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Abstract
AIM: To explore the effect of the histone deacetylase 
inhibitor givinostat on proteins related to regulation of 
hepatic stellate cell proliferation.

METHODS: The cell counting kit-8 assay and flow 
cytometry were used to observe changes in proliferation, 
apoptosis, and cell cycle in hepatic stellate cells treated 
with givinostat. Western blot was used to observe 
expression changes in p21, p57, CDK4, CDK6, cyclinD1, 
caspase-3, and caspase-9 in hepatic stellate cells 
exposed to givinostat. The scratch assay was used to 
analyze the effect of givinostat on cell migration. Effects 
of givinostat on the reactive oxygen species profile, 
mitochondrial membrane potential, and mitochondrial 
permeability transition pore opening in JS-1 cells were 
observed by laser confocal microscopy.

RESULTS: Givinostat significantly inhibited JS-1 cell 
proliferation and promoted cell apoptosis, leading 
to cell cycle arrest in G0/G1 phases. Treatment with 
givinostat downregulated protein expression of CDK4, 
CDK6, and cyclin D1, whereas expression of p21 and 
p57 was significantly increased. The givinostat-induced 
apoptosis of hepatic stellate cells was mainly mediated 
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injury can cause chronic inflammation, resulting in 
replacement of liver parenchymal cells by scar tissue. 
Moreover, long-term fibrotic reaction leads to end-
stage liver disease, cirrhosis, and hepatocellular 
carcinoma. In fact, the incidence of hepatocellular 
carcinoma has steadily increased worldwide. Thus, 
in addition to management of the causes of disease, 
inhibition of HSC activation and proliferation, as well 
as induction of apoptosis, has been the mainstream 
strategy for the treatment of liver fibrosis. HSC 
activation after stimulation is recognized as a process 
involving multiple cytokines and is coregulated by 
various cell-signaling pathways at different levels[6,7]. 

Although no well-established medication or regimen 
has been available for the treatment of liver fibrosis, 
an increasing number of molecularly targeted drugs 
have promising efficacy[8].

Recent studies[9-11] have shown that protein 
acetylation plays an important role during HSC 
activation; imbalanced histone acetylation due to 
histone deacetylase (HDAC) overexpression is closely 
associated with the occurrence and development of 
liver fibrosis[9]. The HDAC inhibitors trichostatin A[10] 

and valproic acid[9] can prevent the transdifferentiation 
of static HSCs into myofibroblasts and suppress 
α-smooth muscle actin (SMA) and collagen Ⅰ gene 
expression in vitro.

As a novel hydroxamate-derived HDAC inhibitor[12], 
givinostat (also known as ITF2357) is characterized 
by its significant targeted anticancer activities 
and low toxicity profiles[13-15]. Moreover, givinostat 
has anti-inflammatory activity and can suppress 
lipopolysaccharide (LPS)-induced cytokines such as 
tumor necrosis factor-α, interleukin-1 and -6, and 
interferon[16-18]. The phase Ⅱ clinical trials on the roles 
of givinostat in treating juvenile idiopathic arthritis, 
Hodgkin’s lymphoma, and polycythemia vera were 
finished in 2002. In the current study, the antifibrotic 
activities of givinostat were assessed both in vivo and 
in vitro to understand the mechanism of liver fibrosis 
and to provide new directions and evidence for novel 
drug development.

MATERIALS AND METHODS
Reagents
The murine HSC line JS-1 was provided courtesy of 
Xu Lieming from Shanghai University of Traditional 
Chinese Medicine. Givinostat was purchased from 
Selleck (Houston, TX, United States). The following 
were purchased from Thermo Fisher Scientific 
(Waltham, MA, United States): Ham’s F12 medium, 
Dulbecco’s Modified Eagle’s medium (DMEM), trypsin-
EDTA solution, fetal bovine serum, and the Pierce BCA 
Protein Assay Kit. The Cell Counting Kit-8 (CCK-8) 
was purchased from Dojindo (Kumamoto, Japan). 
JC-1 staining solution, 2′,7′-dichlorofluorescein 
diacetate (DCFH-DA), calcein-AM, and CoCl2 were 

Wang YG et al . Mechanisms of givinostat against liver fibrosis

8327 July 21, 2015|Volume 21|Issue 27|WJG|www.wjgnet.com

through p38 and extracellular signal-regulated kinase 
1/2. Givinostat treatment increased intracellular reactive 
oxygen species production, decreased mitochondrial 
membrane potential, and promoted mitochondrial 
permeability transition pore opening. Acetylation of 
superoxide dismutase (acetyl K68) and nuclear factor-
κB p65 (acetyl K310) was upregulated, while there was 
no change in protein expression. Moreover, the notable 
beneficial effect of givinostat on liver fibrosis was also 
confirmed in the mouse models.

CONCLUSION: Givinostat has antifibrotic activities 
via regulating the acetylation of nuclear factor-κB and 
superoxide dismutase 2, thus inhibiting hepatic stellate 
cell proliferation and inducing apoptosis.

Key words: Givinostat; Hepatic stellate cells; Histone 
deacetylase inhibitor; Nuclear factor-κB; Superoxide 
dismutase

© The Author(s) 2015. Published by Baishideng Publishing 
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Core tip: There is currently no effective therapeutic 
treatment for liver fibrosis. Inhibition of hepatic 
stellate cell activation and proliferation or induction of 
apoptosis is the mainstream strategy for the treatment 
of liver fibrosis. This study demonstrates that a histone 
deacetylase inhibitor, givinostat, has antifibrotic 
activities both in vivo  and in vitro , which might be 
achieved by regulating the acetylation of nuclear 
factor-κB and superoxide dismutase, thus stimulating 
oxidative stress, activating mitochondrial pathways, 
inhibiting hepatic stellate cell proliferation, and inducing 
apoptosis. These results may provide new directions 
and evidence in the research and development of novel 
drugs for liver fibrosis.
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INTRODUCTION
Liver fibrosis is a major cause of morbidity and 
mortality worldwide due to chronic viral hepatitis and, 
more recently, from fatty liver disease associated with 
obesity[1]. Activation of hepatic stellate cells (HSCs) is 
the central event in liver fibrosis and often serves as a 
trigger[1,2].

HSCs are activated and transdifferentiated into 
myofibroblasts in event of hepatic injury. The main 
changes include proliferation, migration, and enhanced 
contractility, as well as synthesis of large amounts 
of cytokines and extracellular matrix[3-5]. Persistent 



obtained from Sigma-Aldrich (St. Louis, MO, United 
States). The Annexin V-FITC Apoptosis Detection Kit 
and FACSCalibur Flow Cytometer were purchased 
from BD Pharmingen (San Diego, CA, United States), 
and Amersham ECL plus Western Blotting Detection 
System was purchased from GE (Little Chalfont, United 
Kingdom. The confocal laser-scanning microscope 
used was the FluoView FV1200 from Olympus (Tokyo, 
Japan). Other reagents were from Abcam (Cambridge, 
United Kingdom).

CCK-8 assay
After the JS-1 cell line was cultured in DMEM with 10% 
fetal bovine serum for 24 h, 30 wells of JS-1 cells were 
divided into two groups. In the first group, the culture 
medium was replaced by complete medium with final 
givinostat concentrations of 0 nmol/L, 125 nmol/L, 
250 nmol/L, 500 nmol/L, and 1000 nmol/L. In the 
second group, givinostat of relevant concentrations 
was added concomitantly with 100 nmol/L of LPS 
solution. Three replicates were performed for each 
group. After inoculation at 37 ℃ and 5% CO2 for 24 h, 
each well (100 µL) was incubated with 10 µL of CCK-8 
solution. The plates were incubated at 37 ℃ for 1 h 
and the absorbance was measured at 450 nm using a 
microplate reader.

Detection of apoptosis and cell cycle by flow cytometry
The JS-1 cells were inoculated in 10 mL complete 
medium in three 100-mm culture dishes (1 × 106 
cells/well). After incubation for 24 h, the medium was 
changed to complete medium with final concentrations 
of 0 nmol/L, 125 nmol/L, and 250 nmol/L givinostat if 
normal cell growth was observed. Following incubation 
for another 48 h, the cells were harvested and treated 
thoroughly with the appropriate amount of tryptic 
digestion to afford a single-cell suspension. Then, 1 × 
105 resuspended cells were collected and centrifuged at 
1000 rpm for 5 min. The supernatant was discarded. 
The residue was resuspended with 100 µL Annexin 
V binding buffer, and then transferred into a 5-mL 
culture tube. Then, 5 µL Annexin V-FITC and propidium 
iodide (PI) was added, and the mixture was incubated 
at 20 ℃-25 ℃ in darkness for 15 min. Next, 400 µL 
of Annexin V binding buffer was added immediately 
before flow cytometry. The Annexin V-FITC showed 
green fluorescence, while PI showed red fluorescence. 
Flow cytometry with 488-nm laser excitation was used. 
The FITC fluorescein was detected using a 515-nm 
long-pass filter, and the PI fluorescein was detected 
using a filter at a wavelength > 560 nm. Moreover, 
after treatment with 1 mL of prechilled 70% ethanol 
for cell immobilization, the cell pellet was washed and 
centrifuged twice in 0.5 mL PBS containing 50 µg/mL 
PI. The cells were resuspended with 100 µg/mL RNase 
A, and then inoculated in the dark at 37 ℃ for 30 min 
before the flow cytometer was used to determine the 
cell cycles.

Western blotting
The JS-1 cells were inoculated in 100-mm culture 
dishes containing complete medium (1 × 1010 cells/
well). After 24 h, the cells in one dish were treated 
with tryptic digestion and harvested as the 0-h 
sample if normal cell growth was observed. The other 
four dishes were incubated with complete medium 
containing a final concentration of 250 nmol/L 
givinostat. After the culture medium was replaced 
by serum-free culture medium, the mixtures were 
inoculated for 12 h using the above described method. 
Two dishes were incubated with givinostat (final 
concentration: 50-100 nmol/L), and the resultant 
mixtures were incubated for 1 h before addition of LPS 
(final concentration: 100 ng/mL). One of the other two 
dishes was incubated with LPS (final concentration: 
100 ng/mL), and the cells were harvested after 15 
min. All preparations were subjected to Western 
blotting. The preparation was incubated in a 37 ℃/5% 
CO2 incubator for 48 h, treated with tryptic digestion to 
harvest the cells, and then washed twice with PBS. The 
mixture was centrifuged to remove the supernatant, 
and the collected cells were placed on ice before lysis. 
The proteins were quantified using the BCA method. 
SDS-PAGE, membrane transfer, immunoreactions, 
development, and gel electrophoresis image analysis 
was performed for the target genes.

Determination of the effect of givinostat on cell 
migration by scratch assay
JS-1 cells were inoculated on a 12-well plate (2 × 
105 cells/well) and then incubated in a 37 ℃/5% 
CO2 incubator. After incubation for 24 h, if the cell 
morphology was normal, a single-cell suspension was 
prepared and scratches were made using the tip of 
a 200-µL pipette tip. Complete medium containing 
serum was replaced by serum-free DMEM. The cells 
were pretreated with 100 nmol/L givinostat for 2 h, 
and LPS solution (100 ng/mL) was added for the cell 
migration assay. The preparation was incubated for 
another 24 h before analysis.

Laser confocal microscopy
Detection of reactive oxygen species (ROS) 
using fluorescent probe DCFH-DA: JS-1 cells 
were inoculated in two 20-mm Falcon confocal dishes 
containing 2 mL of relevant complete medium (5 × 
103 cells/dish). After 24 h, if normal cell growth was 
observed, the medium was removed and 1 mL of 
diluted DCFH-DA was added. The preparation was 
incubated in a 37 ℃ incubator for 15 min and washed 
three times with serum-free medium. Then, 2 mL of 
complete medium containing givinostat (0 nmol/L or 
500 nmol/L final concentration) was added to these 
two dishes, which were then incubated in a 37 ℃
/5% CO2 incubator for 30 min. Under an excitation 
wavelength of 488 nm and an emission wavelength of 
525 nm, the fluorescence intensity of the two dishes 
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and six of olive oil (at a dose of 3 mL/kg CCl4), and 
givinostat (5 mg/kg) was administered by gavage (0.1 
mL) on the next day until week 5, when the mice were 
sacrificed to harvest liver tissues. 

For liver histopathologic examination, the liver 
tissues were fixed in formalin, embedded in paraffin, 
and thin sections were stained with the Masson’
s Trichrome Stain Kit. Damage to liver cells and 
deposition of collagen fibers were observed under a 
light microscope. Collagen fibers, muscle fibers, and 
red blood cells were stained green, red and orange, 
respectively. In vivo experiments were approved by the 
Shanghai Tongren Hospital affiliated to Shanghai Jiao 
Tong University School of Medicine Ethics Committee.

Statistical analysis
The data were analyzed with SPSS version 13.0 
statistical software (SPSS Inc., Chicago, IL, United 
States), and expressed as mean ± SD. Multiple groups 
were analyzed with one-way analysis of variance, 
pairwise comparison was conducted using a least 
significant difference t-test, and different groups were 
compared using a t-test. P < 0.05 was considered 
statistically significant.

RESULTS
Suppressive effects of givinostat on proliferation and 
migration of JS-1 cells
As shown by the CCK-8 assay, givinostat inhibited JS-1 
cell proliferation in a concentration-dependent manner. 
The cell suppression rates markedly differed after 
treatment with givinostat at different concentrations 
(ranging from 0 nmol/L to 1000 nmol/L) (Figure 1A). 
Treatment with givinostat ≥ 500 nmol/L was associated 
with significant inhibition of JS-1 cell proliferation (P < 
0.01). Also, the cell inhibition rate significantly differed 
between the group cotreated with givinostat ≥ 250 
nmol/L plus LPS and the group without LPS treatment 
(same givinostat concentration) (P < 0.05). As 
demonstrated by scratch assay (Figure 1B), the area 
of cell migration was significantly reduced in JS-1 cells 
cotreated with givinostat plus LPS in comparison to the 
controls (P < 0.05), suggesting givinostat treatment 
markedly decreased LPS-activated JS-1 cell migration. 
Western blotting showed that the protein expression of 
α-SMA, transforming growth factor β 1, and vascular 
endothelial growth factor in JS-1 cells significantly 
decreased 24 h and 48 h after givinostat treatment (all 
P < 0.05) (Figure 1C).

Effects of givinostat on apoptosis and cell cycle of JS-1 
cells
In the bivariate scatter plots of flow cytometry, after 
treatment with givinostat (concentration gradient: 0 
nmol/L, 125 nmol/L, and 250 nmol/L), the numbers of 
apoptotic and necrotic JS-1 cells markedly increased, 
suggesting givinostat induced JS-1 cell apoptosis 

was determined at time intervals of 0 min, 10 min, 20 
min, and 30 min using a laser confocal microscope.

Detection of mitochondrial membrane potential 
using the JC-1 method: Reference ROS were 
prepared before the assay. Then, 2 mL of complete 
medium containing givinostat (final concentrations: 
0 nmol/L, 250 nmol/L, 500 nmol/L, or 1000 nmol/L) 
was added to each of the four dishes. The mixture 
was incubated for another 2 h, washed, 1 mL of JC-1 
staining solution (final concentration: 2 µg/mL) was 
added, and the mixture was incubated at 37 ℃ for 20 
min. The supernatant was discarded and the residue 
was washed twice. After 2 mL of DMEM complete 
medium was added, red and green fluorescence 
was detected through the Cy3 and FITC channels, 
respectively, and photographed within 20 min using a 
laser confocal microscope.

Detection of mitochondrial permeability 
transition pore (mPTP) opening by coloading 
with calcein-AM and CoCl2: Reference ROS were 
prepared before the assay. After the cells were washed 
with serum-free DMEM medium once, 1 mL of serum-
free DMEM staining solution containing calcein-
AM (final concentration: 1 µmol/L) and CoCl2 (final 
concentration: 5 mmol/L) was added before incubation 
at 37 ℃ for 15 min. The supernatant was discarded 
and the residue was washed twice. Two dishes were 
incubated with 2 mL of CoCl2 (final concentration: 5 
mmol/L), followed by complete medium containing 
0 nmol/or 500 L givinostat. The green fluorescence 
was examined using the FITC channel using a laser 
confocal microscope. The fluorescence intensities of 
two dishes were determined at 0 min, 10 min, 20 min, 
and 30 min. The fluorescence intensity of the regions 
of interest randomly selected from multiple intracellular 
mitochondria were analyzed by Image J to quantitate 
any mPTP opening events.

Establishment of animal models
Fifty 5-wk-old specific-pathogen-free Balb/C male 
mice weighing 20 ± 5 g were supplied by Shanghai 
Experimental Animal Center, Chinese Academy of 
Sciences [License No.: SCXK (Shanghai) 2012-0005]. 
They were randomly divided into three groups: control 
group (n = 10), liver fibrosis group (n = 20), and 
givinostat treatment group (n = 20). In the control 
group, mice were fed a normal diet and administered 
saline (i.p., amounts equivalent to other groups) every 
3 d. In the liver fibrosis group, mice were fed a high-
fat diet containing 0.5% cholesterol and received i.p. 
administration of the working solution prepared from 
four portions of CCl4 and six of olive oil and sacrificed 
to harvest the liver tissues. In the givinostat treatment 
group, mice were fed a high-fat diet containing 0.5% 
cholesterol and received ip administration of the 
working solution prepared from four portions of CCl4 
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in a concentration-dependent manner (Figure 2A). 
According to the cell cycle plot of flow cytometry, 
the JS-1 cells were arrested at the G0/G1 phase 
after givinostat treatment (Figure 2A). Western 
blotting showed that prolonged givinostat treatment 
was significantly associated with decreased protein 
expression of cyclin-dependent kinase (CDK)4, CDK 6, 
and cyclin D1, and with increased expression of p21 
and p57 (compared with the untreated group) (all P 
< 0.05) (Figure 2B). As shown by Western blotting, 
givinostat activated caspase-3 and caspase-9 in JS-1 
cells in a concentration-dependent manner (Figure 
2C), without causing any changes in the precursors of 
these two proteins.

Effects of givinostat on the ROS profile, mitochondrial 
membrane potential, and mPTP opening in JS-1 cells
The effects of givinostat treatment on the ROS 
profile of JS-1 cells were examined using laser 
confocal microscopy (Figure 3A). As shown by the 
green fluorescence that represented intracellular 
ROS, givinostat treatment markedly increased ROS 
production. Changes in mitochondrial membrane 
potential were examined using JC-1 as the fluorescent 
probe and laser confocal microscopy (Figure 3B), 
with green and red fluorescence denoting low and 
high membrane potentials, respectively. It was found 
that givinostat treatment induced a concentration-
dependent decrease in mitochondrial membrane 
potential. The mPTP opening was detected by 
coloading with calcein-AM and CoCl2 (Figure 3C). 
The mitochondria of normal JS-1 cells had intense 
green fluorescence, with a granular appearance. In 
the givinostat treatment group, however, there was 
considerable mPTP opening, along with decreased 
intensity of fluorescence in comparison to that of the 
control group.

Changes in histone acetylation and regulation of LPS-
activated mitogen-activated protein kinase signaling in 
givinostat-treated JS-1 cells
The effects of givinostat on the post-translational 
modifications of superoxide dismutase (SOD)2, p53, 
nuclear factor (NF)-κB, and p65 were analyzed by 
Western blotting (Figure 4A), which showed that 
SOD2 (acetyl K68) acetylation was upregulated, while 
the expression profile of SOD2 protein showed no 
significant change. Acetylation of NF-κB p65 (acetyl 
K310) was upregulated, while its protein expression 
showed no significant change. There were no obvious 
changes in the expression profiles of p53, p53 (acetyl 
K382), and p53 (acetyl K120).

Change in the mitogen-activated protein kinase 
(MAPK) signaling-pathway-related protein expression 
was examined after givinostat treatment of LPS-
activated JS-1 cells, which showed that expression 
of extracellular signal-regulated kinase (ERK)1/2, 
phosphorylated ERK1/2, p38, and phosphorylated 
p38 increased following LPS activation; givinostat 
suppressed LPS-induced upregulation of ERK1/2 and 
phosphorylated p38 in a time-dependent manner, but 
showed no effect on the expression of C-Jun N-terminal 
kinase (JNK)1/2 and phosphorylated JNK1/2 (Figure 
4B).

Pathologic changes of liver tissue in mouse models of 
liver fibrosis induced by givinostat treatment
The hepatic lobules of healthy mice were clear in struc-
ture, with only a small amount of collagen deposited 
in the portal area. In the mouse models of liver 
fibrosis induced by CCl4 treatment, however, liver cell 
degeneration was concomitant with a large amount of 
collagen deposition in the portal area. Some of them 
exhibited fiber spacing, with visible pseudolobules. In 
contrast, the givinostat treatment group had markedly 
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Figure 1  Effects of givinostat in suppressing proliferation and migration of JS-1 cells. A: Givinostat inhibits JS-1 cell proliferation in a concentration-dependent 
manner. The cell inhibition rate significantly differed between the group cotreated with givinostat ≥ 250 nmol/L plus lipopolysaccharide (LPS) and the group without 
LPS treatment (same givinostat concentration) (P < 0.05); B: The cell migration area significantly decreased in the group cotreated with givinostat plus LPS (P < 0.05); C: 
Compared with the control group, treatment with givinostat for 24 h or 48 h significantly suppressed expression of α-smooth muscle actin (SMA), transforming growth 
factor (TGF)-β1 and Vascular endothelial growth factor (VEGF). aP < 0.05, bP < 0.01 vs control group.
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less collagen deposition and improved fibrosis. 
Collagen area percent was significantly reduced in 
givinostat group compared to the model group (P < 
0.01) (Figure 5). 

DISCUSSION
As demonstrated in the current study, givinostat, an 
HDAC inhibitor, has marked antifibrotic activity. In the 
in vitro experiment, givinostat markedly suppressed 
proliferation of HSCs (JS-1 cell line), and such an 
inhibitory effect was even more obvious among LPS-
activated HSCs. Givinostat induced apoptosis of mouse 
HSCs and arrested these cells at G0/G1 phase. The 
protein expression profiles of α-SMA, transforming 
growth factor β 1, and vascular endothelial growth 
factor in HSCs significantly decreased after givinostat 
treatment. Moreover, the notable beneficial effect of 
givinostat on liver fibrosis was also confirmed in the 

mouse models.
Further study on the G0/G1 arrest suggested 

that such an effect was achieved by regulating 
the expression of some cell-cycle-related proteins. 
Givinostat downregulated protein expression of CDK4, 
CDK6, and cyclin D1, whereas expression of p21 
and p57 was significantly increased. These findings 
are consistent with the results of previous HDAC-
inhibitor-related studies[19-22]. For the induction of 
mouse HSC apoptosis, givinostat activates caspase-3 
and caspase-9 in JS-1 cells, which is consistent with 
previous studies[23-25]. As suggested by laser confocal 
microscopy in the current study, givinostat treatment 
increased intracellular ROS production, decreased 
mitochondrial membrane potential, and promoted 
mPTP opening. Moreover, mPTP opening promotes the 
uncoupling between mitochondrial electron transport 
chain and oxidative phosphorylation, decreases 
membrane potential, reduces ATP production and 
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Figure 2  Effects of givinostat on apoptosis and cell cycle of JS-1 cells. A: Flow cytometry shows that the givinostat treatment induces JS-1 cell apoptosis in a 
concentration-dependent manner. The numbers of apoptotic and necrotic cells progressively increased when the concentration of givinostat increased; B: Givinostat 
arrested the JS-1 cells at G0/G1 phase; C: Givinostat activated caspase-3 and caspase-9 in JS-1 cells without causing changes in the precursors of these two 
proteins. aP < 0.05, bP < 0.01 vs the control group.
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Figure 3  Effects of givinostat on the reactive oxygen species profile, mitochondrial membrane potential, and mitochondrial permeability transition 
pore opening in JS-1 cells. A: Effects of givinostat on reactive oxygen species (ROS) in JS-1 cells were determined by 2’,7’-dichlorofluorescein diacetate. Green 
fluorescence represents the intracellular ROS. Givinostat significantly increased ROS production, in particular at 30 min (P < 0.01); B: Mitochondrial membrane 
potential was detected using the fluorescent probe JC-1. The green and red fluorescence represented the low and high membrane potentials, respectively. Givinostat 
reduced mitochondrial membrane potential in a concentration-dependent manner, particularly at 1000 nmol/L (P < 0.01); C: The mitochondrial permeability transition 
pore (mPTP) opening was detected by coloading with calcein-AM and CoCl2. In the givinostat treatment group, considerable mPTP opening was observed, along with 
decreased intensity of fluorescence in comparison to that of the control group. 
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glutathione, and increases intracellular ROS. As a 
result, the mitochondrial matrix becomes swollen, 
along with a decrease in its outer membrane folds and 
surface area; thus, the mitochondria become fragile 
and susceptible to rupture, causing the release of 
proapoptotic proteins from the intermembrane spaces. 
Ultimately, apoptosis occurs.

As a signaling molecule, ROS is involved in the 
regulation of multiple cellular functions such as cell 
growth, differentiation, apoptosis, and immune 
responses[26]. ROS has both positive and negative 
effects on cell survival and apoptosis. ROS can exert an 
antiapoptotic effect by activating NF-κB or Akt/activation 
of apoptosis signal-regulating kinase[27,28]. However, it 
is also a key link in the apoptosis process[29]. ROS can 
induce apoptosis through multiple mechanisms. For 
instance, they can cause damage to DNA, lipids and 
proteins, or they can regulate apoptosis via the redox-
insensitive MAPK pathways including JNK, p38, and 
ERK1/2[30]. In the current study, the givinostat-induced 
HSC apoptosis was mainly mediated through p38 and 
ERK1/2 rather than JNK.

The mitochondrial respiratory chain is a key site 
responsible for the production of free radicals. As a SOD 
in mitochondria, SOD2 is a key enzyme responsible 
for eliminating mitochondrial superoxide anions in the 
mitochondria[31]. Approximately 90% of intracellular 
ROS can be explained by the electron leakage that 
occurs in the mitochondrial electron transport chain, 
while SIRT3-induced deacetylation of SOD2 can 

eliminate most of the intracellular ROS. Apoptosis 
induced by mitochondrial damage may be associated 
with a decrease in oxygen radical scavenging 
capacity[32,33]. SIRT3 deacetylates two critical lysine 
residues on SOD2 and promotes its antioxidative 
activity[34,35]. In our current study, however, upregulation 
of SOD2 (acetyl K68) acetylation induced by givinostat 
might be one of the key mechanisms responsible for 
the decrease in oxygen radical scavenging capacity.

Many studies have found that the NF-κB activity is 
correlated with liver fibrosis[36,37]. Suppression of NF-κB 
binding affinity or blockade of NF-κB stimulation may 
induce HSC apoptosis, thus alleviating the liver fibrosis 
caused by multiple etiologies; therefore, the NF-κB 
pathway may be a useful way for drugs to exert their 
efficacy in fighting against injuries or fibrosis. In the 
nucleus, the inactivated or activated status of NF-κB 
is determined by its acetylation. By regulating histone 
acetylation, the HDAC controls a series of intranuclear 
biologic processes induced by NF-κB. Kuo et al[38] 
have reported that acetylation and deacetylation of 
histones are closely correlated to regulation of gene 
transcription in eukaryotic cells. A study on synovial 
fibroblasts found that HDAC inhibitors block the 
activation of NF-κB p65 and thus induce apoptosis[39]. 
Similarly, in the current study, givinostat treatment 
upregulated NF-κB p65 (acetyl K310) acetylation but 
showed no obvious effect on protein expression of NF-
κB p65.

In summary, as an HDAC inhibitor, givinostat has 
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Figure 4  Changes in histone acetylation and regulation of lipopolysaccharide-activated mitogen-activated protein kinase signaling in givinostat-treated 
JS-1 cells. A: Effects of givinostat on the post-translational modifications of superoxide dismutase (SOD)2, p53, nuclear factor (NF)-κB, and p65 were analyzed by 
Western blotting. SOD2 (acetyl K68) acetylation was upregulated, while the expression profile of SOD2 protein showed no significant change. The ratios show a 
significant difference when compared with those in the control group, in particular at 24 h. Similarly, acetylation of NF-κB p65 (acetyl K310) was upregulated, while 
its protein expression showed no significant change. There were no obvious changes in the expression profiles of p53, p53 (acetyl K382), and p53 (acetyl K120); 
B: Expression of extracellular signal-regulated kinase (ERK)1/2, phosphorylated ERK1/2, p38, and phosphorylated p38 was upregulated after lipopolysaccharide 
(LPS) treatment; in contrast, givinostat inhibited the upregulated expression of phosphorylated ERK1/2 and phosphorylated P38 induced by LPS in a time-dependent 
manner, while no obvious effect on c-Jun N-terminal kinase (JNK)1/2 and phosphorylated JNK1/2 was found. 
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antifibrotic activities both in vivo and in vitro, which 
might be achieved by regulating the acetylation of NF-

κB and SOD2, stimulating oxidative stress, activating 
mitochondrial pathways, inhibiting proliferation of 
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mouse HSCs (JS-1 cell line), and inducing apoptosis. 
The current study may provide new directions and 
evidence in the research and development of novel 
drugs for liver fibrosis.
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