Abstract
Genetic fingerprint profiles have been successfully used for establishing biological relationships, in linkage analysis, and in studies of population structure but have not so far been used for ascertaining phylogenetic relationships among related groups of species and genera. This is largely because these profiles are thought to evolve too rapidly to be informative over large time intervals. However, we show here that among the Crocodilia, whose phylogeny is a debated issue, these profiles can provide phylogenetically useful information. By using the probe Bkm-2(8), DNA fingerprints with distinct bands distributed in the size range 0.5-23.0 kb were obtained for individuals of 18 species belonging to seven of the eight genera of crocodilians. These genetic profiles showed individual-, species-, and restriction enzyme-specific patterns. In addition, striking differences were observed in the copy number of Bkm-related sequences in genomes of different crocodilian species. The qualitative data from DNA fingerprint profiles, and quantitative data on copy number variation in Bkm-related sequences, suggest that these genera belong to two distinct groups, one of which includes Alligator, Paleosuchus, and Caiman; the other includes Crocodylus, Osteolaemus, Tomistoma, and Gavialis. A close relationship between Tomistoma and Gavialis is also suggested by these results.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggarwal R. K., Lang J. W., Singh L. Isolation of high-molecular-weight DNA from small samples of blood having nucleated erythrocytes, collected, transported, and stored at room temperature. Genet Anal Tech Appl. 1992 Apr;9(2):54–57. doi: 10.1016/1050-3862(92)90031-y. [DOI] [PubMed] [Google Scholar]
- Burke T., Bruford M. W. DNA fingerprinting in birds. Nature. 1987 May 14;327(6118):149–152. doi: 10.1038/327149a0. [DOI] [PubMed] [Google Scholar]
- Cohen M. M., Gans C. The chromosomes of the order Crocodilia. Cytogenetics. 1970;9(2):81–105. doi: 10.1159/000130080. [DOI] [PubMed] [Google Scholar]
- Demas S., Duronslet M., Wachtel S., Caillouet C., Nakamura D. Sex-specific DNA in reptiles with temperature sex determination. J Exp Zool. 1990 Mar;253(3):319–324. doi: 10.1002/jez.1402530311. [DOI] [PubMed] [Google Scholar]
- Gibbs H. L., Weatherhead P. J., Boag P. T., White B. N., Tabak L. M., Hoysak D. J. Realized reproductive success of polygynous red-winged blackbirds revealed by DNA markers. Science. 1990 Dec 7;250(4986):1394–1397. doi: 10.1126/science.250.4986.1394. [DOI] [PubMed] [Google Scholar]
- Gilbert D. A., Lehman N., O'Brien S. J., Wayne R. K. Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature. 1990 Apr 19;344(6268):764–767. doi: 10.1038/344764a0. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Morton D. B. DNA fingerprints of dogs and cats. Anim Genet. 1987;18(1):1–15. doi: 10.1111/j.1365-2052.1987.tb00739.x. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
- Jeffreys A. J., Wilson V., Thein S. L., Weatherall D. J., Ponder B. A. DNA "fingerprints" and segregation analysis of multiple markers in human pedigrees. Am J Hum Genet. 1986 Jul;39(1):11–24. [PMC free article] [PubMed] [Google Scholar]
- Lang J. W., Aggarwal R. K., Majumdar K. C., Singh L. Individualization and estimation of relatedness in crocodilians by DNA fingerprinting with a Bkm-derived probe. Mol Gen Genet. 1993 Apr;238(1-2):49–58. doi: 10.1007/BF00279530. [DOI] [PubMed] [Google Scholar]
- Lloyd M. A., Fields M. J., Thorgaard G. H. BKm minisatellite sequences are not sex associated but reveal DNA fingerprint polymorphisms in rainbow trout. Genome. 1989 Oct;32(5):865–868. doi: 10.1139/g89-523. [DOI] [PubMed] [Google Scholar]
- Singh L., Jones K. W. Bkm sequences are polymorphic in humans and are clustered in pericentric regions of various acrocentric chromosomes including the Y. Hum Genet. 1986 Aug;73(4):304–308. doi: 10.1007/BF00279091. [DOI] [PubMed] [Google Scholar]
- Singh L., Jones K. W. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome. Cell. 1982 Feb;28(2):205–216. doi: 10.1016/0092-8674(82)90338-5. [DOI] [PubMed] [Google Scholar]
- Singh L., Phillips C., Jones K. W. The conserved nucleotide sequences of Bkm, which define Sxr in the mouse, are transcribed. Cell. 1984 Jan;36(1):111–120. doi: 10.1016/0092-8674(84)90079-5. [DOI] [PubMed] [Google Scholar]
- Singh L., Winking H., Jones K. W., Gropp A. Restriction fragment polymorphism in the sex-determining region of the Y chromosomal DNA of European wild mice. Mol Gen Genet. 1988 Jun;212(3):440–449. doi: 10.1007/BF00330848. [DOI] [PubMed] [Google Scholar]
- Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetton J. H., Carter R. E., Parkin D. T., Walters D. Demographic study of a wild house sparrow population by DNA fingerprinting. Nature. 1987 May 14;327(6118):147–149. doi: 10.1038/327147a0. [DOI] [PubMed] [Google Scholar]