
CORE CONCEPTS

Core Concept: Homomorphic encryption
Robert Frederick
Science Writer

It turned out to be pretty easy for Yaniv
Erlich to identify people who had donated
their genomic data to science, even despite
researchers’ attempts to make that data anon-
ymous. Erlich, a former computer hacker hired
by businesses to test the security of computer
systems, only needed his tailor-made computer
program and an Internet connection to access
publicly available databases.
Erlich, though, had no nefarious inten-

tions. As a fellow at the Whitehead Institute
for Biomedical Research, his was an academic
exercise to show that such privacy systems
were flawed. To keep others from repeating
his work, however, Erlich omitted some of
the necessary steps from his group’s pub-
lished paper (1). Although this was an un-
usual omission for a scientific paper, Erlich

was concerned that someone could repeat
his work and reveal the individuals’ iden-
tities, and expose their genomic data—poten-
tially affecting relationships, employability,
and insurability.
Erlich says the success rate of his technique

is about 12% because he was only looking at
a partial sequence of men’s Y chromosomes,
plus their ages, and where they lived in the
United States. But he notes that given growing
amounts of genomic information, more and
more people’s identities could be revealed.
The ways in which Erlich and others have
found to uncover individuals’ identities have
left institutions little choice but to remove pre-
viously published genomic data from the In-
ternet (2) and impose strict limitations on
data use (3).

Genomics is one of many fields that would
greatly benefit from more secure ways to
store and share data. An approach called
“homomorphic encryption,” still being devel-
oped, may help.
Homomorphic encryption allows people

to use data in computations even while that
data are still encrypted. This just isn’t pos-
sible with standard encryption methods. The
method is called “homomorphic” (or “same
form”) encryption because the transforma-
tion has the same effect on both the unen-
crypted and encrypted data. For example,
suppose an encryption scheme entailed mul-
tiplying numbers by 10 and the decryption
entailed dividing them by 10. This encryp-
tion is homomorphic for simple addition be-
cause 2 + 3 would be encrypted to 20 + 30,
and decrypting the answer by dividing by
10 would get to 5, as expected. A standard
encryption method, though, might turn a 2
into a smiley face and a 3 into a semicolon.
Adding such symbols is nonsensical, making
calculations impossible.
But there are different degrees of homo-

morphic encryption, sometimes referred to as
“fully” homomorphic compared with “partly.”
The above encryption scheme, for example, is
only partly homomorphic because it does not
work for multiplication. Multiplying 2 by 3
would be encrypted as 20*30, and decrypting
the answer, 600, gets you 60, not 6, as desired.
Making an encryption scheme fully homo-

morphic is conceptually straightforward; in
the above example, doing so means defining
“encrypted multiplication” to include dividing
by 10. Making a fully homomorphic encryp-
tion scheme secure, however, has been the
hard part.
When secure fully homomorphic encryp-

tion was first introduced as a concept in the
literature in 1978 by researchers at the
Massachusetts Institute of Technology (4), it
wasn’t yet known whether it was even possi-
ble. Not until 2009 did Craig Gentry, then a
graduate student at Stanford, find a way to do
it (5). But that solution, says Kristin Lauter,
research manager of Microsoft Research’s
cryptography group, was “literally not imple-
mentable.” For example, Gentry himself esti-
mated a simple encrypted Google search
using his original method would take roughly
a trillion times longer than a typical search.
As a result, a one-second unencrypted search
would take 31,688 years when encrypted.

Should it prove feasible, homomorphic encryption could provide much needed security for
all sorts of sensitive shared data. Image courtesy of Shutterstock/Lightspring.
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By 2013, however, Gentry hadmoved to IBM
Research, where his colleagues had developed a
secure version of fully homomorphic encryp-
tion that only took a million times longer than
a typical search. A one-second unencrypted
search would then take around 12 days en-
crypted. By Gentry’s estimates, efficient fully
homomorphic encryption could be ready in
another decade. Others, such as Bruce Schneier,
chief technology officer at Resilient Systems,
are not so hopeful, however; he estimates 40
years or more (6).
By 2011, though, Lauter and her colleagues

had a proof-of-concept implementation of a
“somewhat” homomorphic encryption scheme
(7). Instead of being the one-size-fits-all solu-
tion of fully homomorphic encryption, Lauter’s
team’s approach depends on specifying param-
eters in advance, including what computation is
needed, dataset size, and data ranges. For ex-
ample, suppose one wanted to use Lauter’s
“somewhat” scheme to securely calculate the
heart attack risk for all of the people in the
Framingham Heart Study. This might require
specifying the number of people in the study,
the algorithm for computing heart attack risk,
the parameters used in performing the calcula-
tion (e.g., weight and age), and limits to the size
of the data parameters (setting age, say, between
1 and 150 years and weight between 1 and
300 kilograms).

Lauter’s system, she claims, can be under-
stood by someone familiar with the mathe-
matical tools most students pick up in under-
graduate mathematics courses or when
pursuing an MBA. “Simplicity is an advantage
when you’re trying to deploy and maintain
secure systems,” Lauter says.
In 2014, her team published (8) a paper on

what she now calls “practical homomorphic
encryption,” requiring parameters set in ad-
vance. Microsoft Research hasn’t made the sys-
tem available yet. But Lauter says that even
after the release there will be a “long process
for the scientific and business communities to
accept new encryption techniques, understand
the potential impact, and deploy them.” Other
companies are developing their own versions of
practical homomorphic encryption, but so far
they either are not releasing details or their

systems are for researchers working on ho-
momorphic encryption schemes, such as with
IBM’s release of its homomorphic encryption
software library, HElib (https://github.com/
shaih/HElib).
In the coming years, though, homomor-

phic encryption could have a big role to play
if, as Gentry writes, the method makes it
possible “to delegate processing of your data
without giving away access to it.” (9) Already,
cryptography researchers are holding compe-
titions to challenge the various homomorphic
encryption schemes. One of those competi-
tions (www.humangenomeprivacy.org/2015/
competition-tasks.html) even asks participants
to use homomorphic encryption to securely
share the most personal data people have:
their genomes.
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