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Abstract
The hepatitis C virus (HCV) is one of the most common 
causes of chronic liver disease and the leading indication 
for liver transplantation worldwide. Every aspect of 
the HCV life cycle is closely tied to human lipid meta
bolism. The virus circulates as a lipid-rich particle, 
utilizing lipoprotein cell receptors to gain entry into the 
hepatocyte. It has also been shown to upregulate lipid 
biosynthesis and impair lipid degradation, resulting in 
significant intracellular lipid accumulation and circulating 
hypocholesterolemia. Patients with chronic hepatitis C 
(CHC) are at increased risk of hepatic steatosis, fibrosis, 
and cardiovascular disease including accelerated athero
sclerosis. HMG CoA Reductase inhibitors, or statins, have 
been shown to play an important role in the modulation 
of hepatic steatosis and fibrosis, and recent attention 
has focused upon their potential therapeutic role in 
CHC. This article reviews the hepatitis C viral life cycle 
as it impacts host lipoproteins and lipid metabolism. It 
then describes the pathogenesis of HCV-related hepatic 
steatosis, hypocholesterolemia and atherosclerosis, and 
finally describes the promising anti-viral and anti-fibrotic 
effects of statins, for the treatment of CHC.
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Core tip: This article reviews the complex relationship 
between hepatitis C virus (HCV) infection and human 
lipid metabolism. It discusses the aspects of the hepatitis 
C viral life cycle that are entwined with cholesterol 
homeostasis, as well as the clinical implications of HCV-
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mediated changes in human lipid profiles. Finally, it 
describes the current state of knowledge regarding the 
impact of statin medications on histological, virological 
and clinical outcomes, among patients with chronic 
hepatitis C.
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INTRODUCTION
Hepatitis C virus (HCV) is a single-stranded RNA virus, 
of the genus Hepacivirus and the family Flaviviridae. 
Affecting 2% to 3% of the global population, HCV 
is one of the most common causes of chronic 
liver disease and the leading indication for liver 
transplantation worldwide[1,2]. Estimates suggest that 
over a period of twenty to thirty years, cirrhosis will 
develop in 10% to 25% of patients with untreated or 
relapsed chronic hepatitis C (CHC), and hepatocellular 
carcinoma (HCC) in 1% to 5%[2]. 

Hepatic steatosis is a common histopathological 
finding in patients with CHC. Various factors have 
been independently associated with steatosis, 
including obesity, diabetes, hyperlipidemia and alcohol 
consumption[3]. It has also been demonstrated that 
the hepatitis C virus possesses a unique relationship 
with host lipids and lipoproteins[4,5], and relies heavily 
on host lipoproteins, lipid droplets, and host co-
factors for each step of the viral life cycle including the 
facilitation of viral replication[6-8]. At the same time, 
HCV causes profound lipid perturbations within the 
infected host, resulting in hepatic steatosis, circulating 
hypocholesterolemia and increased atherogenesis[6,8-12]. 

Statins, which inhibit the rate-limiting enzyme of 
the mevalonate pathway, HMG CoA Reductase, have 
been shown to play an important role in the modulation 
of hepatic steatosis and cholesterol metabolism, and 
recent attention has focused upon their potential 
therapeutic role for patients with CHC. This article 
reviews the molecular pathways of lipid homeostasis 
and the pathogenesis of hepatic steatosis as they relate 
to chronic hepatitis C infection, and then describes the 
potential impact of statin medications upon clinical, viral 
and histological outcomes.

HCV viral life cycle and host lipoproteins
HCV infection begins with attachment of the viral 
particle to the hepatocyte cell surface, in a process that 
requires many host proteins that are closely entwined 
with lipid metabolism[13-16]. To enter the cell, HCV must 
then associate with multiple cell surface receptors, 
three of which are closely linked to lipoprotein 

metabolism: the scavenger receptor class B member 1 
(SRB1) protein, the Neimann-Pick C1 Like 1 (NPC1L1) 
receptor, and the low-density lipoprotein receptor 
(LDLR). The HCV viral life cycle is shown in Figures 1 
and 2.

SRB1 is a cell surface transmembrane protein, 
primarily expressed in the liver and steroidogenic 
tissues. Although its essential function is cholesteryl 
ester uptake from HDL, it also serves as a multi-ligand 
receptor for various lipoproteins, including VLDL, LDL 
and HDL[17]. Oxidized LDL and VLDL have been shown 
to inhibit HCV cell entry[18], while HDL enhances HCV 
entry in an SRB1-dependent process[19-21]. Changes 
in circulating lipid levels have indeed been shown to 
impact both viremia and treatment response: increased 
triglyceride levels have been linked to improved viral 
clearance[22], while elevated LDL and total cholesterol 
is associated with improved treatment response to 
interferon-based therapy[23].

The NPC1L1 receptor is a cholesterol receptor in the 
intestines and the liver, essential for dietary cholesterol 
absorption and biliary cholesterol reabsorption. It is 
thought to promote HCV cell entry via interaction with 
cholesterol of lipoviral particles and by modulation 
of cholesterol homeostasis, which in turn alters 
membrane composition and affects HCV cell entry[24]. 
In vitro, inhibition of NPC1L1 blocks initiation of HCV 
infection, via a cholesterol-dependent mechanism 
occurring before virion-cell membrane fusion[25]. A 
recent in vivo mouse model also showed that blockade 
of NPC1L1 with ezetimibe blocks viral cell entry[24]. 

LDLR is a transmembrane glycoprotein responsible 
for the uptake of serum lipoproteins[26]. Transcription of 
LDLR is upregulated by the sterol-regulatory element 
binding proteins (SREBPs)[26,27], and the signaling 
molecules PCSK9[28,29], and inhibited by the inducible 
degrader of LDLR (IDOL)[30,31]. It has been shown 
that accumulation of HCV RNA within hepatocytes 
correlates with the expression of LDLR, and that 
antibodies directed against LDLR inhibit the cellular 
absorption of HCV[25,32]. HCV has also been shown 
to activate SREBP-mediated PI3-K/AKT and LXR 
pathways[10], resulting in further activation of LDLR, 
and thus enhancing viral infectivity.

Once inside the cytoplasm, the uncoated viral 
genome is translated, and the polypeptide is cleaved 
into 10 viral proteins. The HCV structural proteins (E1, 
E2 and core) play important roles in viral replication 
and assembly, while the non-structural proteins 
(p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) are 
essential for the intracellular aspects of the viral life 
cycle[33]. Following translation, the viral genome is 
transcribed by the proteins NS3 and NS5B[34]. HCV core 
protein accumulates around lipid droplets (LD), which 
are stores of triacylglycerols and cholesterol esters[35], 
and has been shown to inhibit the activity of MTP 
(microsomal triacylglycerol transfer protein) and the 
subsequent secretion of very low-density lipoprotein 
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Figure 1  hepatitis C virus viral life cycle. hepatitis C virus (HCV) entry into human hepatocytes is a complex, multi-step process that takes place at the basolateral 
region of polarized hepatocytes. It begins when the viral particle binds surface glycosaminoglycans (GAGs) and the low-density lipoprotein receptor (LDLR) via 
apolipoprotein E. This is followed by a complex series of interactions mediated by cellular factors including scavenger receptor class B type I (SR-BI), the tetraspanin 
CD81, claudin-1 (CLDN1), occludin (OCLN), the Niemann-Pick C1-like 1 (NPC1L1) receptor, as well as receptor tyrosine kinases (RTKs) that promote CD81-
CLDN1 association and membrane fusion. The HCV particle is then internalized into the hepatocyte by clathrin-mediated endocytosis. This figure is reproduced with 
permission from the original article, published in Journal of Hepatology, Vol 57, Issue 1, by Lupberger J, Felmlee J and Baumert TF. Cholesterol Uptake and Hepatitis 
C virus entry, page 215-217, Copyright Elsevier, 2012.
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(VLDL)[36]. The functions of each viral protein and their 
interactions with host lipid metabolism are outlined in 
Table 1.

HCV RNA replication and assembly of the LVP occur 
at the membranous web (MW), a specialized structure 
composed of clusters of viral vesicles and lipid 
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droplets (LD)[37,38], on which the LVP and viral proteins 
converge[39,40]. The enzyme diacylglycerol transferase-1 
(DGAT) facilitates the trafficking of core, NS5A and 
NS4B proteins to the LD[41,42], and results in inhibition 
of triglyceride lipolysis and lipid droplet turnover, thus 
increasing the concentration of available intracellular 

Figure 2  hepatitis C virus-mediated perturbations in cholesterol metabolism. Hcv: Hepatitis C virus; ROS: Reactive oxygen species; VLDL: Very low-density 
lipoprotein.
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lipids, for the facilitation of further HCV replication[43]. 
To export new HCV virions, the virus co-opts the host 
VLDL synthesis and secretion pathways. Synthesis 
of VLDL involves the generation of a VLDL precursor, 
using the lipid transfer function of the microsomal 
triglyceride transfer protein (MTP), which lipidates 
nascent apolipoprotein B100 (apoB100)[44]. The VLDL 
precursor is then targeted to the Golgi apparatus for 
export. The viral LVP is enriched in ApoE and ApoB, 
and thus possesses characteristics of a VLDL particle. 
This enables it to utilize the lipid transfer function of 
the MTP, and thus co-opt the VLDL secretion pathway 
and facilitate virion export[6,45-48]. 

Lipid changes in chronic hepatitis C infection
Circulating hypocholesterolemia: Circulating lipid 
levels are altered in patients with HCV, regardless 
of the duration of infection. In a cohort of patients 
with acute HCV, early infection was associated with 
reduction in LDL and total cholesterol levels; following 
viral eradication through spontaneous clearance or 
successful anti-HCV treatment, the lipids of those 
patients returned to pre-infection levels[49]. Patients 
with CHC also have demonstrate reduced levels of 
circulating LDL, apolipoprotein B100 (apoB) and 
total cholesterol, compared to healthy controls[50]. 
An inverse relationship has also been described 
between reduction in apoB levels and HCV viral load, 
among those with non-genotype 1 infection[50]. These 
perturbations also seem to resolve after successful 
clearance of CHC[49], supporting the hypothesis that 
HCV has a direct cytopathic effect upon host lipid 
metabolism.

The presence and degree of hypocholesterolemia 
carries important prognostic implications for patients 
with CHC. Elevated LDL and high-density lipoprotein 
(HDL) levels have been associated with improved 
rates of sustained virologic response (SVR)[51,52]. This 
may be related to the dependence of HCV upon LDL 
cholesterol concentrations and the LDLR for both 
cellular entry and viral replication.

Hepatic steatosis: Hepatic steatosis is frequently 
observed in the setting of CHC[53], and is thought to 
result from a combination of viral-mediated activation 
of lipid biosynthesis pathways and reduced lipid 
export[54,55]. The presence of hepatic steatosis among 
patients with CHC has been associated with poor 
treatment response [lower sustained viral response 
(SVR) rates] and accelerated disease progression to 
advanced fibrosis and cirrhosis[56-58]. Both patient-
related factors and viral factors play important roles in 
the modulation of HCV-related steatosis.

One important viral factor that impacts host lipid 
metabolism is viral genotype. Genotype 3 CHC is 
associated with the greatest degree of hepatic steatosis, 
and the most significant reductions in serum cholesterol 
levels[50,59]. In the fasting state, patients with genotype 
3 demonstrate profoundly elevated cholesterol meta
bolites[60], as well as increased intracellular lipid accu
mulation[47,61,62], compared to all other HCV genotypes. 
In contrast, among patients infected with all other 
genotypes of CHC, metabolic risk factors, including 
insulin levels, diabetes and obesity, appear to play a 
more important role in progressive steatosis[63,64]. This 
was demonstrated in analyses linking hepatic steatosis 
to higher levels of circulating viremia, among genotype 
3 patients[65]; in those cohorts, the eradication of 
infection resulted in improvement or resolution of 
steatosis, a finding not seen in other genotypes[66]. 

Patient factors that modulate hepatic steatosis 
include genetic variations and metabolic dysregulation. 
Patients with a single nucleotide polymorphism (SNP) 
in the interleukin 28B (IL28B) gene (genotype CC) 
possess lower serum levels of triglycerides, higher 
LDL-C levels[67], and an overall reduced prevalence of 
hepatic steatosis[68]. The IL-28B CC genotype has also 
been associated with increased rates of SVR[69,70]. In 
addition, an independent genome-wide association study 
also determined that a single genetic variant (I148M) in 
the human patatin-like phospholipase domain containing 
3 (PNPLA3) rs738409 C>G SNP was the strongest 
genetic determinant of hepatic steatosis[71].

Protein Function Association with Lipid Metabolism
Structural proteins
      E1 Surface envelope protein of LVP Enriched around lipid droplet
      E2 Surface envelope protein of LVP, binds CD81 for viral fusion and cell entry Interacts with ApoE and SRB1 facilitating lipid transfers 

around LD
      Core Important for cell surface binding, replication and assembly Increases expression of SREBP, FASN. Colocalizes with apoB
Non-structural proteins
      P7 Creates transmembrane ion channel in membranous web, (viroporin) Assists in recruitment of core protein to LD by DGAT1
      NS2 Cysteine protease Increases expression of FASN, SREBP
      NS3 Serine protease, RNA helicase, promotes viral protein processing with NS4A Unknown
      NS4A Protease; cofactor for NS3 Unknown
      NS4B Directs membrane rearrangements for formation of membranous web Activates fatty acid synthase, associates with DGAT1 and 

P14KA, facilitating creation of membranous web
      NS5A Phosphoprotein, required for replication, forms bridge to assembly Activates FASN; associates with P14KA, DGAT1
      NS5B RNA-dependent RNA polymerase, for replication of viral genome Direct interaction with fatty acid synthase gene
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In multiple subsequent candidate gene studies, 
PNPLA3 I148M has been shown to specifically influence 
hepatitis C-related liver fat accumulation[72-74], as well 
as NASH[75,76], fibrosis progression[77] and hepatocellular 
carcinoma[78]. However, unlike IL28B, PNPLA3 has 
consistently not been shown to influence SVR[73,79]. 
These findings were recently confirmed in a post-hoc 
analysis of a large randomized trial of patients with 
genotype 1 CHC, where PNPLA3 again was associated 
with progressive steatosis and development of 
fibrosis, but not with SVR[73]. Interestingly, the authors 
observed that this was modulated by the IL28B 
polymorphism, suggesting new complexity to the 
relationship between genotype variations and disease 
progression[73]. Further research will be needed to 
fully characterize the mechanisms that underpin the 
associations between these risk alleles and hepatic 
steatosis.

Additional patient-related determinants of hepatic 
steatosis in CHC include alcohol use[74] and metabolic 
derangements, particularly insulin resistance, diabetes 
and the metabolic syndrome[64]. The link between 
hepatitis C and insulin resistance has also been 
supported in multiple population-based cohort studies, 
where adults with CHC were three to eleven times 
more likely to develop type 2 diabetes[80], compared to 
uninfected controls. 

Accelerated atherogenesis: Hypocholesterolemia 
and lower rates of systemic hypertension do not 
seem to protect patients with HCV infection from 
atherosclerosis. Ishizaka and colleagues first demon
strated a link between HCV and carotid artery plaque 
formation[81], and it has since been demonstrated 
that HCV seropositivity is an independent risk factor 
for coronary artery disease (CAD), over and above 
traditional risk factors including age, smoking status, 
hypertension, diabetes and hyperlipidemia[82,83]. 
Although some studies have yielded conflicting results, 
with some confirming[84] and others refuting[85] this 
link, convincing recent data has nevertheless shown 
excess cardiovascular mortality during the course of 
chronic HCV infection[86,87]. Indeed, a recent review 
concluded that HCV infection should be considered a 
risk factor for the development of atherosclerosis, and 
argued for more vigilant preventive cardiac screening 
in this population[88]. 

potential therapeutic role of statin medications
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase inhibitors (statins), are among the most 
commonly prescribed medications worldwide, and have 
been shown to be safe in chronic liver disease[89,90]. 
There is mounting evidence that statins exert powerful 
pleiotropic effects via both HMG-CoA dependent and 
independent pathways, modulating inflammation, 
angiogensis, apoptosis and cell growth[89,91-98]. Several 
studies have also shown that statins may inhibit HCV 
replication, and thus may exert powerful anti-HCV 

effects as well. 

Effect of statins on viral replication: Statins 
appear to block HCV replication by inhibiting de novo 
cholesterol and geranylgeranylated protein synthesis, 
thus reducing expression of key HCV viral proteins and 
inhibiting pro-inflammatory signaling pathways[99,100]. 
In early in vitro studies, cells cultured with lovastatin 
successfully inhibited HCV RNA replication[101,102]. This 
was confirmed in a high-throughput screen of small 
molecule modulators of HCV replication, with the 
strongest antiviral activity observed in atorvastatin, 
fluvastatin and simvastatin[103]. It is thought that the 
geranylgeranyl lipid product of the mevalonate pathway 
is necessary for HCV replication[7,104,105]. In experiments 
with lovastatin, the statin-mediated inhibition of HCV 
replication was overcome by the addition of gerany
lgeraniol, but not by farnesol or cholesterol[7,104], results 
which underscored the importance of the mevalonate 
pathway in HCV replication. 

Despite negative results from in vivo analyses of 
statin monotherapy[106,107], a great deal of evidence 
now suggests a beneficial role of statins upon virologic 
outcomes in patients treated with pegylated interferon 
(IFN) and ribavirin[52,108,109]. In a large retrospective 
cohort of 8293 veterans undergoing anti-HCV therapy, 
statin use was an independent predictor of SVR[108]. In 
a subsequent uncontrolled, prospective Japanese pilot 
study of patients infected with genotype 1b, fluvastatin 
also was associated with improved SVR[110]. Since 
that time several randomized controlled trials have 
demonstrated that statins increase SVR rates when 
combined with peginterferon and ribavirin in genotype 
1 infection[111]. Despite this compelling evidence, the 
future importance of statins for the enhancement 
of SVR is uncertain as we enter the era of second-
generation and novel direct acting antiviral (DAA) 
therapy for CHC, which yields SVR rates of over 90%. 

Anti-fibrotic effects of statins: It has also been 
postulated that statins may exert antifibrotic effects, 
although the data are more limited. Animal models 
show that statin use blocks the activation of hepatic 
myofibroblasts, inducing apoptosis and preventing 
both proliferation of hepatic stellate cells (HSCs) and 
their production of collagens[95,97,98,112-114]. Until recently, 
reports in humans consisted primarily of retrospective 
studies of laboratory markers of hepatotoxicity, and 
were limited by small sample sizes, lack of appropriate 
controls or histological data from liver biopsy, which 
remains the gold standard for the assessment of 
fibrosis[90,115,116]. However, in a recent post-hoc analysis 
of a large, prospective human trial of patients with 
advanced CHC followed with serial liver biopsies, it 
was demonstrated that statin use was associated with 
significantly reduced fibrosis scores[117,118]. 

HCC: Mounting evidence also suggests that statins 
offer chemoprevention against many malignancies, 
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including HCC[91,119-123]. They inhibit cell growth, tumor 
spread, and appear to exert powerful antiproliferative, 
antiangiogenic and immunomodulatory effects[96-98]. 
One mechanism is via direct interference with lipid 
rafts, thus inhibiting cell signaling, tumor invasion 
and angiogenesis[124,125]. Via competitive inhibition of 
HMG-CoA reductase, statins prevent post-translational 
prenylation of the Ras/Rho superfamily, which are 
otherwise upregulated in approximately 30% of 
neoplasms[96,120]. By decreasing expression of MMP-14 
and TIMP-2, statins also inhibit the PI3K/PTEN/AKT/
mTOR pathway, blocking tumor cell spread[96-98,112]. 

In a recent population-based cohort of patients 
infected with HCV, statin users were shown to have a 
significant reduction in the incidence of HCC[126]. The 
results were statin-specific, and both dose and duration 
responses were seen, with a hazard ratio of 0.33 for 
HCC among those taking higher cumulative daily 
doses. These results are consistent with several other 
large observational studies[127,128]. Randomized data, 
however, does not appear to support the relationship 
between statins and reduced risk of HCC. In a pooled 
meta-analysis pooling of 7 observational cohorts and 
26 randomized controlled trials, the authors found 
a 37% reduced risk of HCC among statin users in 
the observational studies (adjusted odds ratio 0.52, 
95%CI: 0.42-0.64), but no benefit attributable to 
statins in the randomized groups[123]. Such differences 
between observational studies and randomized trials 
may reflect length of follow-up, patient selection, lack 
of sufficient power to detect a difference, within a 
selected cohort. 

Statins in the era of DAA therapy: The role of 
statins as adjunctive therapy in HCV treatment has 
so far been limited to the previous standard of care, 
pegylated interferon and ribavirin. It is unknown what 
benefit, if any, statins may confer to those patients 
treated with the new DAA medications. Although 
statins have been shown to be independent predictors 
of SVR in both Boceprevir and Telepravir-based trials, 
with SVR rates > 90% in the majority of treated 
patients, the additive benefit of statin therapy is less 
substantial, than that seen with IFN and Ribavirin. 
Moreover, concerns have been raised about the 
potential for significant drug interactions between 
statins and DAAs[129]; at this time, simvastatin, 
lovastatin and atorvastatin are contraindicated for 
use with telaprevir[130,131], and both simvastatin and 
lovastatin are contraindicated with boceprevir[132]. As 
noted above, there is likely little additive benefit with 
statins for SVR, as new DAAs demonstrate SVR rates 
above 95%, however future studies are needed to 
fully characterize the role of statins for delaying or 
preventing fibrosis, cirrhosis or the development of 
HCC. 

CONCLUSION
Every aspect of the HCV life cycle is closely linked to 
human lipid metabolism. Not only does the virus itself 
circulate as a lipid-rich particle that mimics VLDL, it 
also utilizes cell surface receptors essential for lipid 
metabolism to gain entry into the hepatocyte. Once 
inside the cell, the virus upregulates intracellular lipid 
synthesis, impairs lipid degradation, and decreases 
catabolism and export of lipoproteins. As a result, it 
causes significant intracellular lipid accumulation as well 
as a relative circulating hypocholesterolemia. Patients 
with chronic HCV infection are at increased risk of 
developing hepatic steatosis, fibrosis, and cardiovascular 
disease including accelerated atherosclerosis. Statins, 
which inhibit the rate-limiting enzyme of the mevalonate 
pathway, HMG CoA Reductase, have been shown to 
play an important role in the modulation of hepatic 
steatosis and fibrosis, and it is postulated that they 
may also possess important anti-proliferative, anti-
angiogenic and antioxidant effects, with a potential 
protective role against the development of HCC. It 
remains to be seen to what degree statin medications 
will play a role in adjunctive management of patients 
with CHC in the era of new DAAs. 
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