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Palmitoylated cysteines typically target transmembrane proteins
to domains enriched in cholesterol and sphingolipids (lipid rafts).
P-selectin glycoprotein ligand-1 (PSGL-1), CD43, and CD44 are
O-glycosylated proteins on leukocytes that associate with lipid rafts.
During inflammation, they transduce signals by engaging selectins
as leukocytes roll in venules, and they move to the raft-enriched
uropods of polarized cells upon chemokine stimulation. It is not
known how these glycoproteins associate with lipid rafts or whether
this association is required for signaling or for translocation to
uropods. Here, we found that loss of core 1-derived O-glycans in
murine C1galt1−/− neutrophils blocked raft targeting of PSGL-1,
CD43, and CD44, but not of other glycosylated proteins, as mea-
sured by resistance to solubilization in nonionic detergent and by
copatching with a raft-resident sphingolipid on intact cells. Neur-
aminidase removal of sialic acids from wild-type neutrophils also
blocked raft targeting. C1galt1−/− neutrophils or neuraminidase-
treated neutrophils failed to activate tyrosine kinases when plated
on immobilized anti–PSGL-1 or anti-CD44 F(ab′)2. Furthermore,
C1galt1−/− neutrophils incubated with anti–PSGL-1 F(ab′)2 did
not generate microparticles. In marked contrast, PSGL-1, CD43,
and CD44 moved normally to the uropods of chemokine-stimu-
lated C1galt1−/− neutrophils. These data define a role for core 1-
derived O-glycans and terminal sialic acids in targeting glycopro-
tein ligands for selectins to lipid rafts of leukocytes. Preassociation
of these glycoproteins with rafts is required for signaling but not
for movement to uropods.
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Lipid rafts are ordered membrane domains that assemble
cholesterol, sphingolipids, and selected proteins (1). They

were first defined by resistance to solubilization in cold nonionic
detergents, which maintains raft proteins in the lighter fractions
of density gradients (2). On intact cells, lateral crosslinking with
antibodies or other probes copatches lipid and protein constit-
uents of rafts (3). High-resolution imaging confirms that rafts are
small, dispersed structures that can be oligomerized (1). Im-
portantly, rafts serve as signaling platforms, notably on immune
cells (4).
How proteins partition to rafts is incompletely understood (5).

Hydrophobic residues in some transmembrane domains may
interact with sphingolipids and/or cholesterol. Cysteines modi-
fied with saturated fatty acids, usually palmitic acid, direct cy-
tosolic proteins such as Src family kinases (SFKs) to raft inner
leaflets. Palmitoylated cysteines in transmembrane and cytoplas-
mic domains of some membrane proteins also interact with rafts.
In polarized epithelial cells, apical transport vesicles are enriched
in cholesterol and sphingolipids (1). N- and O-glycans on some
apical proteins act as sorting determinants, probably through
multiple mechanisms. Glycans may enhance association of some
apically destined proteins with rafts (6). Whether glycans direct
proteins to rafts of hematopoietic cells is unknown.
At sites of infection or injury, circulating leukocytes adhere

to activated endothelial cells and platelets and to adherent
leukocytes. The adhesion cascade includes tethering, rolling,

deceleration (slow rolling), arrest, intraluminal crawling, and trans-
endothelial migration (7). Selectins mediate rolling, whereas β2
integrins mediate slow rolling, arrest, and crawling. Selectins
are lectins that form rapidly reversible, force-regulated bonds
with glycosylated ligands under flow (8). Leukocytes express
L-selectin, activated platelets express P-selectin, and activated
endothelial cells express P- and E-selectin. The dominant leuko-
cyte ligand for P- and L-selectin is P-selectin glycoprotein ligand-1
(PSGL-1). Major leukocyte ligands for E-selectin include PSGL-1,
CD44, and CD43, although other ligands contribute to adhesion
(9). PSGL-1 and CD43 are mucins with multiple O-glycans at-
tached to serines and threonines. Although not a mucin, CD44 is
modified with both N- and O-glycans (10, 11). The selectins bind,
in part, to the sialyl Lewis x (sLex) determinant (NeuAcα2–
3Galβ1–4[Fucα1–3]GlcNAcβ1-R), which caps some N-glycans
and mucin-type O-glycans (8, 12). CD44 uses N-glycans to in-
teract with E-selectin (13, 14), whereas PSGL-1 uses mucin-type,
core 1-derived O-glycans to interact with all three selectins (14–16).
The enzyme core 1 β1–3-galactosyltransferase forms the core 1
backbone (Galβ1–3GalNAcα1-Ser/Thr) to which more distal de-
terminants such as sLex are added (17). Neutrophils from mice
lacking core 1 β1–3-galactosyltransferase in endothelial and he-
matopoietic cells (EHC C1galt1−/−) have markedly impaired
rolling on P- or E-selectin (14).
PSGL-1 (18, 19), CD44 (20), and CD43 (21) associate with

lipid rafts on leukocytes, but how they do so is unclear. In knockin
mice, PSGL-1 lacking the cytoplasmic domain still associates with
leukocyte rafts (19). In transfected nonhematopoietic cells,
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detergent resistance of CD44 is reversed by mutating cysteines in
the transmembrane and cytoplasmic domains and an ezrin/rad-
ixin/moesin (ERM)-binding site in the cytoplasmic domain (22).
Whether similar mechanisms operate in primary leukocytes is
unknown. Determining how these proteins target to rafts is rele-
vant because of their important signaling functions in leuko-
cytes. Selectin binding to PSGL-1 or CD44 on neutrophils triggers
phosphorylation of SFKs and downstream mediators that convert
β2 integrins to an extended, intermediate-affinity state, slowing
rolling and contributing to arrest (23–25). Disrupting lipid rafts by
depleting or sequestering cholesterol blocks signaling (23). Binding
of P-selectin to PSGL-1 on myeloid cells causes shedding of mi-
croparticles with proinflammatory and procoagulant properties
(26). The microparticles are enriched in raft-associated proteins
such as PSGL-1 and tissue factor, but not in nonraft proteins such
as CD45 (18). Disrupting rafts by chelating or sequestering cho-
lesterol blocks microparticle generation (18). However, it is not
known whether PSGL-1 or other selectin ligands must preasso-
ciate with rafts to trigger integrin activation or microparticle
shedding.
Leukocytes stimulated with chemokines or bacterial peptides

polarize to form leading-edge lamellipodia and trailing-edge
uropods. PSGL-1, CD43, and CD44 redistribute to the uropods
(27–29). Studies in transfected cells suggest that PSGL-1 moves
to uropods through interactions of its cytoplasmic domain with
ERM proteins (30). In knockin mice, however, PSGL-1 lacking
the cytoplasmic domain relocates normally to uropods of polar-
ized neutrophils (19). It has also been proposed that PSGL-1
moves to uropods by interacting with flotillin, a raft-resident
protein (31). Notably, disrupting lipid rafts by chelating choles-
terol blocks uropod formation (21). It is not known whether
PSGL-1 or other proteins must associate with rafts before
moving to uropods.
Here, we found that loss of core 1-derived O-glycans in leu-

kocytes from EHC C1galt1−/− mice blocked raft targeting of
PSGL-1, CD43, and CD44, but not of other glycosylated proteins.
Treating leukocytes with neuraminidase to remove terminal sialic
acids had similar effects. Failure to partition into rafts prevented

PSGL-1 or CD44 from activating SFKs and generating micro-
particles. However, O-glycans were not required to redistribute
PSGL-1, CD43, or CD44 to the uropods of polarized leukocytes.

Results
PSGL-1 Does Not Require Its Transmembrane Domain to Associate
with Lipid Rafts. Deleting the cytoplasmic domain of PSGL-1
does not prevent its partitioning into detergent-resistant mem-
branes (DRMs, lipid rafts) (19). We asked whether PSGL-1 re-
quires its transmembrane domain to associate with rafts. We
generated PSGL-1 chimeras that substituted the transmembrane
domain of PSGL-1 with the transmembrane domain of glyco-
phorin A or of CD45, which do not partition into rafts (18, 32,
33) (Fig. S1A). Wild-type (WT) PSGL-1 and PSGL-1 chimeras
were expressed in transfected Chinese hamster ovary cells at
similar densities (Fig. S1B). The cells were also transfected with
vectors that express glycosyltransferases required to construct
selectin ligands (34). We lysed the cells in cold 1% Triton X-100
and fractionated the extracts by ultracentrifugation in an Opti-
Prep gradient. Western blotting revealed that significant portions
of WT PSGL-1 and both PSGL-1 chimeras were in lighter-
density DRMs that colocalized with the raft-resident protein
flotillin 1. In contrast, the nonraft proteins transferrin receptor
and moesin were found only in higher-density fractions (Fig.
S1C). Thus, PSGL-1 does not require its cytoplasmic or trans-
membrane domain to associate with rafts.

PSGL-1, CD43, and CD44 Require Core 1-Derived O-Glycans to Associate
with Lipid Rafts. We next considered whether PSGL-1 uses its ex-
tracellular domain to associate with rafts. Some epithelial cell
proteins use N- or O-glycans for transport into raft-enriched apical
domains (6). Therefore, we asked whether the multiple O-glycans
on the extracellular domain of PSGL-1 contribute to raft target-
ing. Leukocytes from EHC C1galt1−/− mice attach GalNAc to
serines and threonines but lack core 1-derived O-glycans, in-
cluding core 1, extended core 1, and core 2 structures (14). They
express normal surface levels of PSGL-1, CD43, CD44, and other
glycoproteins (14). The cholesterol probe filipin (35) bound

Fig. 1. PSGL-1, CD43, and CD44 require core 1-derived O-glycans to associate with lipid rafts. (A) WT or C1galt1−/− neutrophils were lysed in cold 1% Triton
X-100 and centrifuged in an OptiPrep gradient. Fractions collected from Top to Bottom (Left to Right, corresponding to lower to higher density) were analyzed
by Western blotting with antibodies to the indicated proteins. (B) WT or C1galt1−/− neutrophils were incubated with Alexa 488-conjugated CTxB (green) to
label GM1-containing lipid rafts. The cells were then incubated with anti-CTxB antibodies at 4 °C as control (unpatched) or at 37 °C to aggregate the rafts
(patched). The cells were then fixed and labeled with antibodies to the indicated protein, followed by Alexa 647-conjugated secondary antibody (red).
Representative cells were visualized with confocal microscopy to identify CTxB, antibody (Ab), or both CTxB and Ab (merge). Results are representative of at
least three experiments. (Scale bar, 5 μm.)
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similarly to plasma membranes of WT and C1galt1−/− neutrophils
(Fig. S2A). Filipin binding was specific for cholesterol, because it
was eliminated by treating neutrophils with methyl-β-cyclodextrin,
a cholesterol chelator, but not with α-cyclodextrin, an inactive
analog (Fig. S2B).
As in transfected Chinese hamster ovary cells, a significant

portion of PSGL-1 in detergent extracts of WT neutrophils was
in lighter-density DRMs that colocalized with flotillin 1 (Fig.
1A). The O-glycosylated proteins CD43 and CD44 from WT
neutrophils were also enriched in raft fractions. However, vir-
tually all PSGL-1, CD43, and CD44 in extracts from C1galt1−/−

neutrophils were in higher-density, nonraft fractions (Fig. 1A). In
contrast, the N-glycosylated protein siglec-E was enriched in
lower-density fractions of both genotypes, and the N-glycosylated
protein L-selectin was enriched in higher-density fractions of
both genotypes (Fig. 1A).
To identify proteins in lipid rafts of intact cells, we used

confocal microscopy to visualize copatching of proteins with rafts
by crosslinking cholera toxin B (CTxB) bound to the raft-enriched
ganglioside GM1. Before crosslinking (without incubation at 37 °C
to cause patching), antibodies to CTxB, PSGL-1, CD43, CD44,
CD45, and siglec-E homogeneously stained the plasma mem-
branes of both WT and C1galt1−/− neutrophils (Fig. 1B). After
crosslinking CTxB at 37 °C, lipid rafts clustered in discrete ag-
gregates on neutrophils of both genotypes (Fig. 1B). Siglec-E, but
not the nonraft protein CD45, copatched with CTxB on both WT
and C1galt1−/− neutrophils. PSGL-1, CD43, and CD44 also
copatched with CTxB on WT neutrophils. In sharp contrast, they
remained homogeneously distributed on C1galt1−/− neutrophils
(Fig. 1B). Thus, both detergent resistance and copatching assays
demonstrate that PSGL-1, CD43, and CD44 require core 1-derived
O-glycans to associate with lipid rafts.

PSGL-1, CD43, and CD44 Require Sialic Acids to Associate with Lipid
Rafts. Sialic acids cap most N- and O-glycans on mammalian
cells, including neutrophils (36). We asked whether sialic acids
contribute to raft targeting of PSGL-1, CD43, and CD44. For
this purpose, we treated WT neutrophils with neuraminidase
(sialidase). This treatment effectively removed sialic acids, as
measured by increased binding of the lectin, peanut agglutinin,
to neutrophil surfaces (Fig. S3A), and by altered mobility of

PSGL-1, CD43, and CD44 during SDS/PAGE (Fig. S3 B–D).
Neuraminidase treatment markedly reduced the amount of each
protein in lighter-density DRMs (Fig. 2A). Neuraminidase did
not alter basal homogeneous staining of PSGL-1, CD43, CD44,
CD45, and siglec-E (Fig. 2B), but it substantially decreased
copatching of PSGL-1, CD43, and CD44 with the raft marker
CTxB (Fig. 2B). However, it did not alter the distribution of
siglec-E (Fig. 2 A and B) or CD45 (Fig. 2B). These data dem-
onstrate that PSGL-1, CD43, and CD44 require sialic acids, most
likely on O-glycans, to associate with lipid rafts.

PSGL-1 and CD44 Require Core 1-Derived O-Glycans and Sialic Acids
to Initiate Signaling. Selectin binding to PSGL-1 and CD44 on
neutrophils induces tyrosine phosphorylation of SFKs and
downstream kinases, including p38 MAPK, which convert β2
integrins to an extended, intermediate-affinity conformation that
mediates slow rolling (9, 23, 24, 37). Disrupting lipid rafts by
depleting or sequestering cholesterol blocks signaling (23). We
asked whether PSGL-1 and CD44 must preassociate with lipid
rafts to initiate signaling. We used mAbs to PSGL-1 or CD44 as
selectin surrogates. WT neutrophils plated on F(ab′)2 fragments
of anti–PSGL-1 or anti-CD44 mAb, but not isotype-control F(ab′)2,
phosphorylated tyrosines on SFKs, and p38 MAPK (Fig. 3A).
In marked contrast, C1galt1−/− neutrophils plated on anti–PSGL-1
or anti-CD44 F(ab′)2 did not activate SFKs or p38 MAPK.
Furthermore, neuraminidase-treated WT neutrophils plated on
anti–PSGL-1 or anti-CD44 F(ab′)2 did not activate SFKs or p38
MAPK (Fig. 3B). These results indicate that selectin-triggered
signaling in neutrophils requires O-glycan– and sialic acid-
dependent association of PSGL-1 and CD44 with lipid rafts.

PSGL-1 Requires Core 1-Derived O-Glycans to Trigger SFK-Dependent
Generation of Microparticles. Neutrophils stimulated with LPS or
the Ca2+ ionophore A23187 or by P-selectin binding to PSGL-1
generate microparticles enriched in lipid raft-associated proteins
(18, 26). We labeled the membranes of WT or C1galt1−/− neu-
trophils with a fluorescent dye and measured agonist-induced
release of fluorescent microparticles. The Ca2+ ionophore A23187,
but not vehicle control, generated equivalent numbers of micro-
particles from WT and C1galt1−/− neutrophils (Fig. 4A). By con-
trast, F(ab′)2 fragments of anti–PSGL-1 mAb, but not of anti-CD45

Fig. 2. PSGL-1, CD43, and CD44 require sialic acids to associate with lipid rafts. WT neutrophils were incubated with buffer or neuraminidase (sialidase).
(A) The cells were lysed, fractionated on OptiPrep gradients, and analyzed by Western blotting with antibodies to the indicated protein as in Fig. 1. (B) CTxB-
bound rafts and antibodies to the indicated protein were visualized by confocal microscopy as in Fig. 1. Results are representative of at least three exper-
iments. (Scale bar, 5 μm.)
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or isotype-control mAb, generated microparticles from WT but
not C1galt1−/− neutrophils (Fig. 4B). Anti–PSGL-1 F(ab′)2 did
not generate microparticles from PSGL-1–deficient neutrophils,
confirming its specificity (Fig. 4B). Furthermore, anti–PSGL-1
F(ab′)2 did not generate microparticles from SFK-deficient neu-
trophils (Fig. 4B). These data indicate that PSGL-1 requires
O-glycan–dependent association with lipid rafts to generate
microparticles through an SFK-dependent signaling pathway.

PSGL-1, CD43, and CD44 Do Not Require Core 1-Derived O-Glycans to
Redistribute to the Uropods of Polarized Neutrophils. Chemokine-
stimulated leukocytes polarize to form leading-edge lamellipodia
and trailing-edge uropods (38). We visualized the distribution
of membrane proteins on neutrophils after stimulation with
CXCL1. The raft-associated proteins PSGL-1, CD43, and CD44,
but not the nonraft protein CD45, redistributed to the uropods
of WT neutrophils (Fig. 5 A and B). Disrupting lipid rafts with
the cholesterol chelator, methyl-β-cyclodextrin, but not with the
inactive analog, α-cyclodextrin, blocked polarization, confirming
previous studies (21) (Fig. 5A). Unexpectedly, PSGL-1, CD44,
and CD43 also redistributed to the uropods of C1galt1−/− neu-
trophils (Fig. 5B). However, CXCL1 did not alter the density
distribution of raft and nonraft proteins in detergent extracts
from WT or C1galt1−/− neutrophils (Fig. 5C). Thus, PSGL-1,
CD43, and CD44 do not require preassociation with lipid rafts to
move to the uropods of polarized neutrophils.

Discussion
We defined a critical role for core 1-derived O-glycans and ter-
minal sialic acids in targeting glycoprotein ligands for selectins to
lipid rafts on leukocytes. We used complementary assays to
identify glycoproteins in rafts: resistance to solubilization in non-
ionic detergent and copatching with a raft-resident sphingolipid
on intact cells. Both assays yielded congruent results that
strengthen our conclusions. We further demonstrated that these
glycoproteins must preassociate with rafts to transduce biologically
important signals.
PSGL-1 lacking its cytoplasmic domain still associates with

lipid rafts (19). Here we ruled out a requirement for the trans-
membrane domain of PSGL-1 for raft targeting. This argues
against palmitoylation of cysteines in either domain as an es-
sential mechanism for moving PSGL-1 to rafts. Instead, exten-
sion of sialylated core 1-derived O-glycans on the extracellular
domain of PSGL-1, and of CD44 and CD43, enabled targeting.
Global loss of O-glycans or terminal sialic acids did not indirectly
impair raft association of all proteins, because flotillin-1 and
N-glycosylated siglec-E remained in rafts.

PSGL-1 and CD43 are extended mucins with O-glycans at-
tached to many serines and threonines (9, 15, 39). Clustered,
sialylated O-glycan “patches” on these proteins are possible raft-
targeting signals. However, the less clustered O-glycans on CD44
also mediated raft targeting, whereas the O-glycans on CD45
(40) did not. Thus, the structural features of the signal require
further definition. Raft association could involve interactions of
glycan determinants on PSGL-1, CD43, and CD44 with a raft-
resident lectin. Candidates are siglecs and the structurally related
paired Ig-like type 2 receptors (PILRs), which bind terminal sialic
acids in particular contexts (41, 42). Siglec-E, the siglec CD33,
and PILRα are expressed on murine myeloid cells. However, all
three lectins have cytoplasmic immunoreceptor tyrosine-based
inhibitory motifs that negatively regulate inflammation (43, 44),
whereas raft association of PSGL-1, CD43, and CD44 promotes
proinflammatory signaling. CD33 and PIRLα prefer sialic acid
linked α2–6 to N-acetylgalactosamine (45, 46), not the sialic acid
linked α2–3 to galactose that caps core 1-derived O-glycans. Al-
ternatively, desialylation or truncation of O-glycans could indi-
rectly affect the conformation of targeting signals on the protein
backbone. However, a single N-acetylgalactosamine attached to
serines and threonines, as occurs on C1galt1−/− leukocytes, is
sufficient to extend the polypeptide backbone of mucins such as
PSGL-1 and CD43 (47, 48).
In epithelial cells, similarly complex signals target glycopro-

teins to apical membrane domains that are enriched in choles-
terol and sphingolipids (1). Both N- and O-glycans have been
implicated in apical targeting (6). Glycosylation of some proteins
enhances raft association as well as apical targeting (49), whereas
glycosylation of other proteins mediates apical targeting in-
dependently of rafts (50).
During neutrophil rolling, selectin engagement of PSGL-1 or

CD44 triggers a signaling cascade similar to that used by the
T-cell receptor (9). The cascade activates SFKs and downstream
kinases and recruits multiple adaptors. Disrupting lipid rafts by
depleting or sequestering cholesterol blocks signaling (23). Lipid
rafts function as signaling platforms by assembling signaling
components such as SFKs. Ligand clustering may merge T-cell
receptors in nonraft domains with coreceptors in raft domains
to initiate signaling (4). By contrast, we found that PSGL-1 and
CD44 must associate with rafts before engaging a selectin
surrogate to trigger signaling. These rafts are probably too
small to contain a full complement of SFKs or other signaling
proteins. During cell adhesion, selectin binding to PSGL-1 or
CD44 likely clusters small rafts into larger domains with suffi-
cient kinases, substrates, and adaptors to trigger signaling.
PSGL-1 also requires its cytoplasmic domain to signal (19),
suggesting that it directly recruits one or more signaling compo-
nents. Perhaps PSGL-1 and CD44 require preassociation with

Fig. 3. PSGL-1 and CD44 require core 1-derived O-glycans and sialic acids to
initiate signaling. (A) WT or C1galt1−/− neutrophils were incubated on immo-
bilized F(ab′)2 fragments of isotype control, anti–PSGL-1, or anti-CD44 mAb.
Lysates were probed by Western blotting with antibodies to phospho-SFK
(p-SFK), total SFK, phospho-p38 (p-p38), or total p38. (B) WT neutrophils were
incubated with buffer or neuraminidase (sialidase) and then incubated on
immobilized F(ab′)2 fragments of isotype control, anti–PSGL-1, or anti-CD44
mAb. Lysates were probed by Western blotting with antibodies to p-SFK, total
SFK, p-p38, or total p38. Results are representative of three experiments.

Fig. 4. PSGL-1 requires core 1-derived O-glycans to trigger SFK-dependent
generation of microparticles. (A) Fluorescent WT or C1galt1−/− neutrophils
were incubated with vehicle control or with the Ca2+ ionophore A23187. The
number of microparticles generated was measured by flow cytometry.
(B) Fluorescent neutrophils of the indicated genotype were incubated with
F(ab′)2 fragments of isotype control, anti-CD45, or anti–PSGL-1 mAb. The
number of microparticles generated was measured by flow cytometry. The
data represent the mean ± SEM of five experiments. *P < 0.01.
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rafts because, unlike the T-cell receptor, they lack coreceptors that
facilitate movement from nonraft to raft domains. Although not
yet tested, E-selectin engagement of CD43 on rolling effector
T cells (51, 52) may induce signaling by a similar mechanism.
The best characterized effector response to PSGL-1– or

CD44-mediated signaling is conversion of β2 integrins to an
extended, intermediate-affinity form that mediates slow rolling
on ICAM-1 (9). However, P-selectin binding to PSGL-1 also
triggers release of prothrombotic and proinflammatory micro-
particles (18, 26, 53). We found that PSGL-1 required pre-
association with lipid rafts to generate microparticles through
an SFK-dependent signaling pathway. Thus, raft-dependent sig-
naling was required to generate raft-enriched microparticles. A
downstream event in PSGL-1–induced signaling is activation of
phospholipase C (9), which generates intracellular Ca2+ that was
probably the proximal inducer of microparticle release. By directly
elevating cytosolic Ca2+, the ionophore A23187 bypassed the up-
stream components of this receptor-mediated signaling cascade.
During polarization of activated leukocytes, membrane do-

mains enriched in cholesterol and sphingolipids, including GM1,
coalesce in uropods with a subset of transmembrane glycopro-
teins that include PSGL-1, CD43, and CD44 (38). Surprisingly,
these glycoproteins also moved to uropods of chemokine-stim-
ulated C1galt1−/− neutrophils, even though, before stimulation,
they did not copatch with GM1 in lipid rafts, and after stimu-
lation, they remained in higher-density, detergent-soluble “non-
raft” fractions. Uropods form through membrane interactions
with flotillins 1 and 2 and with the actin cytoskeleton (54, 55), in
part through binding of ERM adaptors to the cytoplasmic do-
mains of membrane glycoproteins (56). PSGL-1 associates with
flotillins as measured by coimmunoprecipitation in detergent
extracts and by a proximity-ligation assay in intact cells (31, 57).
However, direct binding of PSGL-1 to flotillins has not been

demonstrated. Direct interactions, if they occur, may have low
affinity, because flotillins dissociated from PSGL-1, CD43, and
CD44 in gradients of C1galt1−/− neutrophil extracts. On intact
C1galt1−/− neutrophils, however, low-affinity interactions with
flotillins might sweep PSGL-1, CD43, and CD44 into uropods as
rafts coalesce into larger domains that increase binding avidity.
These interactions might synergize with binding of the cyto-
plasmic domains of PSGL-1, CD43, and CD44 to ERM proteins
that link to the cytoskeleton. Because of clustered, high-avidity
interactions, uropods might form even if only some cytoplasmic
domains bind directly to ERM proteins. This could explain why
PSGL-1 lacking its cytoplasmic domain still moves to uropods of
stimulated neutrophils (19).
In addition to selectin ligands, other glycoproteins may use

sialylated O-glycans to associate with lipid rafts on hematopoi-
etic cells. Thus, O-glycosylation may influence how membrane
domains regulate diverse functions during hematopoiesis, im-
mune responses, and hemostasis.

Materials and Methods
All mouse experiments were performed in compliance with protocols ap-
proved by the Institutional Animal Care and Use Committee of the Oklahoma
Medical Research Foundation. Details including reagents, mice, cells, isolation
of murine neutrophils from bone marrow, detergent-resistant membrane
preparation, Western blot, flow cytometry, patching of lipid rafts, neutrophil
polarization, activation of SFKs or p38 MAPK by crosslinking PSGL-1 or CD44,
neutrophil microparticle preparation, and statistical analysis are given in SI
Materials and Methods.
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