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hBMSCs are multipotent cells that are useful for tissue 
regeneration to treat degenerative diseases and others for 
their differentiation ability into chondrocytes, osteoblasts, 
adipocytes, hepatocytes and neuronal cells. In this study, 
biodegradable elastic hydrogels consisting of hydrophilic 
poly(ethylene glycol) (PEG) and hydrophobic poly(�-
caprolactone) (PCL) scaffolds were evaluated for tissue 
engineering because of its biocompatibility and the ability 
to control the release of bioactive peptides. The primary 
cultured cells from human bone marrow are confirmed as 
hBMSC by immunohistochemical analysis. Mesenchymal 
stem cell markers (collagen type I, fibronectin, CD54, in-
tegrin1�, and Hu protein) were shown to be positive, while 
hematopoietic stem cell markers (CD14 and CD45) were 
shown to be negative. Three different hydrogel scaffolds 
with different block compositions (PEG:PCL=6:14 and 14:6 
by weight) were fabricated using the salt leaching method. 
The hBMSCs were expanded, seeded on the scaffolds, and 
cultured up to 8 days under static conditions in Iscove's 
Modified Dulbecco's Media (IMDM). The growth of MSCs 
cultured on the hydrogel with PEG/PCL= 6/14 was faster 
than that of the others. In addition, the morphology of 
MSCs seemed to be normal and no cytotoxicity was found. 
The coating of the vascular endothelial growth factor 
(VEGF) containing scaffold with Matrigel slowed down the 
release of VEGF in vitro and promoted the angiogene-  
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sis when transplanted into BALB/c nude mice. These re- 
sults suggest that hBMSCs can be supported by a biode 
gradable hydrogel scaffold for effective cell growth, and 
enhance the angiogenesis by Matrigel coating. 
 
 
INTRODUCTION 
 
The cells that form the human body originate from stem cells; 
among the different types of adult stem cells, those from the 
bone marrow are the most extensively studied. Bone-marrow 
derived mesenchymal stem cells (hBMSCs) that are present in 
the bone marrow can differentiate into hematopoietic stem cells, 
osteoblasts, chondrocytes, endothelial cells, and adipocytes 
(Costa-Pinto et al., 2009; Green et al., 2015; Phinney and 
Prockop, 2007; Yang et al., 2006). hBMSCs not only support 
hematopoietic stem cell differentiation but also differentiate into 
chondrocytes, osteocytes, or adipocytes under appropriate 
experimental conditions (Pittenger et al., 1999). hBMSCs also 
promote the bone marrow engraftment of transplanted hemato-
poietic stem cells. Therefore, hBMSCs have been widely applied 
in tissue engineering for their multipotency. Cotransplantation of 
MSCs has been attempted for hematopoietic stem cell trans-
plantation (Zeiser et al., 2004). They have been injected at bone 
fracture sites as a part of bone regeneration therapy. In addition, 
MSCs or endothelial cells have been co-cultured for studies in 
biocompatibility and angiogenesis (Deng, 2010). 

Biocompatible and biodegradable scaffolds have been widely 
investigated in tissue engineering and regenerative medicine to 
serve as a substrate for cells or a physical support to guide the 
formation of new extracellular metrix (ECM) (Chen et al., 2015; 
Mehdizadeh et al., 2013; Peters et al., 2002). Currently, a varie-
ty of biomaterial scaffolds, including artificial scaffolds made 
from hydroxyapatite/tricalcium phosphate or a combination of 
both (De Kok et al., 2003; Mankani et al., 2001; Tsuchida et al., 
2003) and biodegradable polymer scaffolds (Khare and Peppas, 
1993; Lee et al., 2001) have been prepared for tissue engineer-
ing applications and investigated in terms of biocompatibility 
and tissue regeneration capacities. Synthetic biodegradable 
polymer scaffolds may have versatile physico-chemical proper-
ties such as mechanical and degradation properties, which can 
be easily modulated to generate appropriate functional proper-
ties in the body. Therefore, many polymer scaffolds have been 
used as a substrate for tissue regeneration, providing mechani-  
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cal and structural support during tissue development (Mehdizadeh 
et al., 2013). 

Ideal scaffolds should be able to fuse with the natural cellular 
matrix and degrade at a rate commensurate with the elucida-
tion of new ECM by the seeded cells. Thus, the biodegradability 
of the scaffold is an important criterion for biological tissue and 
material selection. PCL, one of the representative biodegrada-
ble polyesters, has been broadly studied as a biomaterial due 
to its good biocompatibility. Cell survival significantly increased 
when PCL was introduced in the body as a thin layer (Hennink et 
al., 2004). Our previous study showed that poly(ethylene glycol) 
(PEG) and poly(�-caprolactone) (PCL) based hydrogels could be 
useful for applications and tissue engineering due to several 
promising properties, such as elasticity, biodegradability, good 
biocompatibility, and tailor-made physico-chemical properties (Im 
et al., 2007; Park et al., 2007). In addition, the hydrogels could 
offer a suitable environment for cell retention and growth. 

Recently, biodegradable polymer scaffolds for inducing angi-
ogenesis have attracted much attention as replacement mate-
rials for injured or atrophied tissues since they were successful-
ly used to culture stem cells for transplantation (Kanczler et al., 
2008; Park et al., 2010; Tanaka et al., 2009; Yang et al., 2010; 
Zanatta et al., 2012). Angiogenesis, the formation of new capil-
laries from pre-existing blood vessels, is the primary mecha-
nism for vascularization of tissue engineering (Mehdizadeh et 
al., 2013). The structure and properties of polymer scaffolds 
play an important role in regulating tissue growth and angio-
genesis. The angiogenesis can be promoted by introducing 
growth factors such as VEGF, IGF, EGF, PDGF, and TGF-� 
(Perets et al., 2003; Schmidmaier et al., 2001; Tabaka and 
Ikada, 1999). It was also reported that angiogenesis was en-
hanced when Matrigel was used together with polymer scaf-
folds (Laschke et al., 2008). Matrigel exists in the liquid forms at 
4�C but forms gels at 37�C, which allows it to easily penetrate 
and coat the porous polymer scaffold (Kleimann et al., 2005). 

In this study, biodegradable elastic hydrogels consisting of 
hydrophilic PEG and hydrophobic PCL blocks were evaluated 
as a tissue engineering scaffold for angiogenesis. We hypothe-
sized that the biodegradable hydrogel scaffold is suitable for 
supporting and growing hBMSCs, controlling the release of 
VEGF, and finally effectively inducing angiogenesis. 
 
MATERIALS AND METHODS 
 
Materials 
Polycaprolactone diol (PCL diol, Mn = 1250 or 2000), benzene 
(anhydrous grade), acryloyl chloride, triethylamine, dimethyl 
sulfoxide (DMSO, anhydrous grade), and PEG diacrylate 
(PEG-DA, Mn = 700) were purchased from Sigma-Aldrich. 2,2�-
azobisisobutyronitrile (AIBN) was obtained from JUNSEI Chemi-
cals (Japan) and used after purification by recrystallization in 
methanol. Sodium chloride powder (size distribution: 180-400 �m, 
99%) was purchased from Samchun Pure Chemicals. The other 
chemicals were of reagent grade, and were used as received. 
 
Preparation of PEG/PCL hydrogel scaffolds 
The hydrogel scaffolds were prepared according to the same 
method as that previously reported (Park et al., 2007). The 
predetermined amounts of diacrylated PCL (PCL-DA) and 
PEG-DA were dissolved in 5 ml of DMSO and placed into poly-
propylene conical tubes containing 7 g of sodium chloride salt 
particulates (size distribution: 180-400 �m, 99%). The feed ratio 
between PCL-DA and PEG-DA was varied from 14:6 to 6:14 by 
weight, but the total polymer concentration was fixed at 20 wt.%. 

After radical crosslinking reaction with a small amount of AIBN 
at 70�C for 12 h, the resultant hydrogel was cut into discs with 
thicknesses of 3 mm and immersed in distilled water and then 
ethyl alcohol to remove residual salt and chemicals. Finally, the 
scaffold was washed with distilled water several times and 
freeze-dried for 2-3 days. 
 
Isolation and culture of hBMSCs 
The hBMSCs were isolated and cultured as described in previ-
ous works (Bruder et al., 1997; Heo et al., 2009). The hBMSCs 
were maintained in an IMDM with 10% FBS, L-glutamine, peni-
cillin (100 units/ml), and streptomycin (100 �g/ml) at 37�C, in a 
95%O2/5% CO2 incubator. The hBMSCs were characterized 
using a mesenchymal stem cell kit (Chemicon, USA). 
 
Assessment of cell viability (MTT assay) 
Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) assay (Sigma, USA). 
hBMSCs were seeded in 96-well plates at 5 � 103 cells/well and 
incubated for both 48 h and 8 days. The MTT assay was per-
formed according to the manufacturer’s instructions. DMSO 
(Sigma, USA) was used to dissolve the formazan crystals for 
2h at room temperature, and optical density was measured at 
570 nm using a microplate reader. 

Assay of VEGF secretion 
The 0.1 pg of VEGF (10 �g/ml, 10 �l) was applied on dried 
porous PEG:PCL(6:14) pieces and placed at the center of a 48-
well plate. 100 �l of VEGF reduced Matrigel was applied at the 
top of the scaffolds carefully allowing the scaffolds were com-
pletely coated. The scaffolds were incubated in a 37�C incuba-
tor for 20 min for complete gelation of Matrigel. 600 �l of phos-
phate buffer solution (PBS) was added, of which 50 �l of it was 
removed at 30, 60, 90, 120, 150, 180, and 210 min to determine 
the VEGF release. The determination of VEGF concentration 
was carried out with VEGF detection ELISA kit (R&D systems). 
 
Implantation of hydrogel scaffolds in BALB/c mice 
Scaffolds with a diameter of 3 mm (with and without hBMSC, 
with and without Matrigel coating) were surgically transplanted 
under the skin of the lateral groins of 6 week old BALB/c nude 
mice. After 1 to 4 weeks, the mice were sacrificed in CO2 
chamber and the transplants were excised and subjected to 
immunohistochemistry.  

Immunohistochemistry 
Samples were fixed in 10% formaldehyde and paraffinized. The 
samples were cut into 5 mm of thickness and then incubated at 
60�C for 1 h. The slides were deparaffinized and used antigen 
retrieval technique for promoting sensitivity of tissue staining. 

The sections were washed and then incubated in 3% hydro-
gen peroxide for 6 min. The sections were blocked for 1h and 
stained with primary anti-CD31 antibody (1:20 dilution, rabbit 
polyclonal, AbCam, UK) for 30 min, and then washed three times 
with Tris buffered saline (TBST) with Triton X-100. The sections 
were incubated in secondary HRP-conjugated anti-rabbit anti-
body as per the manufacturer’s recommendation. After washing, 
the sections were counterstained with hematoxylin and then 
mounted with permount solution. 
 
RESULTS 

Preparation of PEG/PCL hydrogel scaffolds  
Three types of porous hydrogel scaffolds with different block 
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Fig. 1. Characterization of mesenchymal stem cells from human 
bone marrow. Cells were stained for specific mesenchymal 
stem cell markers with corresponding antibodies and analyzed 
using a confocal microscope (� 600). Positive markers: Integrin 
B, collagen type I, fibronectin, CD-54. Negative markers: CD-45, 
CD-14. Culture media: IMDM/20% FBS, 2 mM Glutamine (pas-
sage 3). The right figures of two upper lanes are merge of left 
two figures. 
 
 
 
compositions (PEG:PCL = 6:14 or 14:6 by weight, PCL block 
(MW = 1250 or 2000) were fabricated using the salt leaching 
method. The polymer composition could be easily modulated 
by varying the feed ratio of the PEG and PCL block compo-
nents to demonstrate different hydrophilicity. By using the salt 
leaching process, a highly porous structure could be introduced 
in the hydrogel samples. The characterization for chemical and 
physical properties of the hydrogels was performed and de-
scribed in detail in our previous report (Im et al., 2007; Park et 
al., 2007).  
 
Determination of the identity of hBMSCs 
To determine the identity of human bone-marrow derived 
MSCs, we performed immunofluorescence staining for their 
specific markers such as collagen type I, fibronectin, CD54, 
Integrin1�, and Hu (Fig. 1). We observed that the isolated stem 
cells stained positively in the cytoplasm and the nucleus for the 
presence of MSC marker proteins they did not show the pres-
ence of CD14, a representative marker for hematopoietic stem 
cells; thus, we were able to confirm that the hBMSCs were not 
contaminated with hematopoietic stem cells (HSCs) (Fig. 1).  
 
Cytotoxicity of the scaffold in MSCs and growth tests 
To determine which type of scaffold is suitable for development 
of MSCs, we cultured MSCs on three different hydrogel scaf-
folds, and performed the assessment of cell death by MTT 
assay with 3 � 105 of the initial cells and at two different cell 
culture times of 2 days and 8 days. The MSCs grew on all scaf-
folds, and the highest growth rate was observed for the hydro-
gel scaffold of PEG/PCL = 6/14 and PCL block of MW = 1250 
(Fig. 2). Therefore all the subsequent experiments were thus  

A
 
 
 
 
 
 
 
 
 
 
 
 
 
B
 
 
 
 
 
 
 
 
Fig. 2. Viability of hBMSC on the plate type PEG:PCL scaffolds. (A) 
Cells were seeded on three kinds of PEG:PCL plate type scaffolds 
and incubated for 2 days or 8 days. Cell viability was determined by 
MTT assay. (B) Low (left) and high (right) magnification of hBMSCs 
on PEG:PCL (6:14) scaffolds after 2 days of culture were examined 
using H&E staining. 
 
 
 
performed with the hydrogel scaffold.  
 
Morphological studies on biodegradable hydrogel scaffold  
To assess the biodegradability of the porous polymer scaffolds, 
we studied morphological aspects both in vitro (Figs. 3A and 
3B) and in vivo (Figs. 3C-3E). It was clearly observed that the 
biodegradation proceeded in significantly different patterns 
between in vitro and in vivo. The scanning electron microscope 
(SEM) images from the hydrogel samples with degradation 
time of 2 days and 10 weeks in vitro did not show any signifi-
cant morphological change. On the other hand, in in vivo, the 
shape of the angular parts of the pores and the corners of the 
material at 4 weeks (Fig. 3E) was significantly different from the 
shape at 2 weeks (Fig. 3D). When the hydrogel scaffold was 
transplanted in the BALB/c mouse to determine the biodegra-
dability, more than 50% of the scaffold material degraded after 
4 weeks (Fig. 3E). 
 
Regulation of VEGF secretion using Matrigel coating on 
scaffold 
Porous scaffolds may be useful for drug loading and delivery 
for tissue engineering, especially peptide hormones. However, 
the peptide hormone quickly diffuses out through their porous 
structure, making it difficult to achieve the desired function. 
Recently, various efforts have been made to control the release 
of growth hormones in scaffolds transplanted with cells by in-
troducing functional groups to the biodegradable polymers 
used for cell transplantation (Ho et al., 2009). Here, we aimed 
to control the release of VEGF by coating the scaffold contain-
ing VEGF with Matrigel. The release of VEGF from the porous 
scaffold was saturated within 30 min and did not change there-
after. When the scaffold was coated with Matrigel, the VEGF 
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Fig. 3. Biodegradation rates of porous PEG:PCL polymer in vitro 
and in vivo. (A, B) After incubating in IMDM with 10% FBS for 2 
days and 10 weeks, scaffolds were analyzed using SEM (� 500). 
(B-E) Scaffolds were transplanted into the back flank of BALB/c 
nude mice subcutaneously for 1, 2, 4 weeks. Removed scaffolds 
were examined under a light microscope (� 400). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Influence of Matrigel coating on the release of VEGF from 
porous PEG:PCL(6:14) scaffolds. Porous scaffolds scaffolds con-
taining VEGF was coated with Matrigel were placed in PBS. Re-
leased VEGF was assayed by ELISA. 
 
 
 
was able to be released in a controlled way for more than 210 
min (Fig. 4). It indicated that the introduction of Matrigel coating 
on the hydrogel scaffold may allow the controlled release and 
prolonged functionality of VEGF. 

Angiogenesis by regulating VEGF release 
In order to assess the angiogenic effects of VEGF and 
Matrigel coating, various hydrogel scaffolds prepared with 
and without VEGF loading and Matrigel coating were subcu-
taneously implanted in BALB/c mice and immunohistochemis-
try for the presence of CD31 was performed after 1 week or 4 
weeks. One week after implantation, the CD31 staining pat-
terns were observed to be similar between the Matrigel coat-
ed samples and the Matrigel coated samples with VEGF (Fig. 
5). In the case of the Matrigel coated samples with VEGF 
loading, infiltration by unknown cells showed a significant 
increase. Four weeks after implantation, significantly more 
angiogenesis was observed in the Matrigel coated scaffold 
with VEGF loading than in the other samples. The CD31 posi-
tive cells (vasculature) were frequently present inside the 
scaffold (Fig. 6). 

 
A                  B 

C                  D 

Fig. 5. Cell recruitment at early phase of transplantation by Matrigel- 
coated scaffolds containing VEGF. Combinatorial scaffolds were 
implanted into the back flank of BLAB/c nude mice subcutaneously. 
Immunohistochemistry analysis against CD-31 was performed after 
1 week. (A) Scaffolds only, (B) Matrigel coated scaffolds, (C) Scaf-
folds with VEGF, and (D) VEGF containing scaffolds coated by 
Matrigel. 

A                 B

C                  D 

E

Fig. 6. Angiogenic effects of Matrigel-coated scaffolds containing 
VEGF. Combinatorial scaffolds were implanted into the back flank 
of BLAB/c nude mice subcutaneously. Immunohistochemistry anal-
ysis against CD-31 was performed after 4 weeks. (A) Scaffolds only, 
(B) Matrigel coated scaffolds, (C) Scaffolds with VEGF, and (D) 
VEGF containing scaffolds coated with Matrigel. (E) Statistic analy-
sis for CD-31 positive vessels (*p < 0.05). 

In vitro 

In vivo 
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DISCUSSION 
 
This study showed that the Matrigel coated PEG/PCL hydrogel 
scaffold could demonstrate the controlled release of VEGF in
vitro, and promoted the angiogenesis when transplanted in 
BALB/c mice. 

When stem cells are transplanted to treat diseases, porous 
polymer scaffolds are used to control stem cell growth, to max-
imize the effect in the treated area, and minimize excessive 
growth of the transplanted cells in other areas or to control dif-
ferentiation (Kim et al., 2010; Lee et al., 2012). The most popu-
lar polymer scaffold materials are poly(glycolic acid) (PGA), 
PEG, PCL, and their copolymers (Chen et al., 2006; da Silva et 
al., 2011; Duailibi et al., 2004; Li et al., 2009; Schantz et al., 
2003). The biodegradability of these materials depends on the 
microenvironment of the transplantation, and should be evalu-
ated case by case depending on the treatment method. Previ-
ous study have reported that the PEG/PCL hydrogels did not 
show significant degradation in water up to 50 days; further, 
when the PEG content was increased to PEG:PCL= 4:1, deg-
radation was observed to begin from 3 months and to acceler-
ate after 5 months (Park et al., 2007). The biocompatibility of 
these scaffolds also depends on the type of cells to be trans-
planted and the combination of materials. It has been shown in 
our previous study that the hydrogel scaffold with 
PEG:PCL=14:6 resulted in the best cell growth for chondro-
cytes (Park et al., 2007). 

The physical properties of cell transplantation polymer scaf-
folds, such as hardness and strength, are important factors to 
be considered depending on the purpose of treatment. For 
example, for the healing of the femur, which supports the body 
weight, the cutting plane receives a high stress, the healing 
time is long, and the material should not degrade for 8-12 
weeks. Therefore, metal is therefore often used, and during 
regeneration, the cut surface movement is suppressed and 
traditional surgery is used. Cell transplantation material for this 
purpose has not been commercialized yet. In contrast, for cra-
nial injuries, where the body weight is not applied, biodegrada-
ble polymer scaffolds can be used, which can biodegrade be-
fore bone regeneration (Mankani et al., 2001; Tsuchida et al., 
2003). Our in vivo results showed that the PEG/PCL hydrogel 
scaffold degraded by more than 50% after 4 weeks. When the 
scaffold was implanted in the body after 1 week, more than 5 
cells were observed per 150 �m pore diameter, and the biodeg-
radability was probably accelerated by these cells. 

The matrigel is the most commonly used material in deter-
mining angiogenesis by physiologically active substances. 
Matrigel is not synthesized, but is purified from the basement 
membrane of an Engelbreth-Holm-Swarm tumor and contains 
various physiologically active substances (Kleimann et al., 
2005). Both growth factor containing Matrigel (GFCM) and 
growth factor reduced Matrigel (GFRM) are available from the 
manufacturer. Matrigel exists as a liquid at a low temperature 
range of 0-20°C, but becomes a gel at a temperature above 
30°C. This unique temperature-sensitive property makes it 
useful for introducing physiologically active substances and 
cells by simple mixing in a solution state and preventing migra-
tion by temperature-induced gelation. Especially, GFRM, where 
almost all VEGF is removed, is a great material to assess sub-
stances for angiogenesis because it does not have any 
angiogenic potential in itself (Kanczler et al., 2007; Lin et al., 
2007; Papo et al., 2011). When stem cells adhere to polymer 
scaffolds for transplantation, it is difficult to engraft the stem 
cells in the middle of the scaffold (Kanczler et al., 2008; Lee et 

al., 2012; Park et al., 2010; Tanaka et al., 2009). Furthermore, 
timely angiogenesis is an important objective to achieve in stem 
cell transplantation, and many studies are being conducted to 
achieve this (Deng et al., 2010; Kanczler et al., 2008; Lin et al., 
2007; Yang et al., 1999; 2010). When VEGF is simply applied 
to polymer scaffolds for angiogenesis, because of fast diffusion, 
the VEGF gradient disappears and appropriate angiogenesis 
cannot occur (Kanczler et al., 2008). Therefore, we aimed to 
control the release of VEGF by Matrigel coating and to maintain 
the VEGF concentration gradient. Our results demonstrated 
that the release of VEGF from the porous scaffold without 
Matrigel coating reached the maximum within 30 min. On the 
other hand, the Matrigel coated scaffold released the VEGF in 
a controlled pattern for more than 210 min (Fig. 4). 
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