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Abstract

Because tomographic reconstructions are ill-conditioned, algorithms that incorporate additional 

knowledge about the imaging volume generally have improved image quality. This is particularly 

true when measurements are noisy or have missing data. This paper presents a general 

reconstruction framework for including attenuation contributions from objects known to be in the 

field-of-view. Components such as surgical devices and tools may be modeled explicitly as part of 

the attenuating volume but are inexactly known with respect to their locations poses, and possible 

deformations. The proposed reconstruction framework, referred to as Known-Component 

Reconstruction (KCR), is based on this novel parameterization of the object, a likelihood-based 

objective function, and alternating optimizations between registration and image parameters to 

jointly estimate the both the underlying attenuation and unknown registrations. A deformable 

KCR (dKCR) approach is introduced that adopts a control point-based warping operator to 

accommodate shape mismatches between the component model and the physical component, 

thereby allowing for a more general class of inexactly known components. The KCR and dKCR 

approaches are applied to low-dose cone-beam CT data with spine fixation hardware present in the 

imaging volume. Such data is particularly challenging due to photon starvation effects in 

projection data behind the metallic components. The proposed algorithms are compared with 

traditional filtered-backprojection and penalized-likelihood reconstructions and found to provide 

substantially improved image quality. Whereas traditional approaches exhibit significant artifacts 

that complicate detection of breaches or fractures near metal, the KCR framework tends to provide 

good visualization of anatomy right up to the boundary of surgical devices.
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INTRODUCTION

The ill-conditioned nature of the tomographic reconstruction problem is well-known and all 

approaches must contend with the implicit noise amplification. Traditional filtered-

backprojection techniques include apodized filters and statistical methods rely on general 

image priors [1, 2] that enforce desirable image properties like smoothness, edge-

preservation, etc. More specific information has also been included in iterative approaches 

such as anatomical boundary information [3] and even prior scans of the same patient 

anatomy. [4–6] In this work, we consider a technique for including specific attenuation 

knowledge for a portion of the imaging volume. Applications where such knowledge is 

available is potentially widespread in both diagnostic imaging in the presence of surgical 

devices like fixation hardware, joint prostheses, etc. or in interventional imaging where such 

devices are being placed, or where surgical tools like biopsy needles are present in the field-

of-view. Since such components are manufactured, they are potentially very well described 

with CAD models and details of their composition. However, where the components lie 

within the volume with respect to location and pose is unknown. Moreover, certain 

components are often inexactly known since they are intentionally formed into a new shape 

during surgical placement. Such is the case for fixation rods in vertebral fusion (see Figure 

1) that are bent to enforce a specific spine curvature. Similar deformations may be found 

with surgical tools like flexible biopsy needles which can bend upon insertion into the 

patient.

While prior work by Snyder et al. [7] has endeavored to include such prior information 

about known components through a constrained optimization approach, that work has not 

been generalized to multi-component scenarios such as the spine complex in Figure 1, nor to 

the case of inexactly known components requiring deformable registrations. We have 

proposed a distinct approach [8] that models the object as the composition of an arbitrary 

number of (inexactly) known components and the underlying patient anatomy. Ambiguities 

for these components including pose, position, and deformations are estimated 

simultaneously with the background as part of an unconstrained optimization. We illustrate 

the performance of this technique on low-dose acquisitions that include spine hardware in 

the field-of-view. Such data are particularly challenging due to the limitations of data 

fidelity particularly in those measurements that include ray-paths through metal components.

METHODS

The key element of the KCR framework is a decomposition of the object into known 

components and background anatomy. Mathematically, we represent the attenuation 

coefficients in a voxelized volume as the vector
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where μ* denotes a traditional voxelization of the background anatomy and μI
(n) represents a 

spatial distribution of attenuation for the nth known component. To combine known 

components and background, the components is registered within the image volume using 

the parameterized operator, W(λ(n)). This registration operator is general and each 

component has its own parameter vector, λ(n), that defines the particular transformation 

applied to that component. We denote the ensemble of parameter vectors for all known 

components by Λ. For rigid transformations each component’s parameter vector contains a 

set of (six, in 3D) translation and rotation values to place the component arbitrarily within 

the field-of-view. For non-rigid registration, the vector contains more general parameter 

values to accommodate specific warping modes – a specific parameterization of the 

deformation is discussed below. The transformed components are added to a modified 

patient background that has had a (transformed) mask, s(n), applied. Note the use of the 

diagonal matrix operator, D{}, above, to mathematically apply this mask. In effect, this 

mask zeros out the part of the background to which the component is being added and tends 

to be largely binary – though non-binary masks can account for partial volume effects at the 

edges of the component (i.e., each voxel is potentially a mixture of both background 

attenuation and the component) and for porous devices where there is mixing with the 

anatomy. Note that the object model is completely specified by μ* and Λ.

To complete the object model, it remains to specify the registration operator. For a 

traditional rigid registration operator, it is straightforward to relate the parameter vector λ(n) 

to a point-to-point mapping between the original image and the transformed image. We find 

transformed image values using a B-spline approximation kernel [9], which ensures 

differentiability of the object model with respect to the transformation parameters (which is 

important for the eventual joint estimation based, in part, on gradient-based optimizations).

In our initial studies of deformable registration, we have adopted a warping operator based 

on control points. This operator is illustrated in Figure 2. Control points are defined on the 

source image (e.g., the component model) which form a source mesh. Corresponding points 

are defined for a destination image, forming an analogous destination mesh. These two 

meshes define a point-to-point mapping where every triangle in the source image maps to a 

triangle in the destination image. Thus, the transform is piecewise affine over each triangular 

region. (While this mapping is strictly nondifferentiable at triangle boundaries, we have 

found that the interior volumes dominate the derivative calculations and the mild 

nondifferentiability is not a problem in practice for optimization.) Again, values in the 

transformed (destination) image are found by applying a B-spline approximation kernel to 

neighborhoods of points in the source image using the triangle-based point mapping defined 

by the two meshes. While one might consider the parameters of this deformation model to 

be both the source and control points, we have adopted a framework where the source mesh 

is a part of the component model and the destination control points are the parameters of the 

object model, Λ. Although, the deformation studies in this paper focus on the 2D problem, 
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these methods may also be extended to the 3D case where source and destination meshes 

form a mapping based on tetrahedra.

From this object model, it is straightforward to adopt a forward model for the measurement 

vector, y, to adopt a noise model, and to derive a likelihood function for the unknown 

parameters. This process leads one to the implicitly defined Known-Component 

Reconstruction (KCR) estimator

which represents a joint estimation of both the background anatomy and the registration 

parameters. The objective function is comprised of a log-likelihood term (L), a 

regularization term (R) to penalize noisy images, and a regularization parameter, β, to 

control the noise-resolution tradeoff. (In this work, we have concentrated on quadratic 

roughness penalties.) When the object model includes a deformable registration operator, we 

refer to the reconstruction approach as deformable KCR (dKCR), whereas the rigid 

transformation-only variant is labeled (simply) KCR. The authors have developed a custom 

algorithm for maximization of the above objective for both the KCR and dKCR cases based 

on alternating optimizations of the registration and image parameters using a quasi-Newton 

approach and separable quadratic surrogates updates [10], respectively.

RESULTS

In this work, we present the application of the KCR framework to two scenarios: 1) an 

application of KCR to bilateral pedicle screw placement in the lumbar spine that relies on 

two-component rigid registration; and 2) an application of dKCR for a trauma fixation plate 

placement on the thoracic spine that relies on deformable registration. The phantom for the 

pedicle screw investigation is shown in Figure 3. Two single-component screws are placed 

bilaterally within a lumbar vertebra and are displayed as an overlay image. The attenuation 

profiles of each pedicle screw and the associated component mask were derived from 3D 

CAD models and the known (titanium) composition. Small fractures near the screws are 

simulated and illustrated in the axial slice. Using this phantom, an attenuation volume was 

created and projection data was simulated. We considered a C-arm system geometry and 1 

mm voxels. Data acquisitions used a monoenergetic model with 104 photons per (1.552 mm 

square) detector element and Poisson noise.

Reconstructions of data were performed using filtered-backprojection (FBP), a quadratically 

penalized-likelihood estimator (with no component knowledge), and the KCR approach. The 

FBP image was used to initialize both iterative methods and we attempted to select a 

regularization parameter that would provide similar spatial resolution for all approaches. 

Figure 4 shows a sampling of KCR iterations, and the joint nature of the estimation is 

apparent (with both registration updates and image improvements with each successive 

iteration). We note that since the object parameterization explicitly separates the background 

anatomy and the known components, it is straightforward to create (color) overlay images of 

the screw in the patient anatomy (one may always recreate attenuation images if desired).
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Figure 5 illustrates the relative comparison of the reconstruction approaches against the true 

image volume in (zoomed) axial and coronal slices. While FBP reconstructions are plagued 

by significant streak artifacts due to photon starvation (particularly, along the long axes of 

the screws), the penalized-likelihood approach greatly mitigates streak artifacts due to noise. 

However, significant biases still remain in proximity to the screws disallowing visualization 

of the simulated fractures. With KCR, image quality is dramatically improved with better 

image quality even at the boundaries of the screws. We see the anterior fracture is well 

visualized, while the lateral fracture is difficult to diagnose. This suggests the need for 

greater exposure and less regularization for improved spatial resolution in this particular 

region.

In the fixation plate scenario, a 2D deformable component is used in a simulated application 

to the thoracic spine. This is illustrated in Figure 6 with the use the same rectangular plate 

example as was used in the deformation example in Figure 2. The titanium plate is 

parameterized with 12 control points and is placed on the posterior surface of the vertebra. A 

small fracture is placed on the transverse process of the vertebra to investigate image quality 

near the metal component. For data generation, we adopt a C-arm geometry with 0.766 mm 

detector pixels, 0.8 mm voxels, a monoenergetic beam, 104 photons per detector element, 

and Poisson noise.

As in the previous scenario, we present a sampling of dKCR iterations in Figure 7. The 

dKCR algorithm is initialized with a flat plate and a FBP reconstruction. Over successive 

iterations the plate is deformed via improved estimates of the positions of the destination 

control points. With this improved component knowledge a better to fit the data and object 

model is possible and updates to the patient anatomy result in greatly improved image 

quality.

A comparison of reconstruction methods for the deformable component scenario is 

presented in Figure 8. Again, we have attempted to approximately match spatial resolution 

in all cases. The rank-order performance of the reconstruction approaches is the same as 

before. While FBP suffers from substantial streak artifacts, the penalized-likelihood method 

successfully mitigates the severe streaking across the entire axial slice. However, artifacts 

still remain in close proximity to the fixation plate, and there is significant "blooming" 

around the implant that obscures nearby anatomy. Both FBP and penalized-likelihood do not 

provide sufficient image quality to diagnose the fracture in the transverse process. In the 

penalized-likelihood image, it is unclear whether the dark bands near the implant are artifact 

or anatomy. In the dKCR image, artifacts are much reduced and the simulated fracture is 

more apparent. Moreover, the estimate of the plate deformation is a very good match to the 

actual deformation that was used to create the data.

DISCUSSION

This paper has presented a general framework called known-component reconstruction, for 

incorporating an arbitrary number of known components within a penalized-likelihood 

framework. Such components need not be known exactly and may be rigidly (KCR) or non-

rigidly deformed (dKCR) to fit within the volume. This approach appears to work 
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particularly well in the case of photon-starved or missing data scenarios as is found with 

metal surgical devices within the field-of-view; however, the technique is generally 

applicable to any kind of component including those comprised of heterogeneous 

attenuation values. In the case of metal spine hardware, the KCR approaches appear to allow 

for imaging right to the boundary of metal devices – which would have particular impact if 

applied clinically for tasks such as the detection of pedicle screw breaches, assessing 

osteolysis around implants, and biopsy needle guidance (all traditionally difficult imaging 

tasks due to metal artifacts). Moreover, the joint registration-reconstruction of KCR has 

additional advantages over traditional methods. The registration estimates themselves may 

have value for quantitative assessments of surgical deliveries (in comparison with positions 

in preoperative plans). Similarly, because KCR explicitly decomposes the object into 

background and component, overlay images and segmentation of components is facilitated. 

(A benefit for images with high dynamic range, like those with metal in the field-of-view.) 

Future work includes an extension to 3D deformable registrations, smoother deformation 

models based on B-splines, and an analysis of deformation model mismatch and application 

to real data.
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Figure 1. 
Surgical hardware utilized in vertebral fusion including (left-to-right) a set screw, a 

polyaxial pedicle screw, and a fixation rod. These components are connected together into 

an assembly during a spine fusion procedure to fix the relative position of adjacent vertebra 

(far right). Highly detailed CAD models and material compositions are known for these 

components yielding an opportunity for integration of prior information in reconstruction. 

However, the fixation rod is rarely placed in a patient without modification. It is routinely 

formed during an interventional procedure to enforce a specific spine curvature. Thus, 

methods seeking to incorporate this prior knowledge of components must accommodate 

potential deformations.
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Figure 2. 
Illustration of the control point-based warping operator. Control points on an image form a 

source mesh. Corresponding points which have been translated form a destination mesh. 

These meshes specify a point-to-point mapping based on triangles, which, in turn, may be 

used to interpolate values for the destination image.
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Figure 3. 
Digital phantom used in the bilateral pedicle screw placement scenario with an overlay 

display of the known components. Each screw represents a known component and has six 

degrees of freedom associated with its position in the imaging volume. Green circles 

illustrate small simulated fractures of the vertebra.
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Figure 4. 
Sample KCR iterations for the bilateral pedicle screw placement scenario. The initial image 

shows the starting guess for the two pedicle screw positions overlaid on a filtered-

backprojection reconstruction of phantom data. Note the joint nature of the reconstruction 

problem with each iteration updating both the registration estimates and the background 

image. Successive iterations improve both the pose and location estimates of the screws as 

well as improving image quality through streak reduction.
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Figure 5. 
A comparison of reconstruction approaches for the bilateral pedicle screw placement 

scenario. Severe streak artifacts are present in the FBP volume due to photon starvation in 

measurements containing rays passing through the pedicle screws. While the image is 

greatly improved using a statistical approach, artifacts remain in proximity to the devices, 

dramatically reducing the utility of the images for detecting breaches. In comparison, the 

KCR images are essentially streak-free and allow for visualization of anatomy very close to 

the implant. Specifically, the anterior simulated fracture is evident only in the KCR image. 

The lateral fracture remains difficult to visualize suggesting increased exposure/reduced 

regularization may be necessary.
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Figure 6. 
Illustration of the phantom used in the fixation plate scenario. A single slice containing a 

thoracic vertebra is selected and modified to contain a small fracture in the transverse 

process (left). A rectangular block of titanium is deformed and placed on the posterior 

surface of the vertebra to simulate a fixation plate (right). The source and destination meshes 

are shown overlaid on the deformed component (center).
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Figure 7. 
Illustration of dKCR iterations in the deformable fixation plate example starting with a flat 

plate on a single slice FBP data set. Successive iterations move the destination control points 

to accommodate and estimate the particular deformation. With an improved estimate of the 

component, the background image is updated with consequent improvements in image 

quality.
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Figure 8. 
Comparison of different reconstruction methods for the 2D deformable component scenario. 

Zoomed versions of each case are shown in the lower row of images. While the FBP image 

is plagued by significant streak artifacts, there is significant reduction of streaks when a 

statistical approach is used. However, the penalized-likelihood approach still exhibits 

difficulty resolving details near the boundary of the simulated device; whereas the dKCR 

approach provides improved quality, better resolving a simulated fracture. We note that not 

only is image quality improved through the introduction of component knowledge, the 

deformations estimated by the dKCR approach provide an accurate estimate of the particular 

deformations that were applied to the component.

Stayman et al. Page 14

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2015 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


