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Abstract

Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and 

reorganization and serves as a receptor for both β-glucocerebrosidase and enterovirus 71. 

However, little is known about its function in innate immune cells. In this study, we show that, 

among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic 

cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. 

Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN 

production. Detailed studies reveal that SCARB2 localizes in late endosome/lysosome of pDCs, 

and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the 

retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN 

regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by 
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SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced 

IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I 

production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of 

IFN regulatory factor 7.

Lysosomes are ubiquitous acid membrane-bound organelles involved in the degradation of 

molecules, complexes, and structures that enter the endocytic pathway through endocytosis, 

phagocytosis, or autophagy (1–3). More than 25 integral lysosomal membrane proteins 

(LMPs) have been identified to play critical roles in maintaining the morphology and 

function of lysosomes in mammals (4). The most abundant LMPs discovered to date are 

lysosome-associated membrane protein (LAMP)-1, LAMP-2, scavenger receptor class B, 

member 2 (SCARB2), and CD63.

SCARB2, also known as lysosome integral membrane protein-2 or LGP85, belongs to the 

CD36 superfamily of scavenger receptors, which also includes scavenger receptor class B, 

member 1 (SCARB1), and CD36 (5). SCARB2 is a highly glycosylated type III membrane 

protein residing in the membrane of late endosome and lysosome (6, 7). The endosome and 

lysosome targeting of SCARB2 is mediated by a di-leucine–based motif “DERAPLI” in the 

C-terminal cytoplasmic tail (8, 9). And the adaptor protein complexes (AP)-1 and AP-3 help 

to sort SCARB2 from trans Golgi network to late endosome/lysosome (10, 11).

Based on studies in macrophages and a small number of cell lines, various functions have 

been attributed to SCARB2 (12–14). As an abundant LMP, SCARB2 plays a critical role in 

the biogenesis and reorganization of endosomes and lysosomes. Over-expression of 

SCARB2 in mammalian cells results in direct disturbance of membrane trafficking and 

accumulation of cholesterol, which leads to enlargement of endosomal/lysosomal 

compartments (12, 15). SCARB2 has been reported to transport β-glucocerebrosidase (β-

GC), a lysosomal hydrolase whose mutation might cause lysosomal storage disorder 

Gaucher disease (GD), from endoplasmic reticulum (ER) to lysosome (16). Recently, 

SCABR2 has been shown to serve as a receptor for enterovirus 71 and coxsackievirus A16, 

the major viruses that cause hand-foot-and-mouth disease (13, 17, 18). These findings 

suggest that SCARB2 is a critical lysosomal protein involved in diverse functions of 

endocytic processes.

However, it is worth noting that almost all those previous studies were carried out in mouse 

macrophages or cell lines (12, 14, 19), whereas human SCARB2 has a more extensive 

expression profile in a range of cell types. Based on a cDNA microarray data, we found that 

SCARB2 was highly expressed in human plasmacytoid dendritic cells (pDCs) compared 

with other peripheral blood cell types. This raises the question of what is the function of 

SCARB2 in pDCs.

pDCs are a specialized subset of dendritic cells with extraordinary capacity to produce type I 

IFN (IFN-I) in response to stimulation by viruses or nucleic acids (20, 21). TLR7 and TLR9 

are expressed in pDCs as pattern recognition receptors (PRRs). TLR7 and TLR9 are 

synthesized in ER (22), where they associate with the ER membrane protein uncoordinated 

93 homolog B1 and traffic through Golgi to endolysosomes (23–26). During this process, 
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AP-3 mediates the translocation of TLR7 and TLR9 into lysosomes or lysosome-related 

organelles (27). In these acid compartments, TLR7 and TLR9 undergo proteolytic 

processing by cathepsins and asparagine endopeptidase to become functionally competent 

receptors (28, 29). After that, those PRRs can recognize, respectively, ssRNA or dsDNA and 

initiate IFN-I signaling pathway.

As important stimulators for pDCs, different classes of CpG oligodeoxynucleotides (CpG-

ODNs) with distinct primary sequence motifs and secondary and tertiary structures have 

been generated. The most commonly used CpG-ODNs are CpG A and CpG B. The former 

induces high levels of IFN-α, but has poor activity in inducing pDC differentiation. 

However, the latter induces stronger pDC maturation, but weaker IFN-α secretion (30, 31). 

In brief, upon stimulation by those ligands, both TLRs recruit the cytoplasmic adaptor 

MyD88 and initiate downstream signaling cascade, involving TNFR-associated factor 6, 

IL-1R–associated kinase, inhibitor of IκB kinase-α, and IFN regulatory factor (IRF) 7. 

Eventually, IRF7 is phosphorylated and transported into the nuclei to initiate IFN-I 

transcription (31–34). Activated pDCs can also secrete TNF-α, IL-6, and chemokines as 

well as upregulate the expression of MHC and costimulatory molecules to present Ags to T 

cells (21, 35). Thus, pDCs play a crucial role in bridging the innate and adaptive immunity.

To our knowledge, there is no previous report on the specific functions of SCARB2 in 

human pDCs. Thus, we have used primary pDCs and pDC cell line GEN2.2 to investigate 

SCABR2’s expression and function. In this work, we show that SCARB2 is expressed in 

late endosome/lysosome of pDCs at a very high level. Upon activation, SCARB2 expression 

is further upregulated without changing its subcellular location. Knockdown of SCARB2 in 

GEN2.2 cells results in the ER retention of TLR9, reduction of IRF7 nuclear translocation, 

and dramatic inhibition of IFN-α expression. SCARB2 also regulates TLR7-dependent IFN-

α production, but has no influence on antiviral IFN-I response. These findings suggest that 

SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal 

translocation of TLR9 and nuclear translocation of IRF7.

Materials and Methods

Reagents and Abs

Synthesized CpG-ODNs were purchased from Takara and Invitrogen. The sequences of 

CpG-ODNs were as follows: CpG A (ODN2216), 5′-ggGGGACGATCGTCgggggg-3′; CpG 

B (ODN2006), 5′-tcgtcgttttgtcgt-tttgtcgtt-3′.

Lowercase letters in CpG-ODN sequences refer to nucleotides for which the 3′ 

internucleotide linkage is phosphorothioate modified, and uppercase letters refer to standard 

phosphodiester-linked nucleotides. The 5′-biotin-CpG A and 5′-biotin-CpG B were 

purchased from Takara and Invitrogen, respectively, with biotin labeled at the 5′ 

internucleotide.

mAb against SCARB2 designated as JL-1 was raised in mice that were immunized by L 

cells transfected with human SCARB2 gene using the standard techniques. For FACS 

analysis, JL-1 mAb was directly labeled with FITC in Tianjin Sungene Biotech (Tianjin, 
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China) and designated as JL-1-FITC. All of the other Abs used in this work are listed in 

Supplemental Table 1.

Cell culture

The human embryonic kidney cell line HEK293T was cultured in a 5% CO2 incubator at 

37°C with complete DMEM (Life Technologies) supplemented with 10% FBS (Hyclone, 

Thermo Fisher Scientific), L-glutamine (Invitrogen), and penicillin/streptomycin 

(Invitrogen).

GEN2.2 cells were cultured in GlutaMax-RPMI 1640 (Life Technologies) supplemented 

with 10% FBS (Life Technologies), L-glutamine (Invitrogen), MEM-nonessential amino 

acid solution (Life Technologies), penicillin/streptomycin (Invitrogen), and sodium pyruvate 

(Invitrogen).

Plasmid construction, lentivirus production, and stable cell line generation

pLKO.1 vectors encoding short hairpin RNA (shRNA) for a scrambled molecule or 

SCARB2 were purchased from Open Biosystem, and then the shRNA sequences were 

subcloned into FG12 vectors.

FG12-shRNA vectors were transfected into HEK293T cells together with ΔNRF (a 

packaging plasmid) and vesicular stomatitis virus G (an envelope plasmid) for producing 

viral particles using the standard calcium phosphate techniques. Culture supernatants were 

harvested 24 and 48 h after transfection and then centrifuged at 2000 rpm for 10 min. 

GEN2.2 cells were infected with collected supernatants containing lentiviral particles in the 

presence of 4 mg/ml polybrene (Sigma-Aldrich). As a GFP gene existing in the FG12 

vector, after 48 h of culture, lentiviral-infected cells with GFP expression were sorted with 

BD FACS AriaII (BD Biosciences). Gene-targeting efficiencies of each shRNA-targeted 

molecule were verified by real-time PCR and/or Western blotting analysis.

Flow cytometry analysis and purification

PBMCs of healthy volunteers were isolated by density gradient centrifugation using Ficoll-

Paque Plus (17-1440-02; GE Healthcare). Then PBMCs were washed twice with PBS plus 

2% FBS and 2 mM EDTA and blocked with 10% human serum plus 10% goat serum. 

Whereafter, they were stained with anti-human BDCA2-PE, anti-human CD123-PerCP/

Cy5.5, and 7-aminoactinomycin D and then permeabilized with a Perm/Wash buffer 

(554723; BD Biosciences). Finally, intracellular SCARB2 was detected by JL-1-FITC.

SCARB2 expression in GEN2.2 cells was also detected, as described above.

Primary pDCs were purified from PBMCs by staining with anti-human BDCA2-PE and 

anti-human CD123-PerCP/Cy5.5 and sorting with a FACS AriaII flow cytometer (BD 

Biosciences). Reanalysis of the sorted cells confirmed a purity of >98%.

To observe SCARB2 expression in primary pDCs upon stimulation, purified pDCs were 

cultivated in presence of 10 ng/ml IL-3 (200-03; PeproTech) alone or together with 1 μM 
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CpG A or 0.2 μM CpG B for 20 h. Cells were harvested, washed, permeabilized, and 

blocked. After that, they were stained with JL-1-FITC (anti-SCARB2).

To observe the uptake of CpG-ODNs, SCARB2 knockdown (sh-1) and control cells (sh-c) 

were incubated with 1 μM biotin-conjugated CpG B for 1, 2, and 4 h. Cells were harvested, 

washed, permeabilized, and blocked. After that, they were stained with JL-1 (anti-

SCARB2), followed by PE goat anti-mouse IgG and allophycocyanin streptavidin.

All flow cytometry analysis was conducted on a FACSCalibur flow cytometer (BD 

Biosciences), and data were analyzed with Summit 4.3 (DAKO).

mRNA extraction and real-time PCR

For primary cells, purified pDCs were stimulated with 1 μM CpG A or 0.2 μM CpG B for 20 

h in the presence of 10 ng/ml IL-3 (200-03; PeproTech).

For cell lines, GEN2.2 cells were stimulated with 2 μM CpG A, 0.2 μM CpG B, 4 μg/ml 

R848, or 20 μg/ml R837 for the indicated durations.

Total RNA was extracted from fresh or stimulated cells with TRIzol (Invitrogen), according 

to the manufacturer’s instructions. Oligo(dT) primers and Moloney murine leukemia virus 

reverse transcriptase (M1705; Promega) were used for the reverse transcription of purified 

RNA. All of the gene transcripts were quantified by real-time PCR with SYBR Green QPCR 

Master Mix (S7563; ABI, Life Technologies) and a Rotor-Gene Corbett 65H0 (Corbett 

Lifescience). GAPDH or EF1-α was used as a housekeeping control to normalize the 

amounts of cDNA between each sample. Primers for real-time PCR were synthesized by 

Invitrogen. Their sequences were as follows: GAPDH, forward, 5′-AGCCACATCGCTCA-

GACAC-3′ and reverse, 5′-GCCCAATACGACCAAATCC-3′; EF1-α, forward, 5′-

ATATGGTTCCTGGCAAGCCC-3′ and reverse, 5′-GTGGG-GTGGCAGGTATTAGG-3′; 

SCARB2, forward, 5′-AGCCAATACGTCA-GACAATGC-3′ and reverse, 5′-

TTGGTAAAAGTGTGGGAAAGACA-3′; IFN-α, forward, 5′-

GTGAGGAAATACTTCCAAAGAATCAC-3′ and reverse, 5′-

TCTCATGATTTCTGCTCTGACAA-3′; IFN-β, forward, 5′-TG-

TTGTAGCAAACCCTCAAGC-3′ and reverse, 5′-ATGAGGTACAGGCC-CTCTGA-3′; 

and TNF-α, forward, 5′-ACTGAACTTCGGGGTGATCG-3′ and reverse, 5′-

TGGTGGTTTGCTACGACGTG-3′.

Immunofluorescence analysis

To observe the location of SCARB2 in primary cells, purified pDCs were washed with PBS 

plus 2% FBS and 2 mM EDTA, and then permeabilized with a Perm/Wash buffer. After 

blocking with 10% human serum plus 10% goat serum, the cells were stained with JL-1 

(anti-SCARB2) together with early endosome marker anti–transferrin receptor (TfR)-biotin 

or late endosome marker anti–LAMP-1-AF647, followed by DyLight 549 goat anti-mouse 

IgG and/or Cy5 streptavidin.

To observe the location of SCARB2 in cell lines, fresh GEN2.2 cells or cells stimulated with 

0.2 μM CpG B for 20 h were operated by the same method described above.
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To observe nuclear translocation of IRF7, SCARB2 knockdown (sh-1) and control cells (sh-

c) were stimulated with 0.2 μM CpG B for 4 h, respectively. After permeabilization with a 

Perm/Wash buffer and blocking with 10% goat serum, the cells were stained with anti-IRF7, 

followed by DyLight 649 goat anti-rabbit IgG. Nuclei were identified using DAPI staining 

(Sigma-Aldrich).

To observe the uptake of CpG-ODNs, SCARB2 knockdown (sh-1) and control cells (sh-c) 

were mixed together by equal amounts and incubated with 1 μM biotin-conjugated CpG B 

for 1 h. The cells were harvested, washed, permeabilized, and blocked. After that, they were 

stained with JL-1 (anti-SCARB2), followed by DyLight 549 goat anti-mouse IgG and Cy5 

streptavidin.

To observe the intracellular trafficking of CpG-ODNs, SCARB2 knockdown (sh-1) and 

control cells (sh-c) were stimulated with 2 μM CpG B for 5 min, 1 h, and 3 h. The cells were 

harvested, washed, permeabilized, and blocked. After that, they were stained with Cy3 

streptavidin together with anti-TfR, followed by AF647 goat anti-mouse IgG or anti–

LAMP-1-AF647.

To observe the translocation of TLR9 from ER to endosomes, SCARB2 knockdown (sh-1) 

and control cells (sh-c) were stimulated with 0.2 μM CpG B for 4 h. Cells after stimulation 

were harvested, washed, permeabilized, and blocked. After that, they were stained with anti-

TLR9, followed by DyLight 549 goat anti-mouse IgG. Meanwhile, markers used for 

organelles were as follows: anti-Calnexin followed by DyLight 649 goat anti-rabbit IgG; 

anti–TfR-biotin followed by Cy5 streptavidin; and anti–LAMP-1-AF647.

The cells were attached to glass slides by a cytospin centrifuge. Slices were sealed by 

Vectashield Mounting Medium (Vector Labs) with 1.5 μg/ml DAPI (Sigma-Aldrich) and 

then visualized under a confocal microscope (Olympus FV1000). Data were acquired with 

FV10-ASW 1.7 Viewer (Olympus). Statistical data of IRF7 and TLR9 subcellular 

translocation were measured double blinded from at least two random fields of view.

Western blotting

GEN2.2 cells fresh or stimulated with 0.2 μM CpG B for the indicated durations were 

washed twice with cold PBS and lysed in radioimmunoprecipitation assay buffer (0.01 M 

Tris [pH 8.0], 0.14 M NaCl, 2 mM EDTA, 1% NaDOC, 0.1% SDS, 1% Triton X-100, 1 mM 

PMSF, and protease inhibitor cocktail tablets [Roche Diagnostics]) on ice for 30 min. All 

cell lysates were centrifuged at 13,300 × g for 20 min at 4°C. Then proteins in supernatants 

were separated by SDS-PAGE and transferred to polyvinylidene difluoride membranes. 

Nonspecific binding sites were blocked with 3% BSA in PBS containing 0.1% Tween 20. 

Membranes were then incubated with anti-SCARB2 at 4°C overnight. Ab labeling was 

shown with HRP-conjugated secondary Abs (Zsbio) and was visualized with Immobilon 

Western HRP Substrate (Millipore).

Similarly, SCARB2 knockdown efficiencies in SCARB2 knockdown (sh-1/2) and control 

cells (sh-c) were also detected, as described above.
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Quantification of cytokine production

SCARB2 knockdown (sh-1/2) and control cells (sh-c) were plated at 2 × 105 cells/200 μl/

well in flat-bottom 96-well plates, as described above, and incubated for 0–20 h with or 

without 2 μM CpG A, 0.2 μM CpG B, 4 μg/ml R848, 20 μg/ml R837, 2 multiplicity of 

infection Flu, or 5 multiplicity of infection HSV. Plates were centrifuged at 1500 rpm/10 

min to pellet cells. Supernatants were collected and either assessed immediately or stored at 

−80°C. ELISA was performed to detect human IFN-α (3425-1H-20; MABtech) or IL-6 

(3460-1H-20; MABtech), according to the manufacturer’s instructions. Absorbance was 

determined at 450 nm. All samples and standards were measured in duplicates.

IRF7 nuclear translocation

SCARB2 knockdown (sh-1) and control cells (sh-c) were plated at 5 × 106 cells/5 ml in 10-

mm dishes, as described above, and incubated for 2 h and 4 h with or without 0.2 μM CpG 

B. Cells were washed twice with cold PBS and lysed in buffer A (10 mM HEPES [pH 7.9], 

10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol, 1 mM DTT, 1 mM PMSF, and 

0.1% Triton X-100) for 5 min on ice. Samples were centrifuged at 1300 × g for 4 min at 

4°C. Then the supernatants and pellets were collected separately. The supernatants were 

centrifuged again at 17,000 × g for 20 min at 4°C, and the final supernatants were 

constituted with soluble cytosolic proteins. Those pellets from the first centrifuge were 

washed three times with buffer A (without 0.1% Triton X-100) and could be used in 

Western blotting as nuclear fractions.

All protein samples were immunoblotted using anti-IRF7. Anti-histone H3 and anti-tubulin 

were used as controls for nuclear and cytosolic fractions separately.

Statistical analysis

All of the graphs in this work were analyzed by GraphPad Prism software. Data were shown 

as means ± SEM of at least three independent experiments. Statistically significant 

differences were determined by unpaired, two-tailed, Student t test. The p values < 0.05 

were considered statistically significant.

Results

SCARB2 is preferentially expressed in pDCs and localizes in late endosome/lysosome

Based on cDNA array gene expression analysis, we found that SCARB2 was expressed at a 

much higher level in pDCs than in any other human peripheral blood leukocytes (Fig. 1A). 

To confirm this result, PBMCs, primary pDCs, and pDC-depleted PBMCs were isolated 

from healthy volunteers, and the levels of SCARB2 transcript were quantified by real-time 

PCR analysis (Fig. 1B). Consistent with the microarray data, the level of SCARB2 was ~7-

fold higher in pDCs than in total PBMCs. Intracellular staining followed by flow cytometry 

analysis showed that BDCA2-positive pDCs expressed SCARB2, and the level was the 

highest among peripheral blood cells (Fig. 1C), whereas direct staining without 

permeabilization failed to stain SCARB2 on the cell surface (data not shown).
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SCARB2 has been reported to localize in the membrane of late endosome and lysosome (8, 

9, 16). To determine whether the subcellular distribution of SCARB2 remains the same in 

human pDCs, primary pDCs were stained with anti-SCARB2 Ab after permeabilization. 

Confocal microscopy revealed that SCARB2 colocalized with a late endosome/lysosome 

marker LAMP-1, but not an early endosome marker transferrin receptor (TfR) (Fig. 1D). 

Considering the paucity and vulnerability of primary pDCs, we carried out some 

mechanistic studies in GEN2.2 cells, a human leukemic cell line similar to human pDCs 

both phenotypically and functionally (36). Similar to primary pDCs, SCARB2 was highly 

expressed in GEN2.2 cells and had a complete colocalization with late endosome marker 

LAMP-1 (Supplemental Fig. 1). These results show that SCARB2 is highly expressed in 

human pDCs and localizes in late endosome/lysosome.

CpG induces upregulation of SCARB2 expression in pDCs

SCARB2 is known to play a critical role in the biogenesis of endosome/lysosome and the 

proper function of endocytic transfer system (12, 37). The high level of SCARB2 expression 

in pDCs, which are specialized innate immune cells, raises the question of the function of 

SCARB2 in innate immune responses. To investigate this, we determined whether SCARB2 

expression is modulated by TLR stimulation in pDCs. Purified pDCs were cultured in the 

presence of IL-3 and stimulated with CpG-ODNs, which are TLR9 ligands and stimulate 

pDCs to produce inflammatory cytokines such as IFN-I (20, 21). Because different CpG-

ODNs exhibit different effect on pDCs (30, 31), we used both CpG A and CpG B. As shown 

in Fig. 2A, the level of SCARB2 transcript was significantly increased following both types 

of CpG-ODN stimulation. The upregulation of SCARB2 was confirmed at protein level by 

intracellular staining (Fig. 2B). Similarly, CpG A and CpG B also induced upregulation of 

SCARB2 in GEN2.2 cells (Fig. 2C). The level of SCARB2 transcript was induced gradually 

from 8 to 20 h post-CpG B stimulation (Fig. 2C). The upregulation at protein level was also 

detected by Western blotting (Fig. 2D). Despite the increase of SCARB2 expression, the 

protein still remained in late endosome/lysosome with a complete colocalization with 

LAMP-1 (Fig. 2E). These results show that SCARB2 is further upregulated by TLR9 

ligands in pDCs, suggesting its role in innate immune responses.

SCARB2 regulates TLR9-dependent IFN-I production

To investigate the function of SCARB2 in human pDCs, we examined the effect of 

SCARB2 knockdown on production of inflammatory cytokines by GEN2.2 cells following 

CpG-ODN stimulation. We constructed lentivirus expressing two shRNAs specific for 

SCARB2 and established stably transduced GEN2.2 cell lines. Quantification of the levels 

of SCARB2 transcript by real-time PCR and protein by Western blotting in the stable cell 

lines revealed that the knockdown efficiency was ~90% for one shRNA and 70% for the 

other (Fig. 3A, 3B). SCARB2 knockdown (sh-1/2) and control cells (sh-c) were then treated 

with CpG A and CpG B separately, and the secretion of IFN-α and IL-6 was quantified by 

ELISA. In response to CpG A, IFN-α and IL-6 production showed no difference between 

SCARB2 knockdown cells and the control cells (Fig. 3C). However, upon CpG B 

stimulation, SCARB2 knockdown led to ~90% and 40–60% reduction, respectively, in IFN-

α and IL-6 production (Fig. 3D). The kinetics of IFN-α transcript by real-time PCR and 

protein expression was also analyzed. The transient induction of IFN-α transcript was 
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significantly inhibited in SCARB2 knockdown cells, and expression of IFN-α protein was 

also remarkably reduced (Fig. 3E). These results might reflect that CpG A and CpG B had 

distinct pathways to activate pDCs and, somehow, SCARB2 only influenced the mechanism 

underlying CpG B stimulation (see Discussion). We used CpG B as the major agonist in 

further studies below. In conclusion, these data indicate an important role of SCARB2 in 

regulating TLR9-dependent IFN-I production in pDCs.

In addition, we stimulated SCARB2 knockdown (sh-1) and control cells (sh-c) with two 

synthetic TLR7 agonists: R848 and R837. Very low levels of IFN-α secretion were 

observed at any time point (up to 22 h) after R848 or R837 activation (data not shown), 

which would be in keeping with many previous findings that the pDC cell line GEN2.2 cells 

failed to produce significant amounts of type I IFN toward these two ligands because of the 

transitory activation of inhibitor of IκB kinase-β (38, 39). However, SCARB2 knockdown 

led to a significant reduction in IL-6 production (Supplemental Fig. 2A). Moreover, the 

transient induction of IFN-α, IFN-β, and IL-6 transcript was sharply inhibited in SCARB2 

knockdown cells (Supplemental Fig. 2B). These findings suggest that SCARB2 also 

regulates TLR7-dependent IFN-I production.

SCARB2 is not required for virus-induced IFN-I production

We next investigated the relevance of SCARB2-TLR-IFN pathway in antiviral responses by 

challenging SCARB2 knockdown (sh-1) and control cells (sh-c) with influenza virus (Flu, 

RNA virus) and HSV (DNA virus), which could be recognized by TLR7 and TLR9, 

respectively. Secretion of IFN-α and IL-6 was quantified by ELISA. It was interesting to 

note that, in response to both viruses, IFN-α and IL-6 production showed no difference 

between SCARB2 knockdown cells and the control cells (Fig. 4) (see Discussion). These 

results may reflect that SCARB2 is not essential for virus-induced IFN-I production.

SCARB2 is essential for TLR9-mediated activation of IRF7

It is well established that IRF family members are the key transcription factors in regulating 

IFN-I expression (40, 41). Stimulation of pDCs with CpG-ODNs induces the nuclear 

translocation of IRF7 after its phosphorylation and dimerization, which eventually mediates 

IFN-α production (33, 34).

Thus, we examined whether SCARB2 was required for the nuclear translocation of IRF7 

upon TLR9-mediated activation. We used CpG B to stimulate SCARB2 knockdown (sh-1) 

and control cells (sh-c), and then monitored the distribution of IRF7 by Western blotting and 

immunofluorescence. Nuclear and cytosolic fractions of stimulated cells were isolated and 

assayed separately. After CpG B stimulation, IRF7 displayed an increased distribution in the 

nucleus. However, compared with control cells, nuclear translocation of IRF7 was greatly 

diminished in SCARB2 knockdown GEN2.2 cells (Fig. 5A). This result was further 

confirmed by confocal microscopy with intracellular staining of IRF7. After 4-h stimulation 

of CpG B, >70% of control cells showed an IRF7 colocalization with nuclear staining, 

indicating the nuclear translocation of IRF7 (Fig. 5B, 5C). However, in the case of SCARB2 

knockdown cells, IRF7 remained mostly in the cytoplasm with nuclear colocalization in 

<20% of the cells (Fig. 5B, 5C). These findings suggest that SCARB2 is important for the 
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activation and nuclear translocation of IRF7 in CpG B-induced TLR9-IRF7-IFN signaling 

pathway.

SCARB2 is not required for CpG B endocytosis and trafficking

Following CpG-ODN stimulation, the intracellular events resulting in IFN-α production are 

composed of the following: 1) endocytosis of CpG-ODNs and its trafficking between 

different endosomes and 2) intracellular translocation of TLR9 (22, 28). We next 

investigated the possible mechanism(s) from these two aspects.

First, we examined whether SCARB2 knockdown might block the capability of pDCs to 

uptake CpG-ODNs. To test this hypothesis, we used biotin-conjugated CpG B to stimulate 

SCARB2 knockdown (sh-1) and control cells (sh-c) for the indicated durations. Intracellular 

staining of CpG B and SCARB2 followed by flow cytometry analysis showed that the 

uptakes of CpG B were approximately the same between SCARB2 knockdown and control 

cells (Fig. 6A). To further confirm this, we mixed SCARB2 knockdown and control cells 

together at equal ratio, followed by stimulation with biotin-CpG B. The intracellular 

SCARB2 and CpG B were stained and observed by confocal microscopy. Consistent with 

the FACS result, SCARB2 knockdown cells endocytosed similar levels of CpG B as control 

cells, indicating that SCARB2 is not involved in CpG endocytosis (Fig. 6B).

Several studies have demonstrated that the intracellular localization of CpG-ODNs in pDCs 

strictly correlates with their ability to induce IFN-α. Single-stranded CpG B is quickly 

transported into late endosome/lysosome and promotes pDC activation (31, 33). To 

investigate whether an impaired compartmentalization of CpG B could account for the 

decreased IFN response in SCARB2 knockdown cells, we traced the spatiotemporal 

trafficking of CpG B using confocal microscopy. We showed that CpG B primarily 

localized in TfR-positive early endosomes as soon as 1 h upon stimulation (Fig. 6C). 

However, at this time point, there was also a significant colocalization between CpG B and 

late endosome marker LAMP-1, implicating a fast routing of CpG B between early and late 

endosomes (Fig. 6C). Shortly after that, most CpG B localized in LAMP-1–positive 

endosomal compartments (Fig. 6C). Comparing SCARB2 knockdown (sh-1) cells with 

control cells (sh-c), no difference was detected in CpG B localization and translocation 

between early and late endosomes (Fig. 6C). We conclude that SCARB2 is dispensable for 

CpG endocytosis and translocation.

SCARB2 is required for translocation of TLR9 from ER to late endosomes

We next investigated whether SCARB2 participated in TLR9’s translocation toward 

endosomes, a prerequisite for TLR9-IFN signaling (22, 23, 28). To address this question, we 

first examined the intracellular distribution of TLR9 in GEN2.2 cells without stimulation. 

We performed a double-immunofluorescence staining with anti-TLR9 and ER or endosome 

markers in GEN2.2 cells or SCARB2 knockdown cells. Confocal microscopy revealed that 

TLR9 localized in calnexin-positive ER instead of early or late endosomes, prior to 

stimulation (Fig. 7A). The subcellular distribution of TLR9 was not altered by SCARB2 

knockdown in unstimulated cells (data not shown). Then we treated SCARB2 knockdown 

(sh-1) and control (sh-c) cells with CpG B and intracellularly stained with anti-TLR9 Ab 
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together with ER or endosome markers. Upon stimulation, TLR9 left ER and moved toward 

LAMP-1–positive late endosomes (Fig. 7B). The translocation was appreciably detected in 

20% of control cells, but much less (5%) was detected in SCARB2 knockdown cells (Fig. 

7B, 7C). Therefore, these results show that TLR9 localizes in ER in pDCs and is rapidly 

recruited to late endosomes upon stimulation in a SCARB2-dependent manner.

Discussion

In the current study, we have identified an unexpected role of SCARB2 as an important 

regulator of IFN-I production and a mediator for TLR9 trafficking. The discovery of these 

functions links together many of the details from previous studies of both SCARB2 and 

TLR9 trafficking and, importantly, highlights the enormous synergy between vesicle 

transfer system and antiviral activity in pDCs.

SCARB2 has been very well characterized as a highly glycosylated transmembrane 

lysosomal resident protein since its discovery in rat liver in 1985 (6). However, early studies 

have just focused on its subcellular distribution or kinetics, and most of the existing studies 

remain at biochemistry level or are carried out in cell lines or mouse cells (7–9, 14, 42–44). 

The nature of how SCARB2 works in human primary cells is largely unknown.

Based on cDNA microarray data, we found that pDCs expressed SCARB2 at the highest 

level in human peripheral blood compared with other immune cells (Fig. 1A). This result 

was further confirmed at both RNA and protein level (Fig. 1B, 1C). pDCs are the most 

potent IFN-producing cells and play a vital role in innate immune responses to viral 

infections (20, 45). Intracellular TLR7 and TLR9 are selectively expressed in pDCs to 

recognize viral nucleic acids and rapidly initiate the IFN-I production. IFNs have potent 

effect on promoting the function of other immune cells, such as NK cells, B cells, T cells, 

and myeloid DCs during an antiviral immune response. Although innate and adaptive 

immunity is vital for organisms to resist viral and bacterial infection, it is also important to 

distinguish self from nonself molecules to avoid autoimmunity. Organisms have evolved a 

series of precise regulatory mechanisms to prevent TLRs from self-reactivation (46, 47). 

One of these mechanisms is the subcellular localization and trafficking properties of TLRs. 

How TLR7 and TLR9 accurately traffic to their destined subcellular compartment and what 

proteins participate in this process has attracted great interest.

Our results show that SCARB2 mediates TLR9 trafficking from ER to late endosome/

lysosome upon CpG B stimulation (Fig. 7B, 7C). Such a finding is supported by the 

following evidence: First, after synthesized in ER, SCARB2 translocates into late endosome/

lysosome and regulates the biogenesis and reorganization of endosomes and lysosomes (7, 

9–12, 15). Similarly, TLR9 must traffic into these vesicles to undergo a proteolytic 

processing and become functional (28, 48). Second, trafficking of SCARB2 and TLR9 

between ER and endosome/lysosome is directed by the same adaptor protein AP-3 (27, 42, 

49).

Besides AP-3, many other molecules are also involved in the processing and trafficking of 

TLR9. Heat shock protein gp96 regulates proteolytic processing and conformational stability 
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of TLR9 and thereby affects its trafficking (50). Biogenesis of lysosome-related organelle 

complexes BLOC-1, BLOC-2, BLOC-3 (51), and solute carrier protein superfamily member 

Slc15a4 (52) is also essential for the signaling of TLR9 by interacting with AP-3. 

Phospholipid scramblase 1 regulates IFN-I responses by directly binding to the leucine-rich 

repeat domain of TLR9 and directing its trafficking to the endosomal compartment in pDCs 

(53). All of these proteins, together with SCARB2, may form an intricate and precise system 

to regulate the function of TLR9. How SCARB2 interacts with those TLR9-involved 

proteins will be interesting subjects of further studies.

Our results that SCARB2 regulates IFN production in pDCs (Fig. 3D, 3E) would be in 

keeping with the findings that Carrasco-Marín et al. (14) have demonstrated in SCARB2 

knockout mice. In the innate immune response to Listeria monocytogenes, SCARB2 was 

shown to be required for the production of proinflammatory cytokines and chemokines, such 

as MCP-1, TNF-α, and IL-6, in macrophages. These results together with our findings 

suggest the important function of SCARB2 in immune system.

However, in response to virus stimulation, SCARB2 knockdown showed no influence on the 

production of IFN-α or IL-6 (Fig. 4). These results can be explained by the fact that Flu and 

HSV are recognized by distinct classes of PRRs, not only TLRs, but also some cytosolic 

sensors. For example, retinoic acid-inducible gene I is crucial for the viral detection and type 

I IFN production in Flu-infected epithelial cells, conventional DCs, and alveolar 

macrophages (54). However, in response to HSV infection, DNA-dependent activator of 

IFN regulatory factor, cyclic guanosine monophosphate-adenosine monophosphate synthase, 

DDX41, and DNA-dependent protein kinase all can mediate type I IFN induction after 

sensing viral DNA in the cytosol (55). Therefore, the influence of SCARB2 on type I IFN 

induction may be compensated by those cytosolic sensor-mediated pathways.

SCARB2 is not the first discovered scavenger receptor that can affect cytokine production 

and serves as a possible coreceptor for TLRs. Although the role of scavenger receptors in 

atherogenesis and Alzheimer’s disease continues to drive much of the research in this area, 

their roles in innate immune defense and cytokine responses have received increasing 

attention.

CD36, another scavenger receptor class B subfamily member, localizes in lipid rafts at the 

plasma membrane and acts as a coreceptor for TLR2 (56). CD36 serves as a facilitator 

associating and presenting bacterial lipoteichoic acid as well as diacylated lipo-proteins to 

TLR2/6 heterodimers in lipid rafts, which triggers the downstream signaling pathway. 

Subsequently, the whole complex is internalized and targeted to the Golgi apparatus (57). 

Additionally, Stewart et al. (58) discovered that CD36 also served as a coreceptor for 

TLR4/6 heterodimers and regulated the expression of proinflammatory cytokines by 

oxidized low-density lipo-protein and amyloid-β peptide stimulations in atherosclerosis and 

Alzheimer’s disease. These results are in agreement with our findings demonstrating that 

scavenger receptors can play important roles in TLR signaling and immune responses. If 

SCARB2 and CD36 react with other TLRs just as in the case of CD14, which is a lipid-raft 

resident protein and works as a coreceptor for a series of TLRs (TLR1/2, TLR2/6, TLR7, 

and TLR9), will be an interesting subject of further studies (57, 59).
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Our findings that SCARB2 knockdown cells responded differently to the two types of CpG-

ODNs are surprising. In response to CpG B, IFN-I production was sharply diminished in 

knockdown cells (Fig. 3D, 3E). In response to CpG A, SCARB2 seemed to be dispensable 

for IFN production (Fig. 3C). Such a contradiction can be explained by the possibility that 

CpG A and CpG B have distinct trafficking pathways to activate pDCs and SCARB2 is only 

involved in the process of CpG B stimulation. This possibility is in agreement with findings 

from several other studies. CpG A and CpG B have different primary sequence motifs as 

well as secondary and tertiary structures and behave differently in IFN-α production and 

pDC maturation according to their subcellular localization. CpG A contains poly-G tails that 

enable the formation of aggregated multimeric structures. This makes it preferentially 

retained in early endosomes, correlating with high IFN-α production but inefficient 

stimulation of costimulatory molecule expression. In contrast, single-stranded CpG B travels 

quickly into late endosomes (Fig. 6C) and induces strong pDC maturation but weaker IFN-α 

secretion (30, 31). Others’ research and our results clearly demonstrate that SCARB2 

localizes in late endosome/lysosome and plays a critical role in endolysosome biogenesis. 

According to this, we speculate that, when this protein is knockdown, internal environment 

such as pH or acid proteolytic enzyme function in late endosome/lysosome is damaged, 

which impairs CpG B downstream signaling. In the case of CpG A, early endosome is not 

influenced by SCARB2 knockdown; thus, CpG A-induced IFN production is not impaired.

Meanwhile, we generated SCARB2-overexpressed GEN2.2 cells and monitored the IFN-α 

production in response to both CpG-ODNs. IFN-α production was sharply decreased with 

SCARB2 overexpression upon CpG A/B stimulation (data not shown), which was in 

agreement with the findings of other studies demonstrating that overexpression of SCARB2 

would cause an enlargement of both early and late endosome and an impairment of 

endocytic membrane trafficking (12, 15).

Technically, it has been very challenging to directly study the function of SCARB2 in pDCs 

because of the difficulty in obtaining a large number of pDCs from human tissues or tissue 

cultures as well as the paucity and vulnerability of primary pDCs. Nevertheless, we once 

tried to knock down SCARB2 in primary pDCs by transducing shRNA into the cells by 

electrotransfection or Lipofectamine. Unfortunately, both kinds of operations activated 

pDCs and caused a significant upregulation of SCARB2 (data not shown). Because there 

were technical challenges to knock down SCARB2 in primary pDCs, we settled for the pDC 

cell line GEN2.2 in our research.

A recent report has shown that pDCs suffer massive reductions in patients with GD, which 

is a rare autosomal recessive disorder having a close relationship with β-GC or SCARB2 

deficiency. pDCs from GD patients exhibit a dysfunction in IFN-α production after TLR9 

stimulation, resulting in a decreased response to pathogens (60). Previous studies have 

demonstrated that SCARB2 works as a receptor for β-GC and helps to transport this 

lysosomal hydrolase from ER to lysosome (16). GD results from the inherited deficiency of 

β-GC, which cleaves the glycolipid glucocerebroside into glucose and ceramide (61). In 

recent years, an increasing number of groups report that mutations in SCARB2 can cause 

progressive myoclonus epilepsies or action myoclonus-renal failure, which has similar 

phenotypes with GD (62, 63). It is possible that mutations in β-GC or SCARB2 lead to 
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enzyme dysfunction, and, as a result, glucosylceramide accumulates in lysosome and 

impairs endocytic system, which further blocks TLR9 trafficking and IFN-α production.

In addition, TLR9 has been reported to be linked to autoimmune diseases such as systemic 

lupus erythematosus (64). Our finding that SCARB2 is required for TLR9-dependent IFN 

production toward CpG DNA stimulation offers the possibility that SCARB2 may contribute 

to DNA-mediated immune response and autoimmune processes. Therefore, it will be 

important to further dissect the activities of SCARB2 in TLR9-mediated adjuvant effects in 

anticancer and antiviral therapies.
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FIGURE 1. 
SCARB2 is preferentially expressed in pDCs and localizes in late endosome/lysosome. (A) 

The expression profile of SCARB2 in human leukocytes based on cDNA data. (B) Human 

PBMCs, pDC-depleted PBMCs, and pDCs were isolated from healthy volunteers. The level 

of SCARB2 transcript was quantified by real-time PCR and normalized with GAPDH. (C) 

Intracellular FACS staining of SCARB2 was carried out in human PBMCs. pDCs are 

identified by their BDCA2 expression (circled). Matched isotype IgG was used as a control 

(left panel). (D) Purified pDCs were stained intracellularly with anti-SCARB2 and early 

(upper panel) or late (lower panel) endosome markers. The subcellular distribution of 

SCARB2 was shown by confocal microscopy. Nucleus was stained by DAPI (blue). Results 

are representative of at least three independent experiments. Scale bars, 5 μm.
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FIGURE 2. 
CpG induces upregulation of SCARB2 expression in pDCs. (A and B) Purified pDCs were 

stimulated with CpG A/B in presence of IL-3 for 20 h. (A) The level of SCARB2 transcript 

was determined using real-time PCR and normalized with EF1-α as a housekeeping control. 

(B) pDCs were intracellularly stained with anti-SCARB2, and the mean fluorescence 

intensity (MFI) of stimulated samples was normalized relative to the none-CpG control cells 

(SCARB2 relative MFI = sample MFI minus none-CpG control MFI). Each symbol 

represents one independent experiment. (C–E) GEN2.2 cells were activated by CpG A/B for 

the indicated durations. (C) The level of SCARB2 transcript was determined using real-time 

PCR and normalized with GAPDH as a housekeeping control. (D) After 12- and 20-h 

stimulation, cells were lysed and analyzed by Western blotting with anti-SCARB2. β-actin 

levels are shown as loading controls. (E) After 20-h stimulation, cells were stained 

intracellularly with anti-SCARB2 and early (upper panel) or late (lower panel) endosome 

markers. The subcellular distribution of SCARB2 was shown by confocal microscopy. 

Nucleus was stained by DAPI (blue). Results are representative of at least three independent 

experiments. The data are presented as the mean ± SEM of duplicates. Scale bars, 5 μm.
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FIGURE 3. 
SCARB2 regulates TLR9-dependent IFN-I production. (A and B) GEN2.2 cells were 

transduced with lentivirus carrying either scrambled shRNA (sh-c) or shRNA targeting 

SCARB2 (sh-1/2), and stable cell lines were generated. The knockdown efficiency was 

confirmed by real-time PCR (A) and Western blotting (B). GAPDH or β-actin was used as a 

housekeeping control, respectively. SCARB2 knockdown (sh-1/2) and control cells (sh-c) 

were stimulated with CpG A (C) or CpG B (D) for 20 h. Levels of IFN-α (left panel) and 

IL-6 (right panel) in the culture supernatants were measured by ELISA. (E) SCARB2 

knockdown (sh-1/2) and control cells (sh-c) were stimulated with CpG B for the indicated 

durations. Cells were collected, and the levels of IFN-α transcript were detected by real-time 

PCR normalized with GAPDH as a housekeeping control (left panel). Levels of IFN-α in the 

culture supernatants were measured by ELISA (right panel). Results are representative of at 

least three independent experiments. The data are presented as the mean ± SEM of 

duplicates (ns indicates not significant).
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FIGURE 4. 
SCARB2 is not required for virus-induced IFN-I production. SCARB2 knockdown (sh-1) 

and control cells (sh-c) were stimulated with Flu (A) and HSV (B) for 22 h. Levels of IFN-α 

(left panel) and IL-6 (right panel) in the culture supernatants were measured by ELISA. 

Results are representative of at least three independent experiments. The data are presented 

as the mean ± SEM of duplicates. ns, Not significant.
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FIGURE 5. 
SCARB2 is essential for TLR9-mediated activation of IRF7. SCARB2 knockdown (sh-1) 

and control cells (sh-c) were stimulated with CpG B for 2 and 4 h. (A) Nuclear and cytosolic 

fractions were isolated and immunoblotted with anti-IRF7 Ab. Histone H3 and tubulin were 

used as nuclear and cytosolic markers, respectively. (B) Cells were stained intracellularly 

with anti-IRF7. Nucleus was stained by DAPI (blue). The colocalization of IRF7 with 

nucleus was shown by confocal microscopy. Scale bars, 5 μm. (C) The percentage of cells 

with significant IRF7 nuclear translocation was summarized from random fields of view 
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(control samples: 2 views with at least 50 cells; CpG B-stimulated samples: 3 views with at 

least 200 cells). Results are representative of at least three independent experiments.
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FIGURE 6. 
SCARB2 is not required for CpG B endocytosis and trafficking. (A) SCARB2 knockdown 

(sh-1) and control cells (sh-c) were stimulated with biotin-conjugated CpG B. Endocytosis 

of CpG B was detected by intracellular FACS staining. Left panel was a representative 

histogram of CpG B internalization in control (sh-c, black line) and SCARB2 knockdown 

cells (sh-1, red line) at 1 h after stimulation. Right panel was the summary data of 1, 2, and 4 

h post-CpG B stimulation. (B) SCARB2 knockdown (sh-1) and control cells (sh-c) were 

mixed together with equal amounts and stimulated with biotin-conjugated CpG B for 1 h. 

Intracellular SCARB2 and CpG B were stained with anti-SCARB2 and Cy5 streptavidin, 

respectively. White arrows indicate to sh-c control cells, whereas purple arrows indicate to 

sh-1 SCARB2 knockdown cells. (C) SCARB2 knockdown (sh-1) and control cells (sh-c) 

were stimulated with biotin-conjugated CpG B for 5 min, 1 h, and 3 h. CpG B trafficking 

was confirmed by intracellular staining together with early or late endosome marker. 

Nucleus was stained by DAPI (blue). Results are representative of at least three independent 

experiments. Scale bars, 5 μm.
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FIGURE 7. 
SCARB2 is required for the translocation of TLR9 from ER to late endosomes. (A) GEN2.2 

cells were stained intracellularly with anti-TLR9 and anti-calnexin (ER, upper panel) or 

anti-TfR (early endosomes, middle panel) or anti-LAMP-1 (late endosomes, lower panel). 

The subcellular distribution of TLR9 was shown by confocal microscopy. Nucleus was 

stained by DAPI (blue). (B) SCARB2 knockdown (sh-1) and control cells (sh-c) were 

stimulated with CpG B for 4 h. Intracellular TLR9 was stained together with anti-calnexin 

(upper panel) or anti-TfR (medial panel) or anti-LAMP-1 (lower panel). The subcellular 

distribution was shown by confocal microscopy. Nucleus was stained by DAPI (blue). Scale 

bars, 5 μm. (C) The percentage of cells in which TLR9 translocated into late endosomes was 

summarized from at least five random fields of view with at least 200 cells per sample. 

Results are representative of at least three independent experiments.
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