PDCs [47-49], BDCA1+ MDCs [26,50], Langerhans cells [34,35] and CD1a+ DCs 

in skin-draining lymph nodes [51] cross-primed efficient CD8+ T cell immunity in culture.

5. Ex vivo as opposed to in situ dendritic cell targeting

Efficient and specific delivery of antigens to dendritic cells is the cornerstone for generating 

strong immune responses. Two major strategies have been utilized to engage dendritic cells 

[52]. The first approach involves ex vivo loading of autologous DCs with antigens/adjuvants 

and re-injecting them into patients while the second one targets DCs in situ through vaccine 
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conjugated to DC receptor-specific monoclonal antibodies. Most studies to date have 

focused on adoptive transfer of DCs and found it to be safe and immunogenic [52-54]. Two 

broad approaches have been tried, injection of naturally occurring DCs, or differentiation of 

DCs from progenitors ex vivo, before adoptive transfer. Adoptive transfer of naturally 

occurring DCs is best exemplified by Sipuleucel-T therapy, which involves isolation and ex-

vivo culture of patient’s APCs with prostatic acid phosphatase (PAP) and GM-CSF fusion 

protein. GM-CSF is added in addition to PAP antigen to promote activation of APCs, 

manifest as increased expression of HLA class II, co-stimulatory molecules and secretion of 

cytokines [55]. A large, randomized, double-blind, placebo-controlled phase III trial 

(IMPACT study) showed a median survival benefit of 4.1 months following Sipuleucel-T, 

leading to FDA approval for treatment of asymptomatic or minimally symptomatic patients 

with metastatic prostate cancer [56]. Ex-vivo vaccines were also tested in melanoma using 

patients’ plasmacytoid dendritic cells loaded with tumor antigen-associated peptides. 

Specific CD4+ and CD8+ T cells were generated in addition to a much desirable interferon 

signature [57]. However, unlike the above two studies which employed naturally occurring 

DCs, majority of the work with ex-vivo DC vaccines utilized monocyte-derived dendritic 

cells (Mo-DCs), which are not physiological DCs. These studies included treatment of 

patients with melanoma [58], breast [59] and ovarian cancer [60] and HIV infection [61,62], 

as well generation of tolerogenic response in autoimmune conditions such as rheumatoid 

arthritis and multiple sclerosis [63,64]. Of note, decrease in HIV viral load was reported in 

two studies after injection of DCs loaded ex vivo with chemically inactivated autologous 

virus [61,62]. A summary of clinical trials using ex vivo DC vaccines is provided in a recent 

review [52]. Widespread application of adoptive DC transfer has been limited by cost, labor 

requirements and technical complexity of the procedure [13,65]. Targeting dendritic cells in 

situ will circumvent these problems and provide readily available off-the-shelf products. 

Moreover, after ex vivo injections, DCs need to migrate to lymph nodes, while in case of in 

situ targeting, vaccines can be directly targeted to desired DC subsets present in desired 

locations [12].

6. Antibody-based targeting – lessons learnt from preclinical and early 

clinical studies targeting DEC205

The pioneering studies in the field of in situ DC targeting by Steinman and Nussenzweig 

laboratories through anti-DEC205 antibody constructs laid the groundwork for the clinical 

development of these vaccines [15,66,67]. A critical finding was the generation of tolerance 

when antigens were targeted to steady state DCs [15]. Application of adjuvants along with 

targeted vaccines, however, led to the generation of protective antigen-specific cellular 

immunity. This led to further testing of vaccines targeting DCs via antibodies to generate 

protective and therapeutic immunity against chronic infections and cancer (Table 2) [9].

Both these principles have been evaluated in numerous preclinical studies. Targeting DCs 

through DEC205 in the presence of adjuvants (TLR3, TLR7/8 or CD40 ligands) led to 

protective immunity against pathogens (HIV [68-70], tuberculosis and dengue [71]) and 

cancer. On the other hand, DEC205 targeting in the absence of DC activators leads to 

tolerance in experimental models of type 1 diabetes mellitus and experimental allergic 
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encephalomyelitis [72-74]. Similarly, targeting through other DC surface receptors such as 

DC-SIGN [75], CLEC9A [69,76], DCIR [35,77], Dectin-1 [78] and Langerin [69,79] along 

with adjuvants stimulated integrated humoral and cellular immune responses.

It is important to note the plasticity of DC subsets which are capable of generating 

differential immune responses when targeted through different DC receptors [42,67]. In one 

study, targeting human DCs in the absence of adjuvant through DC-ASPGR led to the 

generation of IL-10 producing suppressive CD4+ T cells, while targeting through LOX-1 led 

to stimulation of IFN-γ producing CD4+ T cells [40]. In another study, where vaccines were 

targeted to both conventional and plasmacytoid murine DCs, Siglec-H targeting was found 

inferior to initiate either MHC-I or MHC-II antigen presentation, compared to BST-2 or 

DEC205 targeting [80].

Recently, in situ DC targeting through soluble antigen-DC receptor antibody construct was 

tested in a phase I clinical trial using CDX-1401 [81]. This vaccine (CDX1401, Celldex 

Therapeutics, Hampton, NJ, USA) consisted of a human anti-DEC205 monoclonal antibody 

fused to full-length tumor antigen NY-ESO-1 and was administered along with TLR 

agonists resiquimod (TLR 7/8 agonist) and Hiltonol (polyICLC, TLR3 agonist). 

Intracutaneous injection (combination of intradermal and subcutaneous injection) along with 

topical or subcutaneous administration of adjuvants led to generation of robust humoral and 

cellular immunity against NY-ESO-1. This was observed even in patients where NY-ESO-1 

expression was not present in the patient tumor. Thirteen out of forty-eight patients had 

stabilization of disease with a median duration of 6.7 months (2.4+ to 13.4 months). 

Additionally, two patients experienced tumor regression. The vaccine did not result in any 

Grade 3/4 or dose-limiting toxicities. This first in-human study of a protein- antibody 

construct vaccine targeting DCs demonstrated that these vaccines are immunogenic, safe 

and well-tolerated. Of note, 6 out of 8 patients (75%) who received immune-checkpoint 

inhibitors within 3 months of receiving CDX-1401 had objective clinical responses. Of these 

patients, clinical responses were observed in 4 of 6 melanoma patients who received 

Ipilumimab following CDX-1401. These findings are encouraging but preliminary and need 

to be confirmed in the context of formal clinical trial testing this combination. These data 

nonetheless provide support for clinical studies to test whether combining DC targeted 

vaccines with strategies such as immune check-point inhibitors will lead to improved 

efficacy compared to immune checkpoint inhibitors alone. This approach may be 

particularly relevant for patients lacking immunity to tumor antigens at baseline prior to 

checkpoint blockade[82].

7. Emerging approaches – Nanoparticles

Another approach for in situ targeting that is approaching the clinic is to encapsulate 

antigens and adjuvants within delivery vehicles [12]. This will also eliminate the 

requirement for systemic administration of adjuvants and the consequent untoward systemic 

effects. Co-delivering antigens and adjuvants within the same compartment will also ensure 

that only the APC exposed to antigen receives the activation signal. This would prevent the 

dual problems of T cell anergy in the absence of co-stimulation and non-specific activation 
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of APCs which have not seen the antigen. It would also allow delivery of high dose of 

immunogenic cargo, all within the same vector [65].

Nanoparticles (NP) are rapidly emerging as the new vehicles for delivering vaccines [83]. 

These include polymeric particles, liposomes, virus-like particles (VLPs), nanocrystals and 

immune-stimulating complexes (ISCOMs). These particles are efficiently taken up by DCs 

because of their size and particulate structure which resembles pathogens. They can induce 

long-lasting immune responses by delivering antigens in a slow and sustained manner [84]. 

Importantly, their release properties can be easily controlled by modulating their physic-

chemical properties. Of these, poly-lactic-co-glycolic acid (PLGA) nanoparticles have 

received the most attention because of their production from a biodegradable, FDA 

approved polymer. Liposomes and virus-like particles have also been extensively studied, 

but their clinical application may be limited by the stability issues with liposomes and vector 

immunogenicity issues with VLPs [12]. While this review focuses on DC-targeted 

nanoparticle-based vaccines, recent reviews [83,85,86] provide excellent summaries of 

bioengineering issues with nanoparticles. Although DC-targeted NPs have not been tested in 

the clinic, the use of NPs as vaccine-delivery vehicles has already reached the clinic. For 

example, in a phase I/II clinical trial involving stage II-IV melanoma patients, VLPs loaded 

with Melan-A/Mart-1 peptide along with CpG led to tumorspecific CD8 T cell responses in 

14 out of 22 patients [87].

8. Preclinical data with nanoparticle-based DC-targeted approaches

Nanoparticles can be decorated on their surface with antibodies or carbohydrate ligands that 

bind specifically to DC receptors. While polymer nanoparticles and liposomes can be coated 

with antibodies by PEGylation or avidin-biotin interactions, virus-like particles can also be 

engineered to express receptor ligands. In one of the earlier studies, Cruz et al demonstrated 

that DC-SIGN targeted PLGA nanoparticles, but not microparticles specifically delivered 

antigens to human dendritic cells in vitro [88]. Consequently, only targeted nanoparticles 

were able to improve antigen presentation and T cell response. Mannan bound PLGA 

nanoparticles were also found to improve antigen-specific CD4+ and CD8+ T cell responses 

in mouse in vitro and in vivo systems [89]. Interestingly, both of these studies were able to 

achieve these results in the absence of TLR agonists, which is consistent with the possibility 

that NPs themselves provide an activation signal to DCs.

The role of TLR agonists was evaluated by Tacken et al by targeting through DC-SIGN in 

human and DEC205 in mouse studies [90]. Co-encapsulating TLR3 and TLR7/8 ligands 

(poly IC and resiquimod/ R848 respectively) with the antigen in PLGA nanoparticles in this 

study did improve the generation of CTL responses. Of note, targeted delivery of TLR 

agonists reduced their dose requirement by 100 fold and was associated with decreased 

serum cytokine storm and related toxicities in vivo, compared to administration of soluble 

adjuvants. Similar results were achieved with mannose-targeted liposomes which showed 

higher anti-tumor therapeutic efficacy in vivo compared to non-targeted liposomes, thereby 

allowing use of lesser quantities of both TLR ligands and peptide epitopes [91]. On 

comparison between PLGA NP coated with either DC receptor-specific antibodies or 

carbohydrate ligands, targeting through former was shown to be more efficient to target 
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dendritic cells and induce immune responses [92]. Targeting to specific human dendritic cell 

subsets has also been evaluated. BDCA3+ MDCs targeted via PLGA NP through CLEC9A 

efficiently presented melanoma-associated antigens to CD4+ T cells as well as cross-

presented them to CD8+ T cells [93]. Human plasmacytoid dendritic cells also cross-

presented antigens delivered via PLGA NP co-encapsulating R848 and targeted through 

DEC205, DCIR, BDCA-2 or FcyR CD32. Notably, the presence of TLR agonist led to 

robust type I interferon secretion, a desirable effect in immune activation [94]. A summary 

of selected studies where nanoparticle-based vaccines were actively targeted to dendritic 

cells is provided in Table 3.

9. Unmet needs for nanoparticle-based strategies

As discussed earlier, an important aspect of DC biology is the presence of distinct subsets 

specialized for distinct effects on the immune system. However in terms of in situ DC 

targeting in humans, questions regarding the optimal DC subset, target receptor and adjuvant 

still remain unanswered [12]. It is notable that recent studies have challenged the superiority 

of BDCA3+ MDCs over other DC subsets to cross-present antigens in humans [45,46]. It is 

also increasingly appreciated that generation of optimal T helper-1 (Th-1) immunity may 

require the engagement of multiple DC subsets [95-97]. This is supported by the finding that 

the yellow fever vaccine 17D, one of the most effective vaccines in recent history, activates 

multiple TLRs in DC subsets [98]. In a recent study, we have shown that combinatorial 

targeting of BDCA3 and DC-SIGN+ DCs via NPs was superior to targeting either subset 

alone. The mechanism underlying this synergy involved IL15-dependent DC-DC crosstalk 

[99]. Therefore, active targeting of nanoparticle-based vaccines to a single DC subset, 

though effective in the pre-clinical studies, may deprive the resultant immune response of 

the benefit of cross-talk between different DC subsets. One possible strategy to target 

multiple DC subsets in situ is to target receptors such as CD40 or CD32, which are 

expressed by multiple DC subsets and also mediate DC maturation [100-102].

The ideal DC activation signal or TLR ligand for these vaccines also remains to be defined. 

This may depend on the specific DC subset being targeted, as different subsets express 

different TLRs. Importantly, prior studies have shown that co-encapsulating more than one 

TLR agonist within NP significantly improved CTL responses, when compared to single 

agonist vaccines [103,104]. The ideal approach would be to generate a nanoparticle-based 

platform targeting combination of DC subsets which yield synergistic effects.

One potential advantage of NP platform is the potential flexibility in terms of antigen 

loading. This is potentially very valuable in the setting of cancer as antigenic peptides 

specific for mutations could be loaded onto NPs. Ultimately, this should pave the way for 

development of truly personalized cancer vaccines.

10. Conclusions

To conclude, active targeting of dendritic cells in situ is emerging as an attractive approach 

to generate strong protective cellular immunity against chronic infectious diseases and 

cancer. The recently reported phase I trial of human in-situ CDX-1401 has laid the 

foundation for clinical application of these vaccines. The observed clinical responses in 
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patients receiving immune checkpoint blockade following the vaccine suggest that 

combining these vaccines with immune-checkpoint blockade (such as anti-CTLA4, anti-

PD1) may be of therapeutic benefit in human cancer. Nanoparticles are also emerging as 

attractive vehicles to target antigens to DCs and recent data suggest that combinatorial 

targeting of multiple DC subsets may significantly enhance the efficacy of DC targeting. 

The development of such combinatorial approaches would allow us to harness the full 

potential of the human immune system in the fight against cancer and chronic infections [9].
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Highlights

• The specialized antigen-presentation capability of dendritic cells and the 

plasticity of different DC subsets make them valuable targets for 

immunotherapy.

• The success of recently reported phase I trial of NY-ESO1-anti-DEC205 

antibody vaccine has set the stage for further clinical testing of in-situ DC-

targeted vaccines.

• Nanoparticles also represent an attractive strategy for targeting DCs in situ.
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