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Abstract

White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) 

disease burden. Recent work in the automated segmentation of white matter lesions from MRI has 

utilized a model in which lesions are outliers in the distribution of tissue signal intensities across 

the entire brain of each patient. However, the sensitivity and specificity of lesion detection and 

segmentation with these approaches have been inadequate. In our analysis, we determined this is 

due to the substantial overlap between the whole brain signal intensity distribution of lesions and 

normal tissue. Inspired by the ability of experts to detect lesions based on their local signal 

intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue 

segmentation through simultaneous estimation of a spatially global within-the-subject intensity 

distribution and a spatially local intensity distribution derived from a healthy reference population. 

We demonstrate that MS lesions can be segmented as outliers from this intensity model of 

population and subject (MOPS). We carried out extensive experiments with both synthetic and 

clinical data, and compared the performance of our new algorithm to those of state-of-the art 

techniques. We found this new approach leads to a substantial improvement in the sensitivity and 

specificity of lesion detection and segmentation.

I. INTRODUCTION

Multiple Sclerosis (MS) is a chronic demyelinating disease of the central nervous system 

(CNS). It is the major cause of non-traumatic neurological disability in young adults in 

North America and Europe, affecting more than 2.5 million individuals. The pathological 

hallmark of MS is the presence of focal areas of inflammatory-mediated demyelination of 

the brain and spinal cord white matter [1]. Although the cause of MS is still unknown, 

several reports suggest the disease may be caused by the complex interplay among genetic, 

environmental and immunological factors.

Since magnetic resonance imaging (MRI) was introduced in the early 1980s to diagnose and 

assess MS, MRI has become the primary imaging modality to monitor the natural history of 

the disease and to evaluate the efficacy of treatment in longterm therapeutic studies. Post-

mortem studies showed a close relationship between lesions seen on T2-weighted (T2w) 

MRI and plaques of MS [2], [3]. MRI has become a valuable tool for the assessment of 

patients with MS, aiding in forming a diagnosis [4], monitoring disease progression [5] and 

assessing disease burden [6].
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Focal MS lesions on conventional T2w brain images appear as bright areas, with a diameter 

larger than 3mm [4], and are often referred to as T2-hyperintense lesions. Hyperintensities in 

the brain are more common in the WM regions, the inner surface of the corpus callosum, the 

juxtacortical gray-white junction, the infratentorial brain regions, and the spinalcord [7]. 

Some of the T2-hyperintense lesions may resolve and fade over time [8]. T2-hyperintense 

lesions in patients with MS are nonspecific for the underlying pathology, which may include 

varying degrees of inflammation, demyelination, gliosis, edema, Wallerian degeneration, 

and axonal loss. A subset of T2-hyperintense MS lesions may appear hypointense on 

corresponding T1-weighted images.

Quantitative data in MS is essential to understanding the natural history of the disease and to 

monitoring the effects of available therapies. Conventional MRI-based measures [9] 

includes CNS atrophy [10] and MS lesion counting (e.g., T2w hyperintense lesion count). In 

numerous clinical trials, the assessment of MRI lesion load has provided an effective 

measure of disease. However, the quantitative analysis of lesion load is not without 

difficulties. For example, because the natural change in lesion load year-to-year is generally 

small, variations in lesion-load measurements must be reduced as much as possible. Ideally, 

measurement errors should be significantly less than the natural variability that occurs in 

individual patients over time [11].

Standard image analysis methods currently utilized in clinical trials are largely manual. 

Manual segmentation is difficult, time-consuming and costly. Errors occur due to low lesion 

contrast and unclear boundaries caused by changing tissue properties and partial volume 

effects. Segmentation inconsistencies are common even among qualified experts. Many 

studies have investigated the wide variability inherent to manual MS lesion segmentation, 

finding an inter-rater volume variability of 14% and an intra-rater volume variability of 

6.5% [12]. Furthermore, during the third year of a longitudinal interferon beta-1b study [13], 

the authors attributed a significant decrase in MS lesion volume to a methodological change 

applied by a single observer who performed the measurements. Because the same change 

was applied consistently to all scans, it did not affect the intergroup differences that were 

identified, but it stressed the need for rigorous quality control checks during long-term 

studies.

Validation of segmentation in medical imaging is a challenging task due to the scarcity of an 

appropriate reference standard to which results of any segmentation approach can be 

compared. Comparing the results of segmentation to histology is helpful, but rarely available 

for clinical data, and relating histology to MRI can be difficult [14]. Consequently, 

validation studies typically rely on expert evaluation of the imaging data. Given the intra- 

and inter-expert variability of manual segmentation, it is challenging to distinguish which 

dissimilarities between manual and automatic segmentations are caused by errors in the 

segmentation algorithm or by variability in the manual segmentation.

Given that expert measurements are highly variable, any validation should always evaluate 

automatic segmentation accuracy against a series of repeated measurements by multiple-

experts. These multiple expert segmentations can be combined using STAPLE [15] which 

provides an optimal weighting of each expert segmentation based on the comparison of each 

Tomas-Fernandez and Warfield Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2015 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation to a hidden reference standard segmentation. The confidence of the expert 

performance estimates can also be estimated [16], indicating whether or not sufficient data is 

available to have high confidence in both the reference standard and the expert performance 

assessments. Ultimately, the best automated segmentation algorithm should have an 

accuracy similar to that of the best expert segmentations, but with higher reproducibility.

To reduce the intra- and inter-rater variability inherent in manual lesion segmentation, many 

semiautomatic methods have been proposed. However, these algorithms require the human 

rater to first identify the location of each lesion, and then estimate lesion boundaries based 

on a local intensity threshold [12], region growing [17], fuzzy connectedness [18], intensity 

gradient [19] or statistical shape priors [20]. Although semiautomatic lesion segmentation 

has demonstrated reduced intra-rater variability, inter-rater variability is still an issue due to 

the initialization by manual lesion identification. Given this, there is a significant need for an 

automated method for MR brain image quantification that can analyze large amounts of 

multi-spectral MR data in a reproducible way while correlating closely with expert image 

analyses.

The development of fully automated MS lesion segmentation methods has been an area of 

vigorous research in the medical imaging community over the past 20 years [21]. 

Techniques for automated MS lesion segmentation generally modify intensity-based 

classifiers (originally applied to tissue segmentation in the healthy adult brain) to model 

brain abnormalities on MRI as an additional class. Kamber et al. [22] proposed a model that 

compensated for the tissue class intensity overlap by using a probabilistic model of the 

location of MS lesions. By confining the search for MS lesions to those regions with at least 

a 50% prior probability of being white matter, the incorrect classification of grey matter as 

MS lesion was significantly reduced. Wells et al. [23] used a Parzen Estimator and bias field 

correction to identify major brain tissues and separate them from the lesions. A similar 

approach is proposed by [24] where a Parzen density estimator is used to classify the major 

brain tissues and an elastically registered template is used to distinguish the healthy gray 

matter (GM) from WM combined with MS lesions. Lesions are then separated from WM 

using a minimum distance classifier. In [25], the classifier intensity feature space was 

extended by using a distance map generated from an anatomical template. This method 

iterates between kNN classification and elastic registration of the digital template to the hard 

segmentation of the MS brain generated by the classifier to refine the segmentation of 

structures and lesions. Zijdenbos et al. [26] developed an automatic pipeline based on a 

supervised Artificial Neural Network (ANN) classifier and validated it extensively on a 

multi-center clinical trial. To improve the accuracy of MS lesion segmentation, Wei et al. 

[27] combined the statistical classification obtained using [23] with the anatomical context 

provided by a tissue atlas that explicitly modeled the distribution of tissues within the 

patients brain [25], and an heuristic connectivity-based partial volume effect correction 

component [28]. Wu et al. [29] extended this approach to segment MS lesions into three 

subtypes (gadolinium-enhancing lesions, T1 black holes and T2 hyperintense lesions).

More recently, Shiee et al. [30] proposed a topologically consistent MS brain tissue 

segmentation algorithm. Geremia et al. [31] proposed an MS lesion segmentation algorithm 
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based on a discriminative random decision forest. The method uses multi-channel MR 

intensities (i.e., T1w, T2w and FLAIR scans), as well as a symmetry feature.

In Van Leemput et al. [32] an approach was proposed where MS lesions were modeled as 

intensity outliers with respect to a global gaussian mixture model (GMM) initialized by an 

aligned probabilistic tissue atlas. Such probabilistic tissue atlases are generated by 

registering a large number of subjects together, assigning voxels to different tissue types, 

and averaging tissue classes over subjects, irrespective of their intensity. Similarly, [33] used 

a trimmed likelihood estimator (TLE) to estimate a 10-component GMM and then modeled 

MS lesions as GM intensity outliers on an enhanced FLAIR image. Additional methods 

further combine a TLE with a mean shift algorithm [34] or a hidden markov chain [35].

Any such segmentation algorithm estimates an optimal boundary between tissue types on a 

given feature space. Thus, tissue classification relies on contrast between tissue types (e.g., 

WM and MS lesions) on a particular feature space. All state-of-the-art, fully automatic MS 

lesion segmentation algorithms described above are based on the MS patient, MRI-derived, 

intensity feature space (Figure 1). It has been previously described how the MS lesion 

intensity distribution overlaps with that of healthy tissue [22], [24]. This limitation, in turn, 

results in MS lesion segmentation that is generally inaccurate.

Approaches aimed at reducing the extent of lesion false positives are usually based on post-

processing steps; namely, experimentally tuned morphological operators, connectivity rules, 

and minimum size thresholds, among others. Due to the heterogeneous intensity profile of 

MS lesions, however, these post-processing steps may have to be re-tuned based on the 

individual features of each case, or tailored to different subjects for varying degrees of lesion 

burden.

To address these limitations, we propose augmenting the imaging data used to identify 

lesions to include both an intensity model of the patient under consideration and a collection 

of intensity and segmentation templates that provide a model of normal tissue. We call this 

combination a Model of Population and Subject (MOPS) intensities. Unlike the classical 

approach where lesions are characterized by their intensity distribution compared to all brain 

tissues, MOPS aims to distinguish locations in the brain with an abnormal intensity level 

when compared with the expected value in the same location in a healthy reference 

population (Figure 1c). This is achieved by a tissue mixture model which combines the MS 

patient global tissue intensity model with a population local tissue intensity model derived 

from a reference database of MRI scans of healthy subjects.

II. MATERIAL & METHODS

In this section, we first recap the well-established global GMM model of brain tissue 

segmentation explored in several works including [23]. We then introduce a local intensity 

prior probability and spatial tissue class prior estimated from a healthy reference population. 

These two models form the foundation of our coupled local and global GMM tissue model 

introduced in Section II-D. Section II-E describes the algorithm that detects MS lesions. 

Finally, we describe the Brainweb and MS Grand Challenge datasets, widely used in the 
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evaluation of state-of-the-art MS lesion segmentation algorithms, used to evaluate the 

proposed algorithm.

A. Reference Population

We collected data from 15 volunteers on a 3T clinical MR scanner from GE Medical 

Systems (Waukesha, WI, USA) using an 8-channel receiver head coil and three different 

pulse sequences: a T1-weighted MPRAGE (Magnetization Prepared Rapid Acquisition 

Gradient Echo) sequence; a T2-weighted scan from an FSE (Fast Spin Echo) sequence; and 

a FLAIR scan, also run with an FSE sequence. We acquired the T1w sequence axially; the 

T2w and FLAIR sequences were sagitally acquired. All sequences were acquired with a 

matrix size of 256x256 and a field of view of 28 cm. Slice thickness was 1.3 mm for the 

T1w-MPRAGE sequence; 1 mm for the T2w-FSE sequence; and 2 mm for the FLAIR-FSE 

sequence. The MPRAGE parameters were TR 10/TE 6 ms with a flip angle of 8. For the 

FSE, the paramenters were TR 3000/TE 140 ms with an echo train length of 15.

After image acquisition, we aligned the T2w and FLAIR images to the T1w scan. Last, a 

trained expert manually segmented the intra-cranial volume, CSF, GM and WM tissues [36].

To achieve accurate alignment between healthy volunteers and a patient with MS, we used 

the nonlinear registration algorithm proposed by [37], which, although not intrinsic to our 

method, was selected because it is robust in the presence of WM lesions. We note, however, 

that other non-linear registration approaches are compatible with our technique [38], [39].

The MRI intensity scale in conventional structural imaging has no absolute, physical 

meaning. Instead, images are formed with contrast related to spin density as well as T1 

relaxation and T2 relaxation, yet without quantifying the precise value of these parameters. 

As a consequence, image intensities and contrast are dependent on the particular pulse 

sequence, static magnetic field strength, and imaging parameter settings such as flip angle.

For accurate and reproducible segmentation, it is important that the location of boundaries 

between structures in the images can be detected, despite potential variations in signal 

intensity. This can be achieved by creating new images in which the intensities between 

subjects are at comparable levels. For this purpose, we used a linear transformation to find a 

match between the median intensity of each modality and reference subject, and those found 

in the scans of the subject of interest.

B. Global GMM MRI Brain Tissue Segmentation

Consider a multispectral grayscale MRI (i.e., T1w, T2w and FLAIR) formed by a finite set 

of N voxels. Our aim is to assign each voxel i to one of K classes (i.e., GM, WM and CSF) 

considering the observed intensities Y = {y1, …, yN} with yi ∈ ℝm. Both observed 

intensities and hidden labels are considered to be random variables denoted respectively as 

Y = {Y1, …, YN} and Z = {Z1, …, ZN}. Each random variable Zi = ek = {zi1, …, ziK} is a 

K-dimensional vector with each component zik being 1 or 0 according whether Yi did or did 

not arise from the kth class.
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It is assumed that the observed data Y is described by the conditional probability density 

function f(Y|Z,φY), which incorporates the image formation and noise models and depends 

on some parameters φY. In addition, the hidden labels are assumed to be drawn according to 

a certain parametric probability distribution f(Z|φZ), which depends on parameters φZ.

To segment the observed image Y is to propose an estimate Ẑ of Z on the basis of Y. To this 

end, the parameter ψ = {φz1,…,φZK;φY1, …, φYK} must be estimated in some manner. If 

the underlying tissue segmentation Z was known, estimation of the model parameters would 

be straightforward. However, only the image Y is directly observed, making it necessary to 

tackle this problem as one involving missing data. The Expectation-Maximization (EM) 

algorithm is the best candidate for model fitting. The EM algorithm finds the parameters that 

maximize the complete data log-likelihood by iteratively maximizing the expected value of 

the log-likelihood log(f(Y, Z|ψ)) of the complete data {Y, Z}, where the expectation is based 

on the observed data Y and the estimated parameters ψ(m) obtained in the previous iteration 

m.

E-Step: The E-step requires the computation of the conditional expectation of log (LC(ψ)) 

given Y, using ψ(m) for ψ, which can be written as

As the complete-data log likelihood, log LC(ψ), is linear in the hidden labels zij, the E-Step 

simply requires the calculation of the current conditional expectation of Zi given the 

observed data Y. Then:

that corresponds to the posterior probability that the ith member of the sample belongs to the 

j class.

M-Step: The M-step on the mth iteration requires the maximization of Q(ψ; ψ(m)) with 

respect to ψ over the parameter space to give the updated estimate ψ(m+1).

The mixing proportions πk are calculated as follows:
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The update of φy on the M-step of the (m + 1)th iteration is estimated by maximizing log 

LC(φ) with respect φy:

Consider that f(Yi|Zi = ek, φYk) is described by a Gaussian distribution parametrized by φYk 

= {μk, Σk}

with μk and Σk being respectively the intensity mean vector and covariance matrix for tissue 

k. Thus, the update equations may be written as:

C. Local Reference Population GMM Intensity Tissue Model

Consider a reference population P formed by R healthy subjects aligned to the subject of 

interest. Each reference subject is composed by a multispectral grayscale MRI V (i.e., T1w, 

T2w and FLAIR) and the corresponding tissue segmentation L (i.e., GM, WM and CSF), 

thus P = {V, L} = {V1, …, VR; L1, …, LR}. Each reference grayscale MRI Vr = {Vr1, …, 

VrN} is formed by a finite set of N voxels with Vri ∈ ℝm. Also, each reference tissue 

segmentation Lr = {Lr1, …, LrN} is formed by a finite set of N voxels with Lri = ek = {lri1, 

…, lriK} is a K-dimensional vector with each component lrik being 1 or 0 according whether 

Vri did or did not arise from the kth class.

At each voxel i, the reference population P intensity distribution will be modeled as a 

Gaussian Mixture Model parametrized by ξi = {πPi; μPi, ΣPi}. Where πPi, μPi and ΣPi are 

respectively the population tissue mixture vector, the population mean intensity vector and 

the population intensity covariance matrix at voxel i. Because {V, L} are observed 

variables, ξi can be derived using the following expressions:
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(1)

(2)

(3)

where p(Lij = ek) is the probability of voxel i of the jth reference subject belong to tissue k 

given by Lj, and ℛ is the neighborhood centered in voxel i of radius ℛ voxels.

Once the local tissue model is estimated from P, the intensity likelihood of Y can be derived 

as:

with f(Zi = ek|ξik) = πPik.

D. Coupling Global and Local Models

Consider that, in addition to the patient scan Y, we observe an aligned reference of R 

healthy subjects P = {V, L} = {V1, …, VR; L1, …, LR}.

As in Section II-B, segmenting the observed data Y implies the estimation of parameters ψ.

The observed population data P is conditionlly independent of the observed patient scan Y 
formation model parametrized by ψ.

(4)
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Since the underlying tissue segmentation Z is unknown, the EM algorithm will be used to 

find the parameters that maximize the complete log-likelihood.

E-Step: The E-step requires the computation of the conditional expectation of log (LC(ψ)) 

given Y and P, using the current parameter estimate ψ(m).

As in Section II-B, the complete log-likelihood is linear in the hidden labels zij. Again, the 

E-step requires the calculation of the current conditional expectation of Zi given the 

observed data Y:

(5)

M-Step: Because the local reference population model parameter ξ is constant, the 

Maximization step will consist of the maximization of Q(ψ; ψ(m)) with respect to ψ, which 

results in the same update equations obtained in Section II-B.

(6)

(7)

(8)

In order to be robust to the presence of outliers, we used a trimmed likelihood estimator 

(TLE) to estimate ψ. The TLE was proposed as a modification of the Maximum Likelihood 

Estimator in the presence of outliers in the observed data [40]. Using the TLE, the complete 

log-likelihood (4) can be expressed as:

where for a fixed ψ, f(Yv(1) , Znu(1)|ψ, ξ1) ≤ … ≤ f(Yv(N), Znu(N) | ψ, ξN) for i = 1, …, N. With 

v = v(1), …, v(N) being the corresponding permutation of indices sorted by their probability 

f(Yv(i), Pv(i), Zv(i)|ψ), and h is the trimming parameter corresponding to the percentage of 

values included in the parameter estimation. In other words, now the likelihood is only 

computed using the voxels that are more likely to belong to the proposed model.
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The TLE was computed using the FAST-TLE algorithm, in which iteratively the N – h 

voxels with the highest estimated likelihood according to (4) were selected to estimate 

ψ(m+1) using the update equations (6), (7), (8). These two steps were iterated until 

convergence.

E. MS Lesion Detection

Based on (4), it follows intuitively that the local intensity model downweights the likelihood 

of those voxels having an abnormal intensity given the reference population. Since MRI 

structural abnormalities will show an abnormal intensity level compared to similarly located 

brain tissues in healthy subjects, we seek to identify MS lesions by searching for areas with 

low likelihood LC(ψ) (Figure 2).

We define a voxels lesion probability as 1–f(Yi, Pi, Zi|ψ). We obtained a set of MS lesion 

candidate voxels C by selecting those voxels with a lesion probability greater than a given 

decision threshold (1 – f(Yi, Pi, Zi|ψ) > threshold).

1) MS WM T2w Hyperintense Lesion Segmentation by Graph-Cuts—Structural 

MRI from MS patients is not only sensitive to WM T2 hyperintense lesions, but also to 

cortical lesions [41], basal ganglia T2 hypointensities [42], dirty-appearing WM [43] and 

WM T1w hypointense lesions [44], among others. We used a Graph-Cuts algorithm to 

classify the set of MS lesion candidate voxels C into WM T2w hyperintense lesions or other 

MS structural abnormalities.

Let C be the set of all MS lesion candidate voxels, and consider the neighborhood system 

represented by a set  of all pairs {c, d} of neighboring elements in C. Also consider ℒ = 

ℒ1, …, ℒC to be a binary vector whose components ℒc specify assignments to pixels c in C. 

Vector ℒ defines a segmentation where each ℒc can be either classified as WM T2 

hyperintense MS lesions ( ) or other MS abnormalities (ℬ). The energy function we aim to 

minimize with the graph cut [45] has the form:

(9)

The term RC (Vc), referred to as the regional term, expresses how the voxel c fits into given 

models of the object and background and is encoded in the graph through the t-links. The 

coefficient λ ≥ 0 specifies the relative importance of the region properties term versus the 

boundary properties term. Consider that RC (·) reflects on the manner in which the intensity 

of pixel c fits into given Gaussian models of WM T2 hyperintense MS lesions and other 

abnormalities:
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where yc is the intensity vector of voxel c, {μ , Σ } and {μℬ, Σℬ} are respectively the 

intensity mean and covariance matrices which parametrize the respective WM T2 

hyperintense MS lesions and other MS abnormalities Gaussian intensity models.

The WM T2 hyperintense MS lesions and other MS abnormalities Gaussian model 

parameters were initialized using the partition of C obtained by estimating an Otsu threshold 

[46] using the FLAIR scan of the MS patient. The partition with the highest intensity was 

used to initialize the gaussian model parameters for the WM T2 hyperintense MS lesions.

The term B{c,d}, known as the boundary term, reflects the similarity of the voxels c and d. 

Hence, the n-links that connect the neighboring voxels are comparatively large when c and d 

are similar but close to zero otherwise. To compute these n-links, we used the following 

function:

(10)

This function penalizes for discontinuities between voxels of different intensities, as well as 

voxels located in different regions.

The max-flow algorithm proposed in [47] was used to compute the optimal cut of the 

described graph.

F. Evaluation Datasets

We evaluated our MS lesion segmentation algorithm using both synthetic and clinical data.

1) BrainWeb Synthetic Dataset—BrainWeb is a synthetic brain phantom developed by 

the McConnell Brain Imaging Center (Montreal, Qc. Canada). It contains a set of realistic 

MRI data volumes produced by an MRI simulator [48].

The MS brain phantom is based on the healthy phantom, which have been added MS lesions 

to obtain three MS phantoms with different MS lesion volumes: mild (0.4cm3), moderate 

(3.5cm3) and severe (10.1cm3). Full 3D MRI scans have been simulated using three 

sequences (T1w, T2w and PD weighted) and a variety of noise and intensity non-uniformity 

levels. The MS BrainWeb dataset allows the evaluation of any MS lesion segmentation 

algorithm in a setting where the ground truth is known.

2) MS Grand Challenge Clinical Dataset—At the 2008 MS lesion segmentation 

challenge held during the Medical Imaging Computing and Computer Assisted Intervention 

conference (MICCAI 2008) [49], the University of North Carolina at Chapel Hill (UNC) 

and Boston Childrens Hospital (BCH) released a publically available clinical database of 

MS MRI scans1 that contains anatomical MRI scans from 51 subjects with MS. Each case in 
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this database is comprised of a single T1w, T2w, and FLAIR MRI scan. All scans were re-

oriented to axial orientation, and the T2w and FLAIR scans were rigidly registered to the 

corresponding T1w image. Scans were re-sliced at a 0.5 × 0.5 × 0.5mm resolution with cubic 

spline interpolation.

Due to the presence of intensity inhomogeneity artifacts and noise in the MRI scans, in 

advance of further analysis both patients with MS and healthy volunteers scans were 

processed to compensate for the effect of intensity inhomogeneity [50] as well as for thermal 

noise [51].

Images from MS patients were placed into two groups: a 20-subject training group and a 31-

subject testing group, which was the balance of the original 51 subject study cohort. MS 

lesion manual reference data was only available for those subjects in the training group. 

Organizers retained and withheld access to the manual lesion segmentations from the testing 

group. To evaluate the performance of participant segmentation algorithms, competitors 

were asked to upload their automatic segmentations of the testing data into the challenge 

website2 where they were automatically evaluated. Results for each of the competitor 

algorithms on the testing data are publicly available, allowing for a truly objective 

comparison.

III. RESULTS

A. Synthetic Data Evaluation

Using the BrainWeb T1w and T2w MR images with 3% noise and 20% inhomogeneity with 

the three available lesion loads (mild, moderate and severe), and fixing the local 

neighborhood size R to a value of 2 voxels; multiple MS T2w hyperintense lesion 

segmentations were obtained with our combined mixture model (Section II-D) with varying 

voxel lesion probability threshold values 1 – f(Yi, Pi, Zi|ψ) > threshold. Additionally, 

another set of MS T2w hyperintense lesion segmentations were generated using the global 

mixture model (Section II-B) with varying voxel lesion probability threshold values 1 – f(Yi, 
Zi|ψ) > threshold.

The resulting lesion segmentations were compared to the BrainWeb MS lesion ground truth 

by means of the lesion true positive rate (LTPR), lesion false positive rate (LFPR), 

sensitivity  and specificity . A lesion in 

the manual reference segmentation is considered detected when any part of it is present in 

the automatic segmentation. The LTPR is thus measured by dividing the number of detected 

lesions in the segmentation that overlap with a lesion in the reference segmentation by the 

number of overall lesions in the manual reference segmentation. By contrast, the LFPR is 

measured by dividing the number of lesions in the segmentation that do not overlap with any 

lesion in the reference segmentation with the number of overall lesions in the segmentation.

1http://www.nitrc.org/projects/msseg/
2http://www.ia.unc.edu/MSseg/
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Figure 3 shows the receiver operating curve (ROC) for our combined intensity model 

classifier (Fig.3.(1)) and a global intensity model classifier (Fig.3.(2)) using both lesionwise 

(LTPR and LFPR) and voxelwise (Sensitivity and Specificity) metrics. As expected, due to 

the significant overlap between the global intensity distribution of MS lesions and those of 

healthy tissues, our proposed algorithm achieved a better lesion detection rate while 

maintaining a lower lesion false positive rate (Fig.3.(1a) and Fig.3.(2a)). It can also be seen 

that our algorithm not only detects more MS lesions from the ground truth, but is also more 

sensitive and specific for lesion voxels (Fig.3.(1b) and Fig.3.(2b)).

Based on a neighborhood size of ℛ = 2 voxels and the optimal complete likelihood 

threshold chosen by the evaluation of the ROC curve in Fig.3, we compared the MS lesion 

segmentation achieved by our combined intensity model with a global intensity model under 

different conditions of noise and intensity inhomogeneity. Estimated MS lesion 

segmentation was compared to the ground truth by means of the dice similarity coefficient 

 [52] between the automatic segmentation and the BrainWeb ground 

truth.

Results in Fig.4 show that our combined intensity model is robust to the presence of noise 

and intensity inhomogeneity artifact in the image while achieving a comparable or superior 

DSC than that achieved by the MS lesion segmentation based in a global intensity model.

B. Clinical Data Evaluation

1) MS Grand Challenge Training Results—By fixing the neighborhood size ℛ = 2 

voxels, for each subject in the Grand Challenge training dataset, two different sets of MS 

lesion segmentations were generated with varying threshold values on the complete 

likelihood estimated using our proposed combined intensity model f(Y, P, Z|ψ) and a global 

intensity model f(Y, Z|ψ), respectively.

Using the manual MS lesion segmentation reference, we estimated the voxel lesion 

probability density function for healthy voxels and lesion voxels for both our combined 

intensity model and the global intensity model. As a result of the existing intensity overlap 

between healthy tissues and MS lesions, the classifier based in the global intensity model 

misclassified 48% of healthy tissue voxels as lesions, whereas our combined intensity model 

classifier misclassified only 12% of tissues labeled as healthy tissues. Thus, our combined 

global and local intensity model results are more specific towards MS lesion voxels (Figures 

2 and 5).

To evaluate the accuracy of our lesion detection, the automatic MS lesion segmentations 

were compared to the manual MS lesion reference by means of the LTPR and LFPR. Figure 

6 shows the lesionwise ROC curves for the MS lesion classifier based on our combined 

intensity model and, when compared to state-of-the-art techniques, a global intensity model. 

Because MS lesion intensities overlap with those seen healthy brain tissues, algorithms that 

model MS lesions as global intensity outliers will both fail to identify WM abnormalities 

and misclassify hypo and hyperintense areas as lesions, thereby increasing the number of 

lesion false positives. On the other hand, because our coupled model includes a local 
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intensity model derived from a healthy population; all locations depicting an abnormal 

intensity level compared to the expected intensity level in the healthy population will be 

identified as a lesion. This effect is seen in Figure 6, which shows how our coupled model is 

not only more sensitive to MS lesions but also more specific.

To evaluate the accuracy of the detected MS lesion boundaries compared to the manual 

reference, we computed for each correctly detected MS lesion, the lesion extra fraction 

 and the lesion miss fraction , where M̄ ⋂ A are the number of 

voxels in Mthe automatic lesion segmentation that do not overlap with the detected manual 

lesion segmentation; M ⋂ Ā are the number of voxels in the detected manual lesion 

segmentation that do not overlap with the automatic lesion segmentation; and M is the voxel 

size of the detected lesion.

Fig.7 shows the average LEF (Fig.7a) and the average LMF (Fig.7b) respectively over the 

20 scans for different voxel lesion probability threshold values. As expected, because of the 

existing overlap between the intensity distribution of MS lesions and healthy tissues; the 

lesion segmentation based on a global intensity model needs a much higher threshold to 

detect lesions. Furthermore, for any given voxel lesion probability threshold value, the 

lesion segmentation based on our combined intensity model achieves a lower missed 

fraction. To summarize, our combined intensity model not only achieves better lesion 

sensitivity and specificity compared to the global intensity model, but is also more accurate 

at estimating the extent of MS lesions when compared to manual raters.

We compared the accuracy of automatic lesion segmentation based on our combined 

intensity model and on a global intensity model by means of the positive predictive value 

. Results in Fig.8 show how the MS lesion segmentation based on our 

combined intensity model achieves a maximum average PPV of 70.88%, which compares 

favourably to a maximum average value of 31.05% obtained by the MS lesion segmentation 

based on a global intensity model.

In the last experiment, we studied the effect of the population registration algorithm on the 

resulting automatic MS lesion segmentation. Fixing the neighborhood radius ℛ = 2 voxels 

and a voxel lesion probability threshold as 1 – f(Yi, Pi, Zi|ψ) > 0.73, we generated the MS 

lesion segmentation of each subject in the training dataset by using our combined tissue 

intensity model. We compared the effect of using the reference population aligned with SyN 

[53] or a polyaffine block matching algorithm [37]. Table I shows the average LTPR and 

LFPR. Computed p-values for the paired, two tailed t-test show no significant differences in 

the results achieved with different registration algorithms.

2) MS Grand Challenge Test Results—Each subject MS lesion segmentation was 

generated using T1w, T2w and FLAIR scans. Algorithm parameters were fixed to 

neighborhood radius ℛ = 2 voxels and a voxel lesion probability threshold as 1 – f(Yi, Pi, 

Zi|ψ) > 0.73. Remaining outliers were classified as either WM T2 hyperintense MS lesions 

or other MS abnormalities using the graph-cuts algorithm described in Section II-E1. 
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Resulting segmentations were uploaded to the Grand Challenge website for automatic 

evaluation.

Single BCH and UNC raters independently made two manual MS lesion references for each 

subject from the MS Grand Challenge test group, which were not made available to the 

participants. Hence, the MS Grand Challenge database allows the comparison of different 

segmentation algorithms in a truly objective way. Grand Challenge organizers evaluate the 

quality of the submitted MS lesion segmentations by means of four metrics: absolute volume 

difference, average distance, LTPR and LFPR. Metrics were normalized between 0 and 100 

considering 90 to be the experts agreement [49], where the experts’ agreement was 

computed as: 60% of volume difference, 75% of average distance, 68% LTPR and 32% 

LFPR.

Our results in Figure 6 compare favorably to those reported by all methods, independently of 

lesions modeled as an additional class ([30], [31] and [54]), or as outliers from a global 

GMM ([35], [33] and [34]).

Further, LTPR and LFPR results achieved by the state-of-the-art segmentation, closely 

match the ROC curve for the global intensity model depicted in Figure 6. These results 

suggest that all the aforementioned lesion segmentation methods, independently of the 

classification algorithm used, are reaching the segmentation accuracy limit that results from 

using a global intensity model.

MOPS achieved a score of 84.5, which ranks our algorithm as the best performing of all of 

the 17 participant lesion segmentation algorithms. Figure 9 compares our score against these 

algorithms.

IV. DISCUSSION

In this paper we proposed a novel automatic algorithm for segmenting MR images of 

patients with multiple sclerosis (MS). This algorithm uses an approach that combines a 

global intensity model and a local intensity model derived from an aligned set of healthy 

reference subjects. Specifically, MS lesions are segmented as outliers within the combined 

local/global intensity Gaussian Mixture Model (GMM). These outliers not only include WM 

T2 hyperintense lesions, but also cortical lesions, hypointense basal ganglia and voxels that 

do not follow the proposed model such as vessels or intensity artifacts. A graph-cuts 

algorithm is used to extract WM T2 hyperintense lesions from the estimated outliers.

The proposed segmentation algorithm does not model MS lesions as global intensity outliers 

within each subjects MRI, but rather as local intensity outliers based on an aligned healthy 

population. This approach not only proves to be highly robust to noisy data, but also allows 

significantly improved specificity with respect to MS lesions while maintaining a 

comparable sensitivity to state-of-the-art algorithms. Thus, white matter (WM) lesions 

should not be considered as intensity outliers but instead as local population intensity 

outliers.
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Until recently, we have been limited in our ability to validate and compare several MS 

lesion segmentation algorithms because there has been no common database at our disposal. 

However, with the introduction of the MS Grand Challenge test database, we now are able 

to perform a truly objective evaluation and comparison of several highly advanced 

algorithms in current use.

Existing MS lesion detection algorithms can be divided into two categories: 1) those that 

model MS lesions as outliers from the normal intensity distribution of the individual under 

consideration (i.e, Van Leemput et al. [32], Garcia-Lorenzo et al. [34], Bricq et al. [35] and 

Souplet et al. [33]); and 2) those that model lesions as an additional class within a tissue 

segmentation algorithm (i.e., Shiee et al. [30] and Geremia et al. [31]). Regardless of how 

MS lesions are modeled, all of these segmentation algorithms are primarily based on MRI 

global intensity features.

In contrast, our modeling of MS lesions as population local intensity outliers results in 

detection rates that are consistently more specific, and at least equally sensitive to, those 

produced by classical methods which depend heavily on ad hoc rules to detect lesions, or on 

various other post-processing steps aimed at improving the accuracy of MRI segmentation 

and MS lesion detection.

Given this, we believe our highly robust method offers a viable, flexible solution to the MRI 

segmentation of MS patients precisely because there are no ad hoc rules in place that can 

estimate WM lesion candidates. As a result, our algorithm is not tied to a specific imaging 

protocol. In this setting, we are thus free to operate independently of existing protocols and, 

moreover, with any advanced imaging technique (i.e., diffusion MRI, magnetization transfer 

imaging (MTI)) whose goal is to achieve accurate MS lesion segmentation when a reference 

of healthy subjects is available.

Furthermore, because our combined global/local tissue intensity model is able to detect 

abnormal local intensities when compared to a healthy reference population, our algorithm is 

not limited to MS lesion segmentation. Instead, it could be generalized for the detection of 

multiple brain abnormalities such as brain tumors, harmatomas and cysts, and potentially 

could also be used to perform tissue segmentation in patients who have undergone brain 

surgery.
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Fig. 1. 
Comparison between a tissue intensity scatterplot derived from (a) the subject under 

analysis, (b) the local neighbourhood delimited by the green square and derived from (c) an 

aligned reference healthy population. First row: Coronal slice (T1w, T2w and FLAIR) of an 

MS patients brain and the corresponding tissue segmentation (GM, WM, CSF and MS 

lesions). Second row: Tissue intensity scatterplot derived from the MS patients brain MRIs. 

Third row: Tissue intensity scatterplot derived from the MS patients brain MRI region 

delimited by the green box. Fourth row: Tissue intensity scatterplot estimated in the green 
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bounding box from an aligned healthy reference population. In this case, the red dots 

correspond to the intensities of the MS lesion surrounded by the green box. It is apparent 

that the local intensity from a reference population offers a better lesion intensity separation 

than that obtained by either global or local intensity distribution derived from the subject 

under study.
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Fig. 2. 
Top row: Coronal slice of a patient with MS, (a) T1w MRI, (b) T2w MRI and (c) FLAIR 

MRI. Middle row: (d,e,f) maximum a posteriori (MAP) tissue probabilities and (g) voxel 

lesion probability estimated using a global intensity model. Bottom row: (h,i,j) MAP tissue 

probabilities and (j) voxel lesion probability estimated using MOPS. Observe the improved 

MS lesion sensitivity of the voxel lesion probability derived from our proposed model (k) 

compared to the one achieved by a global intensity model (g).
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Fig. 3. 
MS lesion segmentation ROC comparison between our combined local/global intensity 

model and a global intensity model for three different lesion load atlases (mild, moderate 

and severe lesion load). Given a fixed complete likelihood threshold, both lesionwise 

metrics (1a and 2a) and voxelwise metrics (1b and 2b) show our MS lesion segmentation to 

be more sensitive and specific than those achieved by a global intensity model.
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Fig. 4. 
BrainWeb MS lesion DSC for mild, moderate and severe lesion load for different levels of 

noise and intensity inhomogeneity using our combined intensity model (a) and a global 

intensity model (b). For any lesion load our MS lesion segmentation algorithm is more 

robust to the presence of noise and intensity inhomogeneity in the scans than the subject 

global model.
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Fig. 5. 
(a) Combined model lesion probability density function and (b) global model lesion 

probability density function. In both figures (a) and (b), the solid and dotted line plot 

respectively represent the lesion probability density function estimated from voxels 

manually labeled as MS lesions or as healthy tissue. Like in Figure 2(g), for a global 

intensity model the lesion probability density function for MS lesions and healthy voxels 

completely overlaps, which will result in increased FP.
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Fig. 6. 
MS lesion detection ROC comparison between our combined local/global intensity model 

and a global intensity model. Reported operating point for several Grand Challenge 

participant algorithms is overlayed. The red circle represents the operating point for a 

manual rater (LTPR=0.68 and LFPR=0.32) reported by the Grand Challenge organizers.
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Fig. 7. 
MS lesion segmentation LEF and LM F comparison between our combined local/global 

intensity model and a global intensity model.
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Fig. 8. 
MS lesion segmentation PPV comparison between our combined local/global intensity 

model and a global intensity model.
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Fig. 9. 
Grand Challenge score comparison between our proposed algorithm and several state-of-

the-art segmentation methods. Grand Challenge organizers reported a score of 90 as the 

performance of an average human rater.
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TABLE I

Comparison of MS lesion segmentation using the coupled local/global intensity model using ℛ = 2 voxels. 

Using different registration algorithms for the alignment of the reference population does not show significant 

differences in the estimated MS lesion segmentations.

Block Matching SyN p-value

LTPR 62.94 ± 19.13 60.72 ± 20.13 0.94

LFPR 35.58 ± 24.48 41.70 ± 28.01 0.15
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