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Abstract

By blocking dopamine and norepinephrine transporters, methylphenidate affects cognitive 

performance and regional brain activation in healthy individuals as well as those with 

neuropsychiatric disorders. Resting-state connectivity evaluates the functional integrity of a 

network of brain regions. Here, we examined how methylphenidate effects resting-state functional 

connectivity of the dorsal striatum and thalamus, areas each with dense dopaminergic and 

noradrenergic innervations, as well as global cerebral connectivity. We administered a single, oral 

dose (45 mg) to 24 healthy adults and compared resting-state connectivity to 24 demographically 

matched adults who did not receive any medication. The results showed that methylphenidate 

alters seed-based and global connectivity between the thalamus/dorsal striatum with primary 

motor cortex, amygdala/hippocampus and frontal executive areas (p<0.05, corrected). 

Specifically, while methylphenidate at this dosage enhances connectivity to the motor cortex and 

memory circuits, it dampens prefrontal cortical connectivity perhaps by increasing 

catecholaminergic signalling past the ‘optimal’ level. These findings advance our understanding of 

a critical aspect of the multifaceted effects of methylphenidate on brain functions. The results may 

also facilitate future studies of the aetiology and treatment of neurological and psychiatric 

disorders that implicate catecholaminergic dysfunction.
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Introduction

By blocking norepinephrine and dopamine transporters, methylphenidate increases the 

availability of catecholamines, which play a critical role in cognitive functioning (Berridge 

et al., 2006, 2012; Devilbiss and Berridge, 2006; Spencer et al., 2012). Methylphenidate is a 

common treatment and improves cognitive performance in people with attention-deficit 

hyperactivity disorder (Tannock et al., 1989; Aron et al., 2003; Scheres et al., 2003; Broyd et 

al., 2005; Jonkman et al., 2007). For instance, methyl-phenidate improves the stop signal 

reaction time in the stop signal task (Aron et al., 2003), and reduces response errors on the 

go/no-go task (Broyd et al., 2005). Methylphenidate increases medial prefrontal cortical 

activation and restores the Stroop effect, where the reaction time for interference trials is 

prolonged compared to noninterference trials (Zang et al., 2005). Methylphenidate also 

improves cognitive performance in patients with other neurological conditions, including 

traumatic brain injury (Kim et al., 2006) and Parkinson’s disease (Auriel et al., 2006; Devos 

et al., 2007; Pollak et al., 2007), suggesting that its cognition enhancing effects could help 

clinical populations beyond ADHD.

Connectivity analysis of resting-state functional magnetic resonance imaging (fMRI) data 

characterizes functional integrity of brain networks (Passingham et al., 2002). Specifically, 

low frequency blood oxygenation level dependent (BOLD) signal fluctuations reflect 

connectivity between functionally related brain regions (Biswal et al., 1995; Fair et al., 

2007; Fox and Raichle, 2007). Studies of this ‘spontaneous’ activity have provided insight 

into the intrinsic functional architecture of the brain (Fox and Raichle, 2007). For instance, 

based on the findings that regions with similar functionality tend to correlate in spontaneous 

BOLD activity, we described functional subdivisions of the medial superior frontal cortex 

(Zhang and Li, 2012b) and precuneus (Zhang and Li, 2012a) recently. Few studies have 

examined how catecho-laminergic agents influence cerebral functional connectivity during 

resting state. In children with ADHD, methylphenidate increased and decreased regional 

homogeneity, a measure of functional connectivity of local in contrast to surrounding 

voxels, each in bilateral ventral prefrontal cortex/cerebellar vermis and right parietal/visual 

cortices (An et al., 2013). Methylphenidate also increased regional homogeneity (Zhu et al., 

2013) but has otherwise not been studied for its effects on resting-state functional 

connectivity in healthy adults.

Midbrain dopaminergic neurons project to the basal ganglia, including the caudate, putamen, 

pallidum and throughout the cerebral cortex (Bentivoglio and Morelli, 2005). Noradrenergic 

neurons of the locus coeruleus heavily innervate the thalamus and cerebral cortex 

(Descarries and Saucier, 1972; O’Donnell et al., 2012). A number of cognitive processes 

including inhibitory control and behavioural adjustment are mediated by the cortico-striato-

thalamic circuitry (Wagner et al., 2006; Diamond and Ahissar, 2007; Urbain and Deschenes, 

2007). In an earlier work, we demonstrated a critical role of the thalamus and epithalamus in 

orchestrating error-related cognitive control (Hendrick et al., 2010; Ide and Li, 2011a, b). 

Because these cortico-subcortical circuits are regulated by catecholaminergic signalling 

(Graybiel, 1990; Crawford et al., 1998; Bymaster et al., 2002; Grillner et al., 2005; Andrews 

and Lavin, 2006; Monchi et al., 2006), we hypothesized that pharmacological manipulation 

of catecholamine availability would likely result in changes in functional connectivity.
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In this exploratory study, we used resting-state fMRI to examine whether and how 

methylphenidate alters functional connectivity between the striatum and thalamus with the 

rest of the brain in healthy adults. We also performed an analysis of global connectivity, as 

an additional measure, to identify the effects of methylphenidate on network functional 

changes.

Method

Participants

The study was performed under a protocol approved by the Yale Human Investigation and 

Magnetic Resonance Imaging Safety Committees. Participants were recruited from the 

greater New Haven area by advertisement, word of mouth and referrals. Written informed 

consent was obtained from all participants after a full explanation of study procedures. 

Twenty-five healthy adults (17 females; age 25±6 years; all right-handed) were recruited 

and compensated for their participation in the study. All participants were admitted as 

outpatients to the Yale New Haven Hospital, and were without medical, neurological or 

psychiatric conditions. All denied history of head injury and current use of prescription 

medications or illicit substances. One subject was eliminated from the study because of a 

lesion found on the structural brain image. The resulting 24 participants comprised 16 

females, with a mean age of 24±4 years – the methylphenidate (MPH) group. Data of a 

cohort of 24 matched healthy participants (16 females; age 24±4 years) scanned under 

identical imaging protocols except without being given methylphenidate were used for 

comparison – the no-MPH group.

On the day of fMRI, participants rested in a recovery room for at least 10 min, during which 

baseline heart rate, blood pressure and anxiety measurements were taken. An hour prior to 

fMRI scans a physician examined participants before approving administration of a single 

45 mg oral dose of methylphenidate. All participants in the MPH group received 

methylphenidate, although participants did not know whether they would be receiving 

methylphenidate or a placebo, according to the protocol and consent. From this time until 

the beginning of the structural MRI scans (approximately 40 min), heart rate and blood 

pressure as well as anxiety were monitored every 5 min. These measures were taken 

approximately every 10 min between sessions during fMRI. At each vital sign reading, 

participants also marked how anxious they felt on a visual analogue scale from one (not 

anxious at all) to ten (extremely anxious). Compared to baseline, MPH increased heart rate, 

systolic blood pressure and anxiety rating, as we reported recently (Farr et al., 2013).

Imaging protocol

Conventional T1-weighted spin-echo sagittal anatomical images were acquired for slice 

localization using a 3T scanner (Siemens Trio). Anatomical images of the functional slice 

locations were next obtained with spin-echo imaging in the axial plane parallel to the AC-

PC line with TR=300 ms, TE=2.5 ms, bandwidth=300 Hz/pixel, flip angle=60°, field of 

view=220×220 mm, matrix= 256×256, 32 slices with slice thickness=4 mm and no gap. 

Functional, blood oxygenation level dependent (BOLD) signals were then acquired with a 

single-shot gradient echo echo-planar imaging (EPI) sequence. Thirty-two axial slices 
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parallel to the AC-PC line covering the whole brain were acquired with repetition 

time=2000 ms, echo time=25 ms, bandwidth=2004 Hz/ pixel, flip angle=85°, field of 

view=220×220 mm, matrix =64×64, 32 slices with slice thickness=4 mm and no gap. Three 

hundred images were acquired in the resting state run, following four other BOLD runs 

during which participants performed a stop signal task (Farr et al., 2013). In the resting state 

scans, participants were instructed to close their eyes but stay awake.

Imaging data pre-processing

Brain imaging data were pre-processed using Statistical Parametric Mapping (SPM 8, 

Wellcome Department of Imaging Neuroscience, University College London, UK), as 

described in our previous work (Zhang et al., 2012). Briefly, images of each individual 

subject were first realigned (motion corrected) and corrected for slice timing. A mean 

functional image volume was constructed for each subject per each run from the realigned 

image volumes. These mean images were co-registered with the high-resolution structural 

image and then segmented for normalization with affine registration followed by nonlinear 

transformation (Friston et al., 1995; Ashburner and Friston, 1999). The normalization 

parameters determined for the structural volume were then applied to the corresponding 

functional image volumes for each subject. Finally, the images were smoothed with a 

Gaussian kernel of 8 mm at full width at half maximum.

Additional pre-processing was applied to reduce spurious BOLD variances that were 

unlikely to reflect neuronal activity (Rombouts et al., 2003; Fox et al., 2006; Fair et al., 

2007; Fox and Raichle, 2007). The sources of spurious variance were removed through 

linear regression by including the signal from the ventricular system, the white matter and 

the whole brain, in addition to the six parameters obtained by rigid body head motion 

correction. First-order derivatives of the whole brain, ventricular and white matter signals 

were also included in the regression.

Cordes and colleagues suggested that BOLD fluctuations below a frequency of 0.1 Hz 

contribute to regionally specific BOLD correlations (Cordes et al., 2001). The majority of 

resting state studies low-pass filtered BOLD signal at a cut-off of 0.08 or 0.1 Hz (Fox and 

Raichle, 2007). Thus, we applied a temporal band-pass filter (0.009 Hz<f<0.08 Hz) to the 

time course in order to obtain low-frequency fluctuations (Fox et al., 2006; Fair et al., 2007; 

Fox and Raichle, 2007).

Seed-based functional connectivity: linear correlations

We used the templates from the Anatomical Automatic Labelling (AAL) atlas for each 

region of interest- caudate, putamen, pallidum and thalamus (Tzourio-Mazoyer et al., 2002). 

The BOLD time courses were averaged spatially across all voxels each for the four seed 

regions. We computed the correlation coefficient between the averaged time course of each 

mask and the time courses of individual voxels of the brain for individual subjects. To assess 

and compare the resting state ‘correlograms,’ we converted these image maps, which were 

not normally distributed, to z score maps by Fisher’s z transform (Jenkins and Watts, 1968; 

Berry and Mielke, 2000): z=0.5 loge[(1+r)/(1–r)]. The z maps were used in group random 
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effect analyses (Penny et al., 2004) with a two-sample t-test to compare MPH and no-MPH 

groups.

Global connectivity

Global connectivity was computed as the averaged voxel-to-voxel connectivity across the 

whole brain (Cole et al., 2010b). Here, we examined the connectivity of individual voxels to 

the 116 anatomical masks from the AAL atlas (Tzourio-Mazoyer et al., 2002); not to voxels 

of the whole brain), in order to manage computational load. The BOLD time courses were 

averaged spatially across the voxels within each of the 116 masks for correlation with the 

time course of each grey matter voxel, for each individual subject. Because positive and 

negative connectivities would cancel each other out, global connectivity was computed for 

positive and negative connectivities separately. Otherwise, for instance, an area with equally 

strong positive and negative connectivity would exhibit no significant connectivity. We also 

weighted by the number of voxels of each mask to account for seed size after z 

transformation. Thus, each correlation coefficient (Pearson’s r) was Fisher’s z transformed 

and then the weighted averaged z map was obtained for each of the positive and negative 

connectivity and for each subject. Voxels connected to more of the 116 masks positively or 

negatively would be more connected globally.

Because individual positive/negative global connectivity maps contain only positive/

negative values, all grey matter voxels would show significant connectivity with one sample 

t-test. We thus applied the ‘top percentage’ threshold (Cole et al., 2010b) to identify voxels 

with the highest global connectivity and to quantify the connectivity for each group. 

Thresholds were determined by reducing the p value (i.e. applying a higher threshold) until 

the desired percentage (e.g. 5%) of the total grey matter voxels remained for each group’s 

one sample t-test. This analysis identified brain regions that are most connected and allowed 

us to examine changes in global connectivity as a result of methylphenidate, complementing 

findings from the seed-based analyses.

For both seed-based and global connectivity, we used two sample t-tests to compare MPH 

and no-MPH groups and identified voxels that were significant at a corrected threshold. 

Investigators have argued that the corrected voxel peak threshold of p<0.05, based on the 

Gaussian random field theory, may be too restrictive and suggested the use of a cluster 

threshold (Poline et al., 1997; Hayasaka and Nichols, 2003). Thus, we present results that 

satisfy either peak voxel FWE p<0.05 or a combined threshold of voxel p<0.001, 

uncorrected and cluster FWE p<0.05.

Results

Seed-based functional connectivity

We first examined the right and left caudate, putamen, pallidum and thalamic seed regions 

separately and found no hemispheric differences in functional connectivity (p<0.001 

uncorrected). We thus elected to show and discuss the results from the bilateral seeds for 

each area of interest. Figure 1 shows the results of one-sample t-tests each for the 

methylphenidate (MPH) and no-MPH group. The results of two sample t-tests are shown in 
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Fig. 2 and summarized in Table 1. Supplementary Figure S1 shows the effect sizes of each 

group for all seed-based connectivities that differed between MPH and no-MPH. In the 

following, we describe structures that share significant connectivity with each seed region in 

both no-MPH and MPH groups (one-sample t tests) and those that demonstrate significant 

differences in connectivity (two-sample t test). In the latter case, we highlight whether the 

differences result from a change in the strength of connectivity or a reversal in the sign of 

connectivity.

Caudate—Both groups showed positive connectivity of the caudate nucleus with the 

medial frontal cortex including supplementary motor area (SMA) and pre-SMA, and 

anterior cingulate cortex, as well as the middle frontal cortex, orbitofrontal cortex, thalamus 

and basal ganglia. Both groups showed negative connectivity of the caudate with the 

precuneus, occipital cortices, hippocampus, parahippocampal gyri and cerebellum.

Methylphenidate reversed the negative connectivity between the caudate and left primary 

motor cortex (PMC) and positive connectivity between the caudate and frontal polar cortex 

as well as superior/middle temporal gyri, as observed for the no-MPH group (Fig. 2a; Table 

1).

Pallidum—Both groups showed positive connectivity of the pallidum with the medial 

frontal cortex including supplementary motor area (SMA) and pre-SMA, and anterior 

cingulate cortex, as well as middle frontal cortex, thalamus, basal ganglia and insula. Both 

groups showed negative connectivity of the pallidum with the precuneus, occipital cortices 

and the posterior cingulate cortex.

Methylphenidate reversed the negative connectivity between the pallidum and left pre-

central and post-central cortices, as observed in the no-MPH group. Methylphenidate 

reversed the positive connectivity between the pallidum and anterior and posterior cingulate 

cortices, cerebellum and medial prefrontal cortex. Methylphenidate also decreased negative 

connectivity of the pallidum with the occipital cortices (Fig. 2b; Table 1).

Putamen—Both groups showed positive connectivity of the putamen with the medial 

frontal cortex including supplementary motor area (SMA) and pre-SMA, and anterior 

cingulated cortex, as well as middle/inferior frontal cortices, thalamus, basal ganglia, 

superior temporal cortex and insula. Both groups showed negative connectivity of the 

putamen with the precuneus, occipital cortices, parahippocampal gyri and the posterior 

cingulate cortex.

Methylphenidate reversed the positive connectivity between the putamen and mid/posterior 

cingulate cortex and right supramarginal gyrus. Methylphenidate also decreased positive 

connectivity of the putamen to cerebellum (Fig. 2c; Table 1).

Thalamus—Both groups showed positive connectivity of the thalamus with the medial 

frontal cortex including supplementary motor area (SMA) and pre-SMA, and anterior 

cingulate cortex, as well as thalamus and basal ganglia. Both groups showed negative 

connectivity of the thalamus with the occipital and inferior temporal cortex.
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Methylphenidate reversed the negative connectivity between the thalamus and a wide array 

of brain regions, including bilateral pre-central, post-central, and occipital cortices, as well 

as the superior temporal gyri, parahippocampal gyri and precuneus, as observed for the no-

MPH group. Methylphenidate also reversed the positive connectivity between the thalamus 

and cerebellum, superior/middle frontal gyri and the inferior parietal cortex (Fig. 2d; Table 

1).

Global connectivity

The results of one-sample t tests for global connectivity are shown in Fig. 3. For both 

groups, we observed voxels with more positive connectivity in the dorsolateral prefrontal 

cortex, putamen, visual cortices, precuneus, cuneus and insula, and more negative 

connectivity with the supplementary motor area, midbrain, temporal cortices, insula, parietal 

cortices and occipital cortices. This aligns with previous findings of the inferior parietal 

cortex, inferior frontal cortex and cuneus as being the most connected across a large number 

of participants (Tomasi and Volkow, 2010).

In two-sample t tests, the negative global connectivity of primary motor cortex and 

supplementary motor cortex decreased in MPH compared to no-MPH group (Fig. 4; Table 

2). In contrast, medial prefrontal and parietal cortices showed more negative global 

connectivity in the MPH as compared to no-MPH group. We did not observe any significant 

differences in positive global connectivity between the two groups.

Gender differences in connectivity and correlation with physiological variables

For both seed-based and global connectivity, we performed a full factorial analysis to 

include gender (32 females, 16 males) as a covariate, in order to examine gender main 

effects as well as group (MPH vs. no-MPH) by gender interactions. The results showed that, 

as expected, the group main effects were identical to what we reported. In addition, there 

were no significant regional brain activations for the gender main effects, at voxel p<0.001, 

uncorrected and cluster p<0.05 FWE corrected. For the group by gender interaction, there is 

a single cluster in the area of right superior temporal cortex, secondary somatosensory 

cortex and insula (x=48, y=−4, z=10, z = 3.93, cluster size=3132 mm3), which showed 

greater negative global connectivity in men than women with administration of 

methylphenidate (i.e. [MPH_Men – noMPH_Men]>[MPH_Women – noMPH_Women]).

We also explored correlations between the effect sizes of seed-based as well as global 

connectivity and percentage changes in SBP, HR and anxiety rating. As shown in 

Supplementary Table S1, there were few significant correlations at p<0.05, and none of 

these correlations were significant at a corrected p=0.05/90=0.00055 (with a total of 90 

tests).

Discussion

Methylphenidate and thalamic/striatal connectivity to the primary motor cortex

With the exception of putamen, the thalamus/dorsal striatum showed negative resting state 

functional connectivity with the motor and somatosensory cortices, as observed in the no-
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MPH group and many previous studies of healthy participants (Baird et al., 2013; Erpelding 

et al., 2013; Nasrallah et al., 2013; Posner et al., 2013; Werner et al., 2013; Zhou et al., 

2013). Methylphenidate alters the functional connectivity from negative to positive between 

the thalamus/dorsal striatum and somatomotor cortices. Methylphenidate also decreases 

negative global connectivities of the motor cortex and paracentral lobules. Thus, overall, 

methylphenidate enhances somatomotor functional connectivity to the thalamus and 

striatum, in accord with previous studies where levodopa and haloperidol each increased and 

decreased resting-state and task-related functional connectivity between the motor cortex 

and striatum in healthy participants (Tost et al., 2010; Cole et al., 2013).

These findings are also consistent with reported effects of methylphenidate and other 

catecholaminergic agents on motor performance. For instance, methylphenidate increased 

locomotor activity in mice (Penner et al., 2001). A single dose of methylphenidate improved 

motor coordination in children with developmental coordination disorder and ADHD (Bart 

et al., 2013), perhaps compensating for impaired integrity of the white matter connecting the 

thalamus with primary motor cortex and hippocampus (Xia et al., 2012).

Patients with Parkinson’s disease (PD) demonstrate altered cortical and subcortical 

activation and functional connectivity (Eidelberg et al., 1994; Huang et al., 2007; Ma and 

Eidelberg, 2007). Low doses of methylphenidate improved gait and voluntary movement 

(Auriel et al., 2006; Devos et al., 2007; Kwak et al., 2010), and along with levodopa 

improved performance on complex hand movements (Nutt et al., 2004) in patients with PD. 

In an earlier study, adding methylphenidate to levodopa treatment increased peak hand 

tapping speed in patients with PD compared to levodopa alone (Camicioli et al., 2001). 

Pridopidine, a dopamine-stabilizing compound, improved motor performance in patients 

with Huntington’s disease (Investigators, 2013), who showed decreased white matter 

integrity of the caudate, putamen and primary motor cortex in progression with their motor 

symptoms (Bohanna et al., 2011). Together, these studies suggested that patients with 

clinical conditions that implicate catecholaminergic dysfunction show altered motor cortical 

connectivity and performance that can be ameliorated by methylphenidate.

Methylphenidate and thalamic/striatal connectivity to the hippocampus and amygdala

Methylphenidate increased connectivity between the thalamus and hippocampus, amygdala 

and visual areas, in addition to the primary motor cortex. The thalamus, amygdala and 

hippocampus all receive direct noradrenergic projections from the locus coeruleus (Ishikawa 

and Tanaka, 1977; Talley et al., 1996; Glass et al., 2001), a circuitry known to promote 

wakefulness and arousal (McBride and Sutin, 1976; McCormick et al., 1991). The thalamus 

plays a critical role in the detection of, filtering and reorientation to salient stimuli (Petersen 

et al., 1985; Robinson and Petersen, 1992; Saalmann et al., 2012), and, through projections 

to the hippocampus, facilitates learning and memory of salient information (Grieve et al., 

2000; Casanova et al., 2001).

Methylphenidate increased metabolism/activity in thalamus and hippocampus (Glavin, 

1985), and improved working memory (Ramasubbu et al., 2012) as well as decision-making 

(Schlosser et al., 2009) in healthy adults and/or children with ADHD (Bedard et al., 2007; 

Bedard and Tannock, 2008; Strand et al., 2012). In rodents, methylphenidate increased 
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noradrenergic metabolism in the thalamus and amygdala (Glavin, 1985) and facilitated 

spatial memory (Guo et al., 2012) and cue-reward learning (Ferry et al., 1999; Tye et al., 

2010). Thalamus showed stronger resting-state connectivity to the amygdala in association 

with increased autonomic activity and physiological arousal in healthy men (Hermans et al., 

2011; Chang et al., 2013). Norepinephrine, which surges during arousal, promotes long-term 

potentiation at thalamo-amygdalar synapses (Tully et al., 2007), and influences affective (Li 

and Kirouac, 2008), reward and saliency processing (Baxter and Murray, 2002; Etkin et al., 

2006; Murray, 2007; Haber and Knutson, 2010; Linke et al., 2010). Thus, the current 

findings may provide a neural basis in evaluating this earlier body of work.

Methylphenidate and thalamic/striatal connectivity to regions of executive control

In resting state, the thalamus/dorsal striatum showed positive functional connectivity with 

many brain regions instrumental to executive control, such as the superior/ middle frontal 

cortex and medial prefrontal cortex including the SMA, pre-SMA and dorsal anterior 

cingulate cortex and inferior parietal cortex, as observed in the no-MPH group and many 

previous studies of healthy participants (Baird et al., 2013; Erpelding et al., 2013; Nasrallah 

et al., 2013; Posner et al., 2013; Werner et al., 2013; Zhou et al., 2013). In contrast to its 

effects on motor cortical connectivity, methylphenidate decreases the positive thalamic/

striatal connectivity to the frontopolar cortex and some fronto-parietal control regions or 

alters the connectivity from positive to negative with these brain regions. This is consistent 

with an earlier work where sulpiride, a dopamine antagonist, enhanced striato-thalamic 

activity to the dorsolateral prefrontal cortex, while methylphenidate appeared to produce the 

opposite effects (Honey et al., 2003). Furthermore, methylphenidate increased negative 

global connectivity of the fronto-parietal cortices. These findings in healthy adults are in 

contrast with many previous studies of clinical populations, where methylphenidate 

increased regional activations and connectivities in association with executive functioning 

(Scheres et al., 2003; Kim et al., 2006; Jonkman et al., 2007; Pollak et al., 2007; Li et al., 

2010; Tye et al., 2010; Nandam et al., 2011; Tomasi et al., 2011). For instance, 

methylphenidate improved working memory and visuospatial attention in patients with 

traumatic brain injury (Kim et al., 2006), and increased prefrontal activations for cognitive 

control in cocaine-addicted adults (Li et al., 2010). Although speculative, this contrasting 

pattern of the effects of methylphe-nidate may reflect the inverted U relationship between 

level of catecholaminergic signalling and cognitive performance, as postulated earlier 

(Birnbaum et al., 1999; Arnsten, 2009; Berridge et al., 2012; Rajala et al., 2012). That is, 

while methylphenidate facilitates cognitive performance in clinical populations who are 

compromised in catecholaminergic neurotransmission, it dampens performance in healthy 

adults by increasing catecholamines past the optimal level, as has been observed in dosaging 

studies of methylphenidate in rodents, non-human primates and humans (Sagvolden et al., 

1988; Tannock et al., 1989; Elliott et al., 1997; Rajala et al., 2012).

Conclusions and limitations of the study

To summarize, methylphenidate enhances resting-state functional connectivity of the 

striatum/thalamus with primary motor cortex and increases negative connectivity with 

frontal executive regions. Augmented motor cortical connectivity is consistent with the 

effects of methylphenidate and other catecholaminergic agents in improving motor functions 
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in healthy participants and various clinical populations. Methylphenidate also increases 

thalamic/striatal connectivity to the hippocampus and amygdala, which may speak to its 

alerting and memory-enhancing effects. We also speculate that the findings of 

methylphenidate-elicited decrease in striatal/ thalamic connectivity to prefrontal regions may 

have to do with individual variation in catecholaminergic signals for optimal cognitive 

functioning. Together, the influences of methylphenidate on cerebral functioning are 

multifaceted, an issue that deserves consideration in studies of its use and misuse.

There are a few important limitations to this study. First and most significantly, we did not 

have a placebo control for the individuals who received methylphenidate. The placebo effect 

is thus a potential confound for the differences that we observed between the 

methylphenidate and no-methylphenidate group. Additionally, we did not collect blood 

samples and assay plasma levels of methylphenidate to control for individual differences in 

pharmacokinetics. Secondly, methylphenidate influences both dopaminergic and 

noradrenergic neurotransmission. While there is heavy dopaminergic innervation of the 

basal ganglia circuitry, the cortical mantle receives both dopaminergic and noradrenergic 

inputs. Thus, it remains to be determined whether and how blockade of dopaminergic and/or 

noradrenergic transporters by methylphenidate accounts for the current findings. 

Furthermore, although the seed regions do not overlap spatially, they are functionally 

connected. It remains to be examined in future studies whether and how shared and distinct 

thalamic and striatal connectivities relate to cognitive and affective functions, as influenced 

by methylphenidate. It is also to be noted that we evaluated global connectivity to the 116 

AAL masks and a voxel-wise analysis may reveal a finer pattern of connectivities as 

influenced by methylphenidate. Similarly, a top percentage threshold limits our analysis to 

those brain regions that are most connected. It remains to be evaluated whether and how 

other brain regions are altered in global connectivity. Third, our participants are not assessed 

for cognitive or motor performance; thus, the functional implications of the current findings 

need to be re-considered in future work. Fourth, this study involved only healthy adult 

participants. Thus, the implications of the current results cannot be generalized to patient 

populations or older adults (Hu et al., 2012, 2013). Fifth, stimulants can potentially 

influence fMRI blood oxygenation level-dependent (BOLD) signals, which depend on the 

haemodynamic coupling of neuronal activities and local changes in blood flow and 

oxygenation. However, a number of earlier studies have suggested that stimulants decreased 

cortical cerebral blood flow but did not obscure BOLD signals (Gollub et al., 1998; Rao et 

al., 2000), and that haemodynamic responses were faithfully followed by neuronal responses 

after their peak effects (at 6 min after administration) on blood flow and volume 

(Devonshire et al., 2004). Heart rate also had no effect on BOLD signals in one of these 

studies (Rao et al., 2000) and neither changes in heart rate or blood pressure was correlated 

to changes in functional connectivities (Supplementary Table 1). Nevertheless, we 

acknowledge that these physiological variables could potentially confound imaging findings 

and need to be considered in future experiments that properly quantify these changes in a 

placebo-controlled setting. Finally, we wish to consider a methodological issue regarding the 

findings on negative functional connectivity, which has been reported since the very 

beginning of the resting-state fMRI studies (Biswal et al., 1995). Negative functional 

connectivity, or anti-correlation, represents negative cross-correlation in spontaneous BOLD 
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signal between two brain regions. It was suggested that global signal regression, a common 

step of data pre-processing in seed-based connectivity analyses, is a likely cause of anti-

correlated functional networks (Murphy et al., 2009; Weissenbacher et al., 2009). However, 

recent investigations demonstrated that the negative correlations are not an artifact but have 

biological origins (Fox et al., 2009; Chen et al., 2011; Chai et al., 2012). For instance, 

negative functional connectivity is associated predominantly with long-range connections 

and correlates with the shortest path length in the human brain network (Scholvinck et al., 

2010; Chen et al., 2011; Schwarz and McGonigle, 2011). Indeed, the negative correlations 

between brain regions with presumably opposing functional roles have been observed in 

many different studies (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005; Kelly et al., 

2008; Uddin et al., 2009; Chen et al., 2011), including those using independent component 

analysis, which does not involve global signal regression (Cole et al., 2010a; Zuo et al., 

2010; Zhang and Li, 2012c). Furthermore, the existence of negative functional connectivity 

was also suggested by computational simulations of cerebral network activities in both 

monkeys and humans (Honey et al., 2007; Izhikevich and Edelman, 2008; Deco et al., 2009) 

and supported by simultaneous recording of unit activity and local field potentials from task-

positive and task-negative (default mode) networks in cats (Popa et al., 2009). Together, 

these earlier studies suggest functional significance of negative functional connectivity. On 

the other hand, future work that combines BOLD signal acquisition and electrophysiological 

recording of neuronal activities is needed to fully understand the effects of the 

methylphenidate on positive vs. negative functional connectivities (Goense and Logothetis, 

2008).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
One sample t-tests for resting-state functional connectivity with bilateral caudate (a); 

pallidum (b); putamen (c); or thalamus (d) as the seed region (p<0.001, uncorrected). Warm 

and cool colour shows positive and negative connectivity. BOLD contrasts are 

superimposed on a T1 structural image in axial sections from z=−20 to z=64, in neurological 

orientation. The adjacent sections are 12 mm apart. The colour bar represents voxel T value.
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Fig. 2. 
Two-sample t-tests showed differences in resting-state functional connectivity with bilateral 

caudate (a); pallidum (b); putamen (c); or thalamus (d) as the seed region, at p<0.001 

uncorrected. MPH>no-MPH (warm colours) and no-MPH>MPH (cool colours). Clusters 

that met cluster p<0.05, FWE corrected are listed in Table 1 and some of them are labelled 

here: FPC: fronto-polar cortex; ACC: anterior cingulate cortex; PCG: pre-central gyrus; 

PoCG: post-central gyrus; OC: occipital cortex; MTG: middle temporal gyrus; STC: 

superior temporal cortex; PoCiG: posterior cingulate gyrus; PHG: parahippocampal gyrus; 

Th: thalamus; MFG: medial frontal gyrus; SFG/MiFG: superior frontal gyrus/middle frontal 

gyrus; IPC: inferior parietal cortex. BOLD contrasts are superimposed on a T1 structural 

image in axial sections from z=−20 to z=64, in neurological orientation. The adjacent 

sections are 12 mm apart. The colour bar represents voxel T value.
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Fig. 3. 
One sample t-tests for global resting-state functional connectivity for (a) no-MPH and (b) 

MPH group showing the top 5% of voxels. Warm and cool colour shows positive and 

negative connectivity. BOLD contrasts are superimposed on a T1 structural image in axial 

sections from z=−20 to z=64, in neurological orientation. The adjacent sections are 12 mm 

apart.
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Fig. 4. 
Two sample t-test shows differences in global resting-state functional connectivity at 

p<0.001, uncorrected: MPH>no-MPH (warm colours) and no-MPH>MPH (cool colours). 

BOLD contrasts are superimposed on a T1 structural image in axial sections from z=−20 to 

z=64, in neurological orientation. The adjacent sections are 12 mm apart. Clusters that met 

cluster p<0.05, FWE corrected are listed in Table 2 and labelled here: AG: angular gyrus; 

FMG: frontal marginal gyrus; PCG: pre-central gyrus; PCL: paracentral lobule; STS: 

superior temporal sulcus.

Farr et al. Page 22

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farr et al. Page 23

T
ab

le
 1

B
ra

in
 r

eg
io

ns
 s

ho
w

in
g 

si
gn

if
ic

an
t d

if
fe

re
nc

es
 in

 s
ee

d-
ba

se
d 

fu
nc

tio
na

l c
on

ne
ct

iv
ity

 b
et

w
ee

n 
pa

rt
ic

ip
an

ts
 w

ho
 r

ec
ei

ve
d 

m
et

hy
lp

he
ni

da
te

 (
M

PH
) 

an
d 

th
os

e 

w
ho

 d
id

 n
ot

 (
no

-M
PH

);
 tw

o-
sa

m
pl

e 
t t

es
t, 

at
 v

ox
el

 p
<

0.
00

1 
un

co
rr

ec
te

d 
an

d 
cl

us
te

r-
le

ve
l p

<
0.

05
, F

W
E

 c
or

re
ct

ed
 o

r 
vo

xe
l p

<
0.

05
 F

W
E

 c
or

re
ct

ed

M
N

I 
co

or
di

na
te

s 
(m

m
)

Se
ed

 R
O

I
C

on
tr

as
t

M
P

H
no

-M
P

H
C

lu
st

er
 s

iz
e

(m
m

3 )
z-

sc
or

e
X

Y
Z

Si
de

Id
en

ti
fi

ed
 r

eg
io

n

C
au

da
te

M
PH

>
no

-M
PH

+
−

^
29

70
4.

42
−

45
−

19
55

L
Pr

e-
ce

nt
ra

l G

no
-M

PH
>

M
PH

−
^

+
+

^
40

23
4.

49
30

53
34

R
Fr

on
to

-p
ol

ar
 C

−
^

+
^

47
25

4.
46

−
36

−
31

1
L

Su
pe

ri
or

 T
em

po
ra

l G

−
^

+
^

47
52

3.
99

45
2

−
41

R
M

id
dl

e 
T

em
po

ra
l G

Pa
lli

du
m

M
PH

>
no

-M
PH

−
^

−
^

46
17

*
4.

8
24

−
85

−
11

R
In

fe
ri

or
 O

cc
ip

ita
l G

−
^

−
^

3.
86

36
−

85
−

2
R

M
id

dl
e 

O
cc

ip
ita

l G

+
+

^
−

37
80

4.
54

−
54

−
10

46
L

Pr
e-

ce
nt

ra
l G

+
+

^
−

3.
53

−
48

−
25

49
L

Po
st

-c
en

tr
al

 G

+
−

^
25

38
3.

86
−

30
−

31
67

L
Pr

e-
ce

nt
ra

l G

no
-M

PH
>

M
PH

−
+

+
^

36
61

2*
5.

05
−

15
−

49
−

41
L

C
er

eb
el

lu
m

−
^

+
41

31
4.

15
6

−
40

25
R

/L
C

in
gu

la
te

 G

−
^

+
+

^
47

52
1.

07
12

59
13

R
M

ed
ia

l f
ro

nt
al

 G

−
^

+
+

^
3.

77
9

38
10

R
/L

A
nt

er
io

r 
ci

ng
ul

at
e 

G

Pu
ta

m
en

M
PH

>
no

-M
PH

N
on

e 
si

gn
if

ic
an

t

no
-M

PH
>

M
PH

−
+

64
26

*
4.

59
6

−
40

22
R

/L
Po

st
er

io
r 

ci
ng

ul
at

e 
G

−
^

+
4.

41
0

−
25

28
R

/L
M

id
-c

in
gu

la
te

 G

+
^

+
+

^
34

91
1

4.
5

−
12

−
46

−
35

L
C

er
eb

el
lu

m

−
+

+
^

17
82

**
4.

9
66

−
46

34
R

Su
pr

am
ar

gi
na

l G

T
ha

la
m

us
M

PH
>

no
-M

PH
+

+
^

−
^

21
60

0*
5.

31
27

−
37

61
R

Po
st

-c
en

tr
al

 G

+
+

^
−

^
4.

32
45

−
7

34
R

Pr
e-

ce
nt

ra
l G

+
+

^
−

^
4.

19
63

−
7

7
R

Su
pe

ri
or

 T
em

po
ra

l G

+
^

−
^

64
53

*
4.

81
39

−
70

−
14

R
M

id
dl

e 
O

cc
ip

ita
l G

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2015 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farr et al. Page 24

M
N

I 
co

or
di

na
te

s 
(m

m
)

Se
ed

 R
O

I
C

on
tr

as
t

M
P

H
no

-M
P

H
C

lu
st

er
 s

iz
e

(m
m

3 )
z-

sc
or

e
X

Y
Z

Si
de

Id
en

ti
fi

ed
 r

eg
io

n

+
^

−
^

3.
94

24
−

58
−

17
R

C
er

eb
el

lu
m

+
^

−
^

3.
83

33
−

64
−

17
R

In
fe

ri
or

 O
cc

ip
ita

l G

+
+

^
−

34
56

*
4.

77
−

63
−

16
10

L
Po

st
-c

en
tr

al
 G

+
+

^
−

15
47

1
4.

48
−

45
−

10
46

L
Pr

e-
ce

nt
ra

l G

+
+

^
−

4.
3

−
54

−
19

46
L

Po
st

-c
en

tr
al

 G

+
+

^
+

^
32

13
3.

75
3

−
7

61
R

/L
M

ed
ia

l F
ro

nt
al

 G

+
^

−
^

25
92

**
4.

81
0

−
88

46
R

/L
Pr

ec
un

eu
s

+
+

^
−

21
33

**
4.

69
−

21
−

7
−

26
L

Pa
ra

hi
pp

oc
am

pa
l G

no
-M

PH
>

M
PH

−
^

+
^

54
83

7*
6.

17
12

−
85

−
32

R
C

er
eb

el
lu

m

−
^

+
^

67
06

8*
5.

77
39

29
55

R
M

id
dl

e 
Fr

on
ta

l G

−
^

+
^

5.
3

21
26

58
R

Su
pe

ri
or

 F
ro

nt
al

 G

−
^

+
^

5.
22

51
23

43
R

M
id

dl
e 

Fr
on

ta
l G

−
^

+
16

74
0*

5.
74

57
−

58
46

R
In

fe
ri

or
 P

ar
ie

ta
l G

+
^

+
+

^
76

95
*

5.
36

−
6

−
13

4
R

/L
T

ha
la

m
us

−
^

−
77

49
*

5.
1

−
60

−
58

43
L

In
fe

ri
or

 P
ar

ie
ta

l G

* A
ls

o 
si

gn
if

ic
an

t a
t p

ea
k 

p<
0.

05
, F

W
E

 c
or

re
ct

ed

**
O

nl
y 

si
gn

if
ic

an
t a

t p
ea

k 
p<

0.
05

, F
W

E
 c

or
re

ct
ed

; R
- 

ri
gh

t, 
L

- 
le

ft
; G

- 
gy

ru
s;

 +
/+

+
 p

os
iti

ve
ly

/m
or

e 
po

si
tiv

el
y 

co
nn

ec
te

d 
an

d 
−

/−
 n

eg
at

iv
el

y/
m

or
e 

ne
ga

tiv
el

y 
co

nn
ec

te
d 

by
 o

ne
-s

am
pl

e 
t-

te
st

, w
ith

 th
e 

si
gn

 
an

d 
m

ag
ni

tu
de

 o
f 

co
nn

ec
tiv

ity
 d

et
er

m
in

ed
 b

y 
th

e 
ef

fe
ct

 s
iz

e 
of

 e
ac

h 
cl

us
te

r.

^ A
 s

up
er

sc
ri

pt
 o

n 
+

/−
 in

di
ca

te
s 

si
gn

if
ic

an
t a

t p
<

0.
05

 f
or

 o
ne

 s
am

pl
e 

t-
te

st
 o

f 
th

e 
ef

fe
ct

 s
iz

e 
fo

r 
th

e 
cl

us
te

r.

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2015 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Farr et al. Page 25

T
ab

le
 2

Su
m

m
ar

y 
of

 s
ig

ni
fi

ca
nt

 n
eg

at
iv

e 
gl

ob
al

 c
on

ne
ct

iv
ity

 d
if

fe
re

nc
es

 b
et

w
ee

n 
pa

rt
ic

ip
an

ts
 w

ho
 r

ec
ei

ve
d 

m
et

hy
lp

he
ni

da
te

 (
M

PH
) 

an
d 

th
os

e 
w

ho
 d

id
 n

ot
 (

no
-

M
PH

) 
at

 a
 c

om
bi

ne
d 

th
re

sh
ol

d 
of

 v
ox

el
 p

<
0.

00
1 

un
co

rr
ec

te
d 

an
d 

cl
us

te
r-

le
ve

l p
<

0.
05

, F
W

E
 c

or
re

ct
ed

M
N

I 
co

or
di

na
te

s 
(m

m
)

C
on

tr
as

t
M

P
H

no
-M

P
H

C
lu

st
er

si
ze

 (
m

m
3 )

z-
sc

or
e

X
Y

Z
Si

de
Id

en
ti

fi
ed

 r
eg

io
n

M
PH

>
no

-M
PH

–
–

11
12

4
4.

4
39

−
28

61
R

Pr
e-

ce
nt

ra
l G

–
–

4.
24

9
−

25
76

R
Pa

ra
ce

nt
ra

l l
ob

ul
e

no
-M

PH
>

M
PH

–
–

62
10

4.
53

−
57

−
67

22
L

Su
pe

ri
or

 te
m

po
ra

l S

–
–

4.
39

−
54

−
73

31
L

A
ng

ul
ar

 G

–
–

99
90

4.
33

−
21

53
−

2
L

Fr
on

ta
l m

ar
gi

na
l G

–
–

3.
96

24
47

4
R

M
id

dl
e 

fr
on

ta
l/a

nt
er

io
r

ci
ng

ul
at

e 
G

–
–

59
40

4
42

−
61

31
R

A
ng

ul
ar

 G

–
–

3.
96

42
−

67
40

R
In

fe
ri

or
 p

ar
ie

ta
l G

–
–

3.
89

54
−

70
25

R
M

id
dl

e 
te

m
po

ra
l G

R
- 

ri
gh

t, 
L

- 
le

ft
; G

- 
gy

ru
s;

 S
- 

su
lc

us
; −

/−
 in

di
ca

te
s 

si
gn

if
ic

an
ce

 o
f 

th
e 

ne
ga

tiv
e 

co
nn

ec
tiv

ity
.

Int J Neuropsychopharmacol. Author manuscript; available in PMC 2015 August 01.


