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Human identification by fingerprints is based on the fundamental
premise that ridge patterns from distinct fingers are different
(uniqueness) and a fingerprint pattern does not change over time
(persistence). Although the uniqueness of fingerprints has been
investigated by developing statistical models to estimate the proba-
bility of error in comparing two random samples of fingerprints, the
persistence of fingerprints has remained a general belief based on
only a few case studies. In this study, fingerprint match (similarity)
scores are analyzed by multilevel statistical models with covariates
such as time interval between two fingerprints in comparison, sub-
ject’s age, and fingerprint image quality. Longitudinal fingerprint
records of 15,597 subjects are sampled from an operational finger-
print database such that each individual has at least five 10-print re-
cords over a minimum time span of 5 y. In regard to the persistence of
fingerprints, the longitudinal analysis on a single (right index) finger
demonstrates that (i) genuine match scores tend to significantly de-
crease when time interval between two fingerprints in comparison
increases, whereas the change in impostor match scores is negligible;
and (ii) fingerprint recognition accuracy at operational settings, nev-
ertheless, tends to be stable as the time interval increases up to 12 y,
the maximum time span in the dataset. However, the uncertainty of
temporal stability of fingerprint recognition accuracy becomes sub-
stantially large if either of the two fingerprints being compared is of
poor quality. The conclusions drawn from 10-finger fusion analysis
coincide with the conclusions from single-finger analysis.
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Friction ridge skin on fingers and palms has been purportedly
known to be a physical characteristic of an individual that

does not change over time (i.e., persistence or permanence of
friction ridge pattern) and can be used as a person’s “seal” or
“signature” (i.e., uniqueness or individuality of ridge pattern).
Starting with the first known case where the latent fingerprints
found at a crime scene in Argentina in 1893 were officially accepted
as evidence to convict a suspect (1), friction ridge analysis has be-
come one of the most crucial methods in crime scene investigations
worldwide. The decision made in Frye v. United States in 1923 (2)
was widely cited as the basis for the admissibility of forensic evi-
dence, including friction ridge pattern; Frye standard states that a
scientific principle or discovery that has gained a general acceptance
in the relevant field is admissible in the courts.
In Daubert v. Merrell Dow Pharmaceuticals, Inc., in 1993 (3),

however, the general acceptance test of Frye was superseded by
the Federal Rules of Evidence. The Daubert ruling established a
guideline for admitting forensic evidence, which consists of the
following factors: (i) empirical testing, (ii) peer review and publi-
cation, (iii) known or potential error rate, (iv) standards controlling
the operation, and (v) the Frye standard of general acceptance. The
Daubert standard provoked challenges to admissibility of friction
ridge evidence in the courts. Although all of about 40 such chal-
lenges resulted in a decision that friction ridge analysis is acceptable
as forensic evidence, the Daubert case highlighted a lack of scientific
basis of persistence and uniqueness of fingerprints and standards
that can be universally referred to in friction ridge analysis.
Along with the development of standards and guidelines for

friction ridge analysis (4) and retraining of latent examiners (5) as a
result of the Daubert ruling, a body of research to demonstrate

uniqueness and persistence of friction ridge patterns has emerged.
Although the uniqueness of fingerprints has been studied by
(i) estimating the probability of a random correspondence (i.e., two
different fingerprints selected at random will be sufficiently similar
to be claimed as a mate) (6–8) or (ii) measuring the evidential
value§ of latent fingerprint comparisons (9) (terminologies in-
dicated with § are defined in SI Appendix, section S2), the persis-
tence of fingerprints has been generally accepted based on
anecdotal evidence, including case studies conducted by Herschel
(10) and Galton (11) (SI Appendix, section S4), and the anatomical
structure of friction ridge skin—the ridge pattern formed in the
inner (dermal) layer during gestation remains unchanged with the
protection of the outer (epidermal) layer (12).
The persistence of fingerprints typically refers to the invari-

ance of friction ridge pattern itself. However, the pertinent
question of interest is whether the fingerprint recognition meth-
odology (SI Appendix, section S3) maintains high recognition ac-
curacy as the time interval between two fingerprints being com-
pared increases. The 2009 National Research Council report
Strengthening Forensic Science in the United States: A Path Forward
(13) pointed out, “Uniqueness and persistence are necessary
conditions for friction ridge identification to be feasible, but those
conditions do not imply that anyone can reliably discern whether
or not two friction ridge impressions were made by the same
person.” Fingerprint recognition exhibits two types of comparison
errors: (i) false rejection: two impressions of the same finger (a
genuine fingerprint pair) are declared as a nonmatch due to large
“intrafinger” variability, and (ii) false acceptance: impressions
from two distinct fingers (an impostor fingerprint pair) are
declared as a match due to large “interfinger” similarity. The
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intrafinger variability is observed due to changes in intrinsic
skin condition (e.g., finger skin dryness, cuts, and abrasions) and
extrinsic acquisition process (e.g., finger pressure and placement),
and sensing technology (e.g., interoperability among various fin-
gerprint sensors). The interfinger similarity is observed when the
ridge patterns from two distinct fingers coincide partially.
The biometric recognition literature has reported a phenom-

enon called template aging, which refers to an increase in the
error rate in biometric recognition with respect to the time gap
between a query and a template (or reference) (14). A study
comparing groups of fingerprint pairs with respect to time gap
reported that the fingerprint comparisons with less than a 5-y
time gap show lower error rate than comparisons with a larger
time gap (15). However, cross-sectional analysis used in ref. 15 is
valid only if the longitudinal data§ are balanced§ and time
structured§; this condition is not typically satisfied in most bio-
metrics data, including the dataset used in ref. 15. Longitudinal
studies on fingerprint, face, and iris biometrics published in the
literature are summarized in SI Appendix, section S4.

Study Objectives and Caveats
A longitudinal dataset of fingerprints from 15,597 subjects ap-
prehended by Michigan State Police (MSP) is analyzed, which
consists of five or more fingerprint records over a time span varying
from 5 to 12 y for each subject. Multilevel statistical models with
covariates characterizing properties of fingerprint impressions and
demographics of subjects are designed to analyze the longitudinal
dataset, which is unbalanced and time unstructured. Specifically,
our study aims to address the following issues:

• Trend of fingerprint match scores of genuine and impostor
pairs with respect to the following covariates: time interval
between fingerprints in comparison, subject’s demographic
factors (age, sex, and race), and fingerprint image quality;

• Assessment and comparison of the multilevel models with
various combinations of the covariates;

• Correlations and interactions among covariates;
• Temporal trend of fingerprint recognition accuracy in terms of

probabilities of true acceptance and false acceptance;
• Trend of fingerprint match scores and recognition accuracy

when all 10 of a subject’s fingers are used for recognition, a
prevailing practice in law enforcement.

The results and conclusions made in this paper should be
interpreted with the following caveats:

i) Any variability appearing in fingerprint images collected over
time may be induced by either physical changes in friction
ridge structure or changes in imaging condition and subject’s
behavior during fingerprint acquisition. No distinction be-
tween the two sources of variability is made in the analysis
presented in this paper.

ii) The inferences and conclusions presented in this paper are
drawn from 10-print analysis and do not suggest the same
conclusions for latent fingerprint (or finger mark) analysis.

The detailed explanations about the caveats can be found in SI
Appendix, section S1.

Longitudinal Fingerprint Dataset
A longitudinal dataset of fingerprints was collected from the
records of repeat offenders apprehended by the MSP. SI Ap-
pendix, Fig. S3 shows an example of six fingerprint impressions of
the right index finger of a subject in the dataset acquired between
June 2001 and October 2008. A total of 15,597 subjects were
randomly extracted from the MSP fingerprint archive, such that
each subject has at least five acquisitions from all 10 fingers
on a formatted fingerprint card (called 10-print card) over a
minimum of 5-y time span. The 10-print cards of a subject are
ordered according to the time sequence; a set of 10-print cards
of subject i (i= 1,2, . . . ,N; N is the total number of subjects in

the dataset) is labeled as follows: F i = fFi,1,Fi,2, . . . ,Fi,nig, such
that Ti,1 <Ti,2 <⋯<Ti,ni, where Fi,j is the jth 10-print card of
subject i, Ti,j is the time stamp of Fi,j, and ni denotes the
number of 10-print cards belonging to subject i.
A summary of the dataset is below, and the data statistics are

shown in SI Appendix, Fig. S4.

• Each of the 15,597 subjects has at least five 10-print cards, pro-
viding 122,685 10-print cards in total. The average number of 10-
prints per subject in the dataset is 8, and the maximum is 26 cards.

• The 10-print impressions of a subject have a minimum of 5-y
time span (the time difference between the first and the last
fingerprint acquisitions of a subject); that is, △Ti,1ni ≥ 5 y for
i= 1,2, . . . ,N, where △Ti,1ni =Ti,ni −Ti,1. The average time
span is 9 y, and the maximum time span in the dataset is 12 y.

• Any two consecutive 10-print impressions of a subject are
obtained with at least a 2-mo time gap; Ti,j+1 −Ti,j ≥ 2 mo
for j= 1,2, . . . ,ni − 1 for subject i.

• Along with 10-print images, the following demographic informa-
tion is also available for each subject: sex (male or female), race
(white/Hispanic, black, American Indian/Eskimo, or Asian/Pa-
cific Islander), and age at the time of 10-print acquisition (the
youngest subject’s age at the time of the first impression is 8 y;
the oldest subject’s age at the time of the last impression is 78 y).

Two commercial off-the-shelf (COTS) fingerprint matchers
(denoted as COTS-1 and COTS-2) are used to compute match
scores. For subject i with ni fingerprint impressions, we conduct
all pairwise comparisons; that is,

�ni
2

�
genuine match scores are

generated from each matcher. This is because law enforcement
agencies often store all of the 10-print records for every subject
and compare a query fingerprint to all records in the database.
Note that the pairwise comparisons of the fingerprint records of
a subject result in correlations among the genuine match scores
of the subject. On the other hand, the impostor scores are
obtained by comparing subject i’s ni fingerprint impressions to
the first impressions from all other subjects. For each finger
position, 481,181 genuine match scores and 1,913,395,260 im-
postor match scores are obtained by each of the COTS matchers.

Multilevel Statistical Model
For balanced and time-structured longitudinal dataset, cross-
sectional analysis can be readily applied by grouping the data
according to cohort (for example, short-term and long-term
fingerprint comparison groups) under the assumption of com-
pound symmetry.§ In reality, however, it is not feasible to collect
longitudinal fingerprint data by following an identical measure-
ment schedule over a large number of subjects in the sample
satisfying the compound symmetry. Multilevel statistical model
(16, 17) is one of several statistical models that can handle the
unbalanced and/or time-unstructured longitudinal data.
As a fingerprint comparison essentially involves two finger-

print impressions to generate a single match score, a simple
linear two-level model with a single covariate for continuous
match scores can be represented by the following:

Level 1 model (intrasubject variability):

yijk =φ0i +φ1i xijk + «ijk, «ijk ∼N �
0, σ2«

�
, [1]

Level 2 model (intersubject variability):

φ0i = β00 + b0i,
φ1i = β10 + b1i,

�
b0i
b1i

�
∼N

��
0
0

�
,
�
σ20 σ01
σ10 σ21

��
. [2]

The level 1 model in Eq. 1 is regressed to the repeated mea-
surements taken from each subject, and accounts for the
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intrasubject variability. In case of genuine fingerprint comparisons,
the variables and parameters in the level 1 model are defined as
follows: yijk is the subject i’s observed response of match score
when the jth and kth fingerprints are compared, xijk is the ex-
planatory variable (or covariate), φ0i and φ1i are the true param-
eters representing the intercept and slope of the linear model for
subject i, and «ijk is the error in the observed response yijk from the
model fit. The error is assumed to be normally distributed with a
zero mean and a variance of σ2«.
In the level 2 model in Eq. 2, where the population-mean ten-

dency and deviations of subjects from the mean trend are modeled
to account for the intersubject variability, the true parameters for
subject i (φ0i and φ1i) can be modeled by a mixture of fixed and
random effects: fixed-effects parameters β00 and β10 represent the
grand means of intercept and slope across all N subjects in the data,
and random-effects parameters b0i and b1i represent the deviations
of subject i’s intercept and slope from β00 and β10. The random
effects are assumed to follow a normal distribution.
To determine whether two fingerprint impressions are from the

same finger, a binary decision for a fingerprint pair is made by ap-
plying a predetermined decision threshold to the match score. If the
match score of a fingerprint pair is greater than the threshold, the
two fingerprints are determined to be a genuine match; otherwise,
they are determined to be an impostor match. If a fingerprint pair
determined to be a genuine match is indeed from the same finger,
the binary decision is a true acceptance. If a genuine-match decision
is made on two fingerprints that are in fact from different fingers, the
decision is a false acceptance. In multilevel modeling, a binary re-
sponse is viewed as a Bernoulli trial with the probability of true (or
false) acceptance πijk, and the expected πijk is modeled after being
transformed by a logit link function.

Level  1 model: g
�
πijk

�
=φ0i +φ1i xijk + «ijk,

y*ijk ∼Bin
�
1, πijk

�
,

Level  2 model: φ0i = β00 + b0i,φ1i = β10 + b1i,
[3]

where gð · Þ is a logit link function: gðπijkÞ= logðπijk=ð1− πijkÞÞ.
The maximum likelihood (ML) and generalized least-squares

(GLS) estimations are widely used to estimate parameters in a
multilevel model (17). Under the assumption that the residuals
are normally distributed, the ML estimates of the parameters are
typically obtained by iterative GLS (16).
With multilevel modeling for longitudinal data analysis, we

investigate the following observed responses:

• Case I: A single finger (right index finger of the subjects that is
typically chosen as the primary finger in fingerprint recognition
with one finger) is used for recognition.
– Normalized genuine match score obtained by the following:

yi,jk =
si,jk − μ

σ
, [4]

where si,jk is the genuine match score between the jth and
kth fingerprint impressions of the right index finger of sub-
ject i, and μ and σ are the mean and SD of fsi,jkg, respectively.

– Normalized impostor match score ðyij,kÞ between the kth
fingerprint impression of the right index finger of subject i
and the right index fingerprint in the first 10-print card of
subject j for j≠ i and k= 1,2, . . . , ni.

– Binary identification decision made on a genuine pair with
match score of si,jk by applying a decision threshold ðThÞ:

y*i,jk =
�
1, if   si,jk >Th
0, otherwise . [5]

– Binary identification decision ðyij,k* Þ made on an impostor pair
with match score of sij,k by applying the decision threshold Th.

• Case II: All 10 fingers are used for recognition.
Similar to Case I, normalized genuine and impostor fusion
scores (Yi,jk and Yij,k) and binary identification decisions made
on genuine and impostor pairs of subjects (Y i,jk* and Y ij,k* ) are
obtained based on the match score fused by a sum rule (SI
Appendix, section S5).

The following covariates are investigated in the multilevel
models for genuine fingerprint pairs:

• △Ti,jk: Time interval between the jth and kth fingerprint im-
pressions of subject i; △Ti,jk =Ti,k −Ti,j for j< k;

• AGEi,jk: Age of subject i when the latter of the jth and kth 10-
print impressions was made; the subject i’s age at Ti,k for j< k;

• Qi,jk: The value corresponding to the lower of the qualities of
the jth and kth fingerprint impressions of subject i. In this
study, the National Institute of Standards and Technology
Fingerprint Image Quality (NFIQ) measure (18) is used,
which assigns one of the five discrete values ranging from 1
(the highest quality) to 5 (the lowest quality), to define fin-
gerprint image quality. According to the definition of NFIQ,
Qi,jk =maxðQi,j,Qi,kÞ, where Qi,j is the NFIQ value of the jth
fingerprint impression of subject i;

• bMi: A binary indicator of sex of subject i; 1 for male, and
0 for female;

• bWi: A binary indicator of race of subject i; 1 for whites, and
otherwise 0.

Multilevel models for impostor pairs are designed with the
following covariates:

• △Ti,1k: Time elapsed since the first 10-print of subject i was
obtained; △Ti,1k =Ti,k −Ti,1, k= 1,2, . . . , ni;

• AGEi,k and AGEj,1: Age of subject i when the kth 10-print
impression was made, and the age of impostor subject j at
the time of the first 10-print acquisition, respectively.

The two-level linear models investigated in our study are listed
in Table 1 and SI Appendix, section S6.

Results
Population-Mean Trend of Genuine Fingerprint Match Scores. Given
that the normality assumptions of the residuals and random ef-
fects in the multilevel model fit to the data are violated (SI
Appendix, section S7), the parameters in the multilevel models
are estimated by a fully nonparametric bootstrap (16). We gen-
erate 1,000 bootstrap samples for genuine match score analysis,
where each bootstrap sample is obtained by a cluster bootstrap—
N subjects are resampled with replacement at level 1, and all of
the level 2 data belonging to those subjects are included in the
sample—to preserve the hierarchy in the longitudinal data.
SI Appendix, Tables S2 and S3 report the mean of the pa-

rameter estimates of the bootstrap samples and the percentile
confidence intervals for the genuine match score models. The
population-mean trends of models BT, BA, and BQ based on the
fixed-effects parameter estimates (β00 and β10) show that the gen-
uine match scores tend to decrease when △Ti,jk, AGEi,jk, and
Qi,jk increase (Fig. 1 and SI Appendix, Fig. S6). The null hy-
pothesis—β10 = 0 in models BT, BA, and BQ (i.e., the slope of
the linear model is zero)—is rejected for all three models at a
significance level of 0.05 because the 95% confidence interval
for β10 does not contain zero.
Models D and E incorporate all three covariates (△Ti,jk,

AGEi,jk, and Qi,jk) into the model; model E includes interaction
terms (△Ti,jkQi,jk and AGEi,jkQi,jk), whereas model D does not.
The covariance matrix in model D shows that the correlations
(i) between △Ti,jk and Qi,jk and (ii) between AGEi,jk and Qi,jk are
very small. Also, the population-mean trends of models D and E
and their 95% confidence intervals, illustrated in SI Appendix,
Fig. S7, indicate that the impact of the interactions (i) between
△Ti,jk and Qi,jk and (ii) between AGEi,jk and Qi,jk on genuine
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match scores is not significant (see SI Appendix, section S8, for
the detailed analysis with models D and E).

Outlying Subjects in Model BT. The parameter estimates of
ðφ0i,φ1iÞ for each subject in model BT are shown in SI Appen-
dix, Fig. S10, in addition to the population-mean trend ðβ00, β10Þ.
Several outlying subjects whose genuine match score trend
markedly deviates from the population-mean trend in terms of
Mahalanobis distance are identified. SI Appendix, Figs. S11–S15
show the individual trends of the outlying subjects and their
fingerprint impressions.

• Outlying subject 1 (SI Appendix, Fig. S11): The estimated in-
tercept of this subject is very small. The subject consistently
gives low genuine match scores because his fingerprints are
severely scarred.

• Outlying subject 2 (SI Appendix, Fig. S12): The intercept of
the fitted model for this subject is rather large, although the
slope is negative. This subject consistently gives high genuine
match scores because his fingerprint impressions are of
good quality.

• Outlying subject 3 (SI Appendix, Fig. S13): This subject shows
a very sharp decrease in genuine match scores as a function of
time interval. In SI Appendix, Fig. S13A, the genuine match
scores involving the first fingerprint impression are very low.
This fingerprint impression is indeed an impostor fingerprint
(SI Appendix, Fig. S13B); it is of tented arch type whereas the
actual pattern of this finger is a right loop. After inspection of
the subject’s 10-print cards, it turned out that the subject’s
left and right hands were swapped at the time of the first
10-print card acquisition; the first impression came from the
subject’s left index finger, instead of right index finger. This
shows that operational fingerprint data can be mislabeled.

• Outlying subject 4 (SI Appendix, Fig. S14): This subject also
has a steep slope. It turned out that the fingerprint impressions
of this subject were collected during his adolescence (start-
ing at the age of 11 until the age of 21). This explains the
sharp decrease in genuine match scores due to growth in finger
size (19).

• Outlying subject 5 (SI Appendix, Fig. S15): A positive slope is
observed for this subject because the comparisons involving a
lower quality fingerprint were made over a shorter time in-
terval than the comparisons with higher quality fingerprints.
This example illustrates that the fingerprint image quality
does not necessarily vary with respect to time elapsed.

Model Assessment and Comparison. Goodness-of-fit of a model
evaluates how well the model fits the data. Furthermore, the
impact of covariates on the observed responses can be assessed
by comparing the goodness-of-fits of different models. The
following three criteria are used to measure the goodness-of-
fit: (i) deviance, (ii) Akaike information criterion (AIC), and
(iii) Bayesian information criterion (BIC). The deviance measure
is used to compare nested models, whereas AIC and BIC add a
constant term to the deviance for the sake of comparing non-
nested models (SI Appendix, section S9). The smaller the de-
viance (AIC or BIC), the better the model fit.
SI Appendix, Table S1 shows the goodness-of-fit measures of

the multilevel models fit to genuine match scores obtained by the
two COTS matchers. The model comparisons based on the
goodness-of-fit lead to the following observations:

• A decrease in deviance is observed when models BT, BA, and
BQ are compared with model A (unconditional mean model
or empty model). This means that each individual covariate
used in model B (△Ti,jk, AGEi,jk, or Qi,jk) can explain some of
the variation in genuine match scores.

• Model BQ provides a better fit to the data than models BT
and BA. This implies that fingerprint quality explains better
the variation in genuine match scores than time interval or
subject’s age.

• Sex and race are not important factors to explain the variation
in genuine match scores because the deviance barely de-
creases from model BT to models CG or CR.

• Models D and E show significantly smaller goodness-of-fit val-
ues than the other models. In other words, including all of the
three covariates (△Ti,jk, AGEi,jk, and Qi,jk) in the multilevel
model better explains the trend in genuine match scores

Table 1. Multilevel models for genuine match score analysis

Model Level 1 model Level 2 model

Model A yi,jk =φ0i + «i,jk φ0i = β00 +b0i

Model BT yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model BA yi,jk =φ0i +φ1iAGEi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model BQ yi,jk =φ0i +φ1iQi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model CG yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 + β01bMi +b0i, φ1i = β10 + β11bMi +b1i

Model CR yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 + β01bWi +b0i, φ1i = β10 + β11bWi +b1i

Model D yi,jk =φ0i +φ1i△Ti,jk +φ2iAGEi,jk +φ3iQi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i, φ2i = β20 +b2i, φ3i = β30 +b3i

Model E yi,jk =φ0i +φ1i△Ti,jk +φ2iAGEi,jk +φ3iQi,jk

+φ4i△Ti,jkQi,jk +φ5iAGEi,jkQi,jk + «i,jk
φ0i = β00 +b0i, φ1i = β10 +b1i, φ2i = β20 +b2i, φ3i = β30 +b3i, φ4i = β40, φ5i = β50
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Fig. 1. Population-mean trends of genuine match scores obtained by COTS-1 matcher along with 95% confidence intervals with respect to (A) △Ti,jk,
(B) AGEi,jk, and (C) Qi,jk when a single finger is used for recognition. The confidence intervals for models BT and BQ are too tight along the means to be visible.
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compared with including only a single covariate. The additional
interaction terms in model E slightly improve the model fit.

Population-Mean Trend of Impostor Fingerprint Match Scores. For
impostor score analysis, 1,000 bootstrap samples are con-
structed to accurately capture the variability among distinct
fingers, maintain the size of bootstrap sample feasible for model
fitting, and avoid data dependency. The rth bootstrap sample con-
tains a set of impostor scores for subject i ði= 1,2, . . . ,NÞ,
fsij*,k

		j* ∈ JðrÞi ; k= 1,2, . . . , nig, where JðrÞi is a random set with in-
dices of 10 impostor subjects for subject i. JðrÞi is sampled such that
(i) Jðr1Þi and Jðr2Þi , for r1 ≠ r2, are independent, and (ii) JðrÞj* , where
j*∈ JðrÞi , does not include subject i.
The impact of time elapsed ð△Ti,1kÞ and subjects’ ages (AGEi,k

and AGEj,1) on impostor match scores is evaluated in models
BT′ and BA′ , respectively. Note that model BA′ in SI Appendix,
Eq. S4, has two covariates associated with the age of two sub-
jects involved in an impostor comparison: age of the subject of
interest for longitudinal analysis ðAGEi,kÞ and an impostor sub-
ject’s age as a control ðAGEj,1Þ.
Although the null hypothesis β10 = 0 is rejected in both models BT′

and BA′ at a significance level of 0.05 (SI Appendix, Table S4 and
Figs. S16–S18), (i) the decrease in the population-mean trend of
impostor match scores is negligible for both COTS matchers as time
elapsed since the first fingerprint acquisition increases up to 12 y,
the maximum time span in the dataset, and (ii) subject’s age ap-
pears to have marginal impact on impostor match scores in that the
tendencies observed in two COTS matchers do not coincide (i.e.,
β10 > 0 for COTS-1 matcher and β10 < 0 for COTS-2 matcher), and
the changes in impostor match score with the increase of subject’s
age up to 78 y are small. For a similar reason to (ii), the im-
postor subject’s age has an insignificant impact on the impos-
tor match scores.

Population-Mean Trend of Probability of True Acceptance. The pop-
ulation-mean trend of probability of true acceptance ðπi,jkÞ with
respect to △Ti,jk in model Bp

T in SI Appendix, Eq. S5 is in-
vestigated at various false acceptance rates (FARs) (0.01%,
0.00001%, and empirical 0%). The decision thresholds are de-
termined based on the impostor score distribution obtained by
making all pairwise comparisons among the first fingerprint
impressions of N subjects. The threshold corresponding to
FAR of p is determined by a maximum of match score x sat-
isfying cdf ðxÞ< 1− p, where cdf ðxÞ is the cumulative distribution
function of impostor match scores. The threshold corresponding
to empirical 0% FAR is set to the maximum value in the impostor
score set. The expected value of πi,jk at the operational FAR
range between 0.01% and 0.00001% remains close to 1.0 for the
both COTS matchers even though the time interval between two
fingerprints in comparison increases up to 12 y (Fig. 2A and SI
Appendix, Figs. S19 and S20 and Table S5). At empirical 0% FAR,
an extreme FAR point, the expected πi,jk for COTS-1 matcher
still remains close to 1.0, whereas COTS-2 matcher, which
delivers inferior recognition accuracy compared with COTS-1
matcher, exhibits a considerable degradation in πi,jk with in-
crease in △Ti,jk.
To understand the joint impact of △Ti,jk, AGEi,jk, and Qi,jk on

the probability of true acceptance, model D* in SI Appendix, Eq.
S6 is fit to the binary decisions on genuine fingerprint pairs when
the threshold corresponding to 0.00001% FAR is applied to
COTS-1 match scores. The population-mean trend of πi,jk with
respect to △Ti,jk is shown in Fig. 3 and SI Appendix, Fig. S21, at
various AGEi,jk and Qi,jk values. The bootstrap mean trend re-
mains close to 1.0 across all age groups and fingerprint image
quality levels. Interestingly, whereas 95% confidence intervals of
πi,jk are consistent among different age groups at fixed Qi,jk, 95%
confidence interval of πi,jk increases substantially when the fin-
gerprint quality decreases (recall, the higher the Qi,jk, the lower
the fingerprint quality) regardless of subject’s age group. This
indicates that the tendency of πi,jk with respect to △Ti,jk has a
considerable uncertainty when either of two fingerprints in

comparison is of poor quality. It conforms to the model assess-
ment analysis that fingerprint image quality, rather than time
interval between fingerprints in comparison or subject’s age,
explains well the variation in genuine match scores, and the large
confidence intervals observed in models D and E fit to genuine
match scores.

Population-Mean Trend of Probability of False Acceptance. The
population-mean trend of probability of false acceptance ðπij,kÞ is
also investigated at various FARs (0.01%, 0.1%, and 1%). Fig.
2B and SI Appendix, Figs. S22 and S23 and Table S5 show that
the predicted value of πij,k remains close to 0.0 regardless of
△Ti,1k within 12 y. This implies that the binary decisions made on
impostor fingerprint comparisons over time are not likely to be
affected by the time elapsed.

Results When Using All 10 Fingers for Recognition. Ten-finger fusion
results of genuine match scores (SI Appendix, Table S6 and Fig.
S24) and impostor match scores (SI Appendix, Table S7 and Figs.
S25–S27) conform to the results in the single-finger experiments.
It is noteworthy that the probability of true acceptance remains
1.0 for both matchers when match scores from 10 fingers are
fused, even at the extreme FAR point of 0% (SI Appendix, Table
S8 and Figs. S28 and S29). The probability of false acceptance
stays close to 0.0 with the increase in time elapsed (SI Appendix,
Table S8 and Figs. S30 and S31).

Conclusions
Since ancient times, fingerprints have been accepted as persis-
tent and unique to an individual. Early scientific studies on fin-
gerprint recognition in the late 19th century claimed that there is
no significant change in the friction ridge structure over time
by examining small sets of genuine fingerprint pairs captured
over a large time interval. Although fingerprint recognition is
now prevalent in distinguishing a large number of individuals—
for example, Federal Bureau of Investigation’s Next Generation
Identification searches a fingerprint database holding 106 million
criminal and civil files (20)—acceptance of the persistence of
fingerprints has been mostly based on anecdotal evidence.
To understand the behavior of fingerprint match score and

recognition accuracy, multiple fingerprint records of 15,597
subjects apprehended by the MSP over a time span varying from
5 to 12 y were investigated. The genuine and impostor match
scores obtained by two COTS fingerprint matchers were ana-
lyzed by linear multilevel statistical models with various cova-
riates, including time interval between two fingerprints being
compared, subject’s demographic factors such as age, sex, and
race, and fingerprint image quality. The longitudinal study of
fingerprint recognition reported in this paper leads to the fol-
lowing conclusions:
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Fig. 2. Population-mean trend of fingerprint recognition accuracy along
with 95% confidence interval with respect to △Ti,jk. (A) Probability of true
acceptance (πi,jk in model B*T) and (B) probability of false acceptance (πij,k in
model B*′T ). Match scores are obtained by COTS-1 matcher when a single
finger is used for recognition. The confidence intervals are too tight along
the means to be visible in the plots.
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• The hypothesis test for the slope of a linear model indicates
that genuine match scores tend to decrease as the time in-
terval between two fingerprints being compared increases.
Furthermore, genuine match scores tend to decrease as the
subject’s age increases or when the fingerprint image quality
decreases.

• Despite the downward trend in genuine match scores over
time, the probability of true acceptance, at operational FAR
settings, remains close to 1.0 (up to 12 y, the maximum time
span in the dataset). However, if either of two fingerprints in
comparison is of poor quality, the uncertainty in the expected
probability of true acceptance becomes considerably large.

• The changes in impostor match scores with respect to time
elapsed and subject’s age are negligible. Hence, the probability
of false acceptance remains close to 0.0 regardless of the time
interval between two fingerprints.

• A comparison among the models with different covariates fit
to the genuine match scores shows the following:
– Time interval, subject’s age, and fingerprint image quality

can explain the variation in genuine match scores, whereas
subject’s sex and race have marginal impact.

– Fingerprint image quality explains the variation in genuine
match scores better than time interval and subject’s age.

– The correlations (i) between time interval and fingerprint
image quality and (ii) between subject’s age and fingerprint
image quality are negligibly small in the population-mean
trend analysis.

– The impact of the interactions (i) between time interval and
fingerprint image quality and (ii) between subject’s age and
fingerprint image quality on genuine match scores is not
significant.

• Outlying subjects in the dataset who do not conform to the
population-mean trend as determined by model fit are exam-
ined. These outlying subjects illustrate (i) a case where a
COTS matcher consistently provides high genuine match
scores due to high-quality fingerprints from the same finger,
(ii) an example where the matcher generates low genuine
match scores due to the scarring of a finger, (iii) a degradation
in genuine match scores when a juvenile fingerprint is compared
with the corresponding adult fingerprint, and (iv) presence of
labeling errors in the operational fingerprint databases.

• The inferences from single (right index) finger analysis con-
form to the inferences from 10-finger score fusion analysis.

• The results from two different COTS fingerprint matchers
used in the study coincide, except the tendency of impostor
match scores with respect to subject’s age and the temporal
tendency of probability of true acceptance at empirical 0%
FAR in the single-finger analysis.

Our future work will include the following: (i) given that we
make all pairwise comparisons of the fingerprint impressions
from each subject, the correlation among the genuine match
scores of a subject needs to be reflected in the model; and
(ii) nonlinear multilevel models will be investigated and com-
pared with the linear models presented in this study.
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Fig. 3. Population-mean trend and 95% confidence interval of probability of true acceptance ðπi,jkÞwith respect to △Ti,jk when AGEi,jk is 20 and Qi,jk is (A) 1,
(B) 3, and (C) 5 in model D*. The decision threshold is set to the value corresponding to FAR of 0.00001%. Match scores are obtained by COTS-1 matcher when
a single finger is used for recognition.
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