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Induced Islet Allograft Tolerance Through Suppressing
Th1 and Enhancing Regulatory T-Cell Differentiation
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Mesenchymal stem cell (MSC) differentiation is dramatically reduced after long-term in vitro culture, which
limits their application. MSCs derived from induced pluripotent stem cells (iPSCs-MSCs) represent a novel
source of MSCs. In this study, we investigated the therapeutic effect of iPSC-MSCs on diabetic mice. Strep-
tozocin-induced diabetic mice transplanted with 400 islets alone or with 1x 10° iPSC-MSCs were examined
following rapamycin injection (0.1 mg/kg/day, i.p., from days O to 9) after transplantation. Our results showed
that iPSC-MSCs combined with rapamycin significantly prolonged islet allograft survival in the diabetic mice;
50% of recipients exhibited long-term survival (>100 days). Histopathological analysis revealed that iPSC-
MSCs combined with rapamycin preserved the graft effectively, inhibited inflammatory cell infiltration, and
resulted in substantial release of insulin. Flow cytometry results showed that the proportion of CD4 " and CD8*
T cells was significantly reduced, and the number of T regulatory cells increased in the spleen and lymph nodes
in the iPSC-MSCs combined with the rapamycin group compared with the rapamycin-alone group. Production
of the Thl proinflammatory cytokines interleukin-2 (IL-2) and interferon-y was reduced, and secretion of the
anti-inflammatory cytokines IL.-10 and transforming growth factor-f was enhanced compared with the rapa-
mycin group, as determined using enzyme-linked immunosorbent assays. Transwell separation significantly
weakened the immunosuppressive effects of iPSC-MSCs on the proliferation of Con A-treated splenic T cells,
which indicated that the combined treatment exerted immunosuppressive effects through cell-cell contact and
regulation of cytokine production. Taken together, these findings highlight the potential application of iPSC-
MSCs in islet transplantation.

[18,19], and composite tissue transplants [20,21]. Bone
marrow mesenchymal stem cells (BM-MSCs) alone prolong

Introduction

SLET TRANSPLANTATION IS a promising therapy for dia-

betes. However, it does not have an ideal postoperative
survival time because of immune rejection and islet toxicity
of immunosuppressive agents [1,2]. The immunosuppressive
effect and low immunogenicity of mesenchymal stem cells
(MSCs) make them ideal candidates for immunosuppressive
strategies [3,4]. Adult MSCs have been used widely in the
allogeneic heart [5-11], liver [12], islet [13-17], kidney

heart allograft survival [8]. However, some studies showed
that MSCs alone had no significant effect on graft survival in
a completely allogeneic heart transplant model. In contrast,
combining MSCs with mycophenolate mofetil led to pro-
longed allograft survival [10], and MSCs plus rapamycin
(Rapa) induced immune tolerance of heart allografts [9].
Furthermore, MSCs combined with cyclosporine A (CsA)
induced tolerance of islet allografts in immune-deficient mice
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[14]. In a kidney allograft model, MSCs led to long-term graft
acceptance in rodents [19] and had immunosuppressive ef-
fects in renal transplant recipients [22-24], which suggested
that MSCs may reduce immunosuppressant dosage [25,26].
Collectively, these studies suggested that under certain con-
ditions, MSCs could prolong allograft survival in combina-
tion with clinical immunosuppressants.

MSCs showed various degrees of efficacy in preclinical
animal studies [27]; however, their limited accessibility is a
major factor inhibiting their use in routine clinical treatment.
Current methods to obtain MSCs from patients are invasive
and labor intensive. Furthermore, MSCs have a limited ca-
pacity to expand in culture. Successive passages slow the
proliferation rate, and MSCs progressively lose their mul-
tipotency and lack immunosuppressive activity. In addition,
aging and age-related disorders significantly impair the
survival and differentiation potential of BM-MSCs, thus
limiting their therapeutic efficacy [28-32]. Therefore, it is
important to identify alternative sources of MSCs before
they can be used as a mainstream treatment for organ
transplantation. A breakthrough in the generation of human-
induced pluripotent stem cells (iPSCs) from adult somatic
cells offered the possibility of generating a high yield of
MSCs [33-35].

Several laboratories have found that iPSC-derived MSCs
have the same in vitro and in vivo characteristics as MSCs
derived from adult sources. Previous studies indicate
that iPSC-MSCs grown on a calcium phosphate scaffold
enhanced osteogenic differentiation and promoted bone re-
generation [36-38]. iPSC-MSCs could form mature miner-
alized structures that were histologically similar to mature
bone, facilitating periodontal regeneration [39,40]. Trans-
planting iPSC-MSCs attenuated severe hindlimb ischemia
and improved the hepatic function in mouse models
[33,41,42]. These results suggested that iPSC-MSCs have
high potential for tissue-engineering applications. In addi-
tion to their tissue repair ability, iPSC-MSCs also exhibit
immunomodulatory properties [43—45]. For example, iPSC-
MSC:s displayed long-lasting immunosuppressive properties
toward natural killer cells by interfering in their activation,
thus protecting target cells [44]. Human iPSC-MSCs exerted
immunomodulatory effects on T-cell subsets in the periph-
eral blood from allergic rhinitis patients by modulating
T-cell phenotypes toward Th2 suppression and inducing T
regulatory cell (Treg) expansion [45]. iPSC-MSCs also pre-
vented allergic airway inflammation in mice [43]. Therefore,
iPSC-MSCs may be a novel source of tolerance induction,
although their immunosuppressive activity in organ trans-
plantation remains to be explored. The aim of this study was
to assess the efficacy of iPSC-MSCs in combination with
Rapa in islet transplantation immunosuppressive therapy in
streptozocin (STZ)-induced diabetic mice.

Materials and Methods
Animals

Female BALB/c mice (8-12 weeks old) and C57BL/6
were purchased from SLAC Laboratory Animal Co., Ltd.
(Shanghai, China) and used as graft donors and recipients,
respectively. The care and handling of the animals were
conducted in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the
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National Institutes of Health. The protocol was approved by
the Animal Studies Committee of Xiamen University, China.

Drugs

Rapamycin was purchased from LC Laboratories (LC
Labs, Woburn, MA) and dissolved in PBS at 0.02 mg/mL
for injection. The recipient mice received Rapa at doses of
0.1 mg/kg/day i.p. from days O to 9 after transplantation.

Phenotypic analysis of iPSC-MSCs

iPSC-MSCs were kindly provided by Prof. Qi-Zhou Lian
of the University of Hong Kong. The iPSC lines were pre-
pared from iPSCs, which were reprogrammed from human
fibroblast cells, and differentiated into MSCs according to a
previously described protocol [33]. Briefly, MSCs were pu-
rified by sorting for CD105%/CD24 ™~ cells and maintained in
a medium containing 90% knockout Dulbecco’s Modified
Eagle’s Medium (Gibco, Invitrogen Corporation, Carlsbad,
CA) supplemented with 10% serum replacement medium
(Gibco) and basic fibroblast growth factor (10 ng/mL; Gibco).
The morphology of iPSC-MSCs was very similar to BM-
MSCs and they have the capacity to differentiate into oste-
oblasts, adipocytes, and chondroblasts [33]. Millipore’s
FlowCellect™ Human Mesenchymal Stem Cell Character-
ization Kit was used for the phenotypic analysis of iPSC-
MSCs. iPSC-MSCs (passage 5-10) were resuspended in an
assay buffer and then incubated with an antibody working
cocktail solution for 30 min on ice in the dark. The antibody
working cocktail solution contained anti-CD105/PE-, anti-
CD90/FITC-, anti-CD73/APC-, and anti-CD14/CD34/CD45/
PerPC-conjugated antibodies. Each fluorescence analysis in-
cluded the appropriate FITC-, PE-, or cytochrome-conjugated
isotype Ab controls. Cells were separated using flow cytometry
(FACS Calibur; Becton-Dickinson, San Diego, CA) and not
sorted. The use of iPSC-MSC:s in this study was approved by
the Ethics Committee of Xiamen University, China.

Chemical induction of diabetes

Diabetes was induced in female C57BL/6 mice by in-
traperitoneal injection of streptozocin (180-220mg/kg;
Sigma-Aldrich, St. Louis, MO) [46]. Blood glucose was
measured using a FreeStyle glucose meter (Abbott, Alameda,
CA), and diabetes onset was defined as two consecutive daily
blood glucose measurements above 16.7 mmol/L.

Islet isolation, purification, and transplantation

BALB/c islets were isolated using the digestion method
[47,48] with collagenase P (1 mg/mL; Roche, Basel, Swit-
zerland). The pancreas was perfused through bile duct
cannulation with 3 mL of 1 mg/mL collagenase P per mouse
and then excised. Briefly, the pancreas was digested at
37°C-38°C for 20min and then shaken vigorously in cold
Hank’s Balanced Salt Solution (HBSS) containing 10% fetal
bovine serum (FBS; Shanghai ExCell Biology, Shanghai,
China). The digested pancreatic tissues were filtered through
a 200-pm mesh, washed thrice [49], and then purified using
human mononuclear cells and granulocyte separation media
Histopaque-10771 and Histopaque-11191 (Sigma-Aldrich).
The islets were sorted manually under the microscope.
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Four hundred BALB/c islets were used for a single
transplantation. Islets were transplanted under the kidney
capsule of diabetic C57BL/6 mice. Blood glucose levels
were monitored in the recipient mice. Islet transplants were
considered functional when two consecutive blood glucose
measurements were <8mmol/L, and graft rejection was
defined as a blood glucose level of >11.1 mmol/L on 2
consecutive days. Body weight was recorded (daily) until
complete graft rejection occurred.

Recipient therapy and experimental groups

Four hundred islets isolated from BALB/c mice with or
without 1x 10° iPSC-MSCs were transplanted into diabetic
mice. The control group received islets alone. The Rapa
group was treated with 0.1 mg/kg/day Rapa alone. The
iPSC-MSCs + Rapa group received islets with iPSC-MSCs
and was treated with 0.1 mg/kg/day Rapa. Rapa treatments
were conducted from days O to 9.

Mixed lymphocyte reaction

Nylon wool columns (Wako, Osaka, Japan) were used to
isolate T cells from the spleen of the recipient mice, which
were used as responder cells. Spleen cells obtained from the
BALB/c mice were used as stimulator cells. The responder
cells (5x10° cells) were cultured in 96-well plates in the
presence of stimulator cells (5x 10* cells), pretreated with
mitomycin C (40 ng/mL; Amresco, Solon, OH) in 200 pL
RPMI 1640 supplemented with 10% FBS and 1% penicillin
and streptomycin, and incubated at 37°C in a 5% CO, hu-
midified atmosphere for 72h. Cell proliferation was mea-
sured using a bromodeoxyuridine (BrdU) cell proliferation
assay kit (Roche Applied Science, Mannheim, Germany).
The magnitude of the absorbance is proportional to the
quantity of BrdU incorporated into cells, which is a direct
indication of the cell proliferation rate. The optical density
values were measured in an enzyme-linked immunosorbent
assay (ELISA) reader (Model 680; BIO-RAD, Hercules,
CA) at 450nm (the reference wavelength was 690 nm).
Measurements were performed in triplicate.

Transwell experiments

For the Transwell experiments, 24-well Transwell plates
with a 4-um-pore membrane (Costar, Corning, NY) were
used to separate T cells from the iPSC-MSCs. T cells were
isolated from the spleens of C57BL/6 mice using nylon
wool columns (Wako). iPSC-MSCs were plated into the
lower chamber at 5x10* cells/well, and 5pg/mL Con A
(Sigma-Aldrich)-stimulated T cells (5% 10° cells/well) were
cultured in the upper chamber of the Transwell insert. Cell
culture media were supplemented with 2 ng/mL Rapa. After
3 days of coculture, T cells were harvested and placed in a
96-well plate at a concentration of 1x10° cells/well (n=6).
Cell proliferation was measured using the BrdU cell pro-
liferation assay kit (Roche Applied Science), as described
above. Measurements were performed in triplicate.

Flow cytometry analysis

Recipient splenic lymphocytes and T cells (isolated using
nylon wool columns) were prepared in 100 uL PBS per
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1x10° cells. The splenic lymphocyte cells were incubated
with PE-Cy5-anti-CD4 (GK1.5), FITC-anti-CD8 (53-6.7),
and their isotype controls (purchased from BioLegend, San
Diego, CA) at 4°C for 30min. T cells from lymph nodes
were incubated with FITC anti-CD4 (RM4-5) and PE anti-
Foxp3 (FIK-16s) (purchased from eBioscience, San Diego,
CA) at 4°C for 30 min. Conjugated isotype antibodies were
used as negative controls. The stained cells were detected on
a FACScan flow cytometer (Partec Co., Munster, Germany),
and the data were analyzed using FlowJo software (Tree
Star, Inc., Ashland, OR).

The secretions of interleukin-2 (IL-2), IL-10, and interferon-y
(IFN-y) into the recipient sera were detected using a Cyto-
metric Bead Array™ (CBA; BD Biosciences, San Jose, CA),
according to the manufacturer’s instructions. The stained
samples were detected on a BD FACS Aria Cell Sorter (BD
Biosciences), and the data were analyzed using FlowlJo
software and FCAP Array software (BD Biosciences).

Histopathological analysis

Kidney islet grafts were removed from recipient mice at
day 12 post-transplantation, fixed in 4% paraformaldehyde
fixative (Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China), and embedded in paraffin. Grafts were cut
into 5-um sections, stained with hematoxylin and eosin
(H&E), and examined by a transplant pathologist who was
blinded to treatment modality. Representative specimens
(n=36) from all treatment modalities were ranked from 1 to
36 (from least to most) for overall rejection/inflammation,
with the median in each group presented [47].

Immunohistochemistry

At day 12 after islet graft, the islet grafts were removed
for pathological examination, fixed in zinc fixative (Bio-
legend), and embedded in paraffin. The paraffin tissues
were cut into 5-pm sections, deparaffinized in xylene,
hydrated through graded ethanol series, and immersed in
absolute methanol, which contained 0.3% hydrogen per-
oxide, for 10 min to block the endogenous peroxidase ac-
tivity. Sections were incubated with nonimmune goat
serum for 20 min to prevent nonspecific binding and then
with the primary Insulin Rabbit mAb (1:100; Cell Signal-
ing Technology, Boston, MA) diluted in PBS for 1 h. The
sections were incubated with Polymer Helper for 15 min,
with poly-HRP anti-rabbit IgG for 30 min, and with the
peroxidase substrate diaminobenzidine for 1min. Slides
were counterstained with hematoxylin. The slides were
examined under a microscope and evaluated in a blinded
manner.

Quantitative real-time reverse transcription
PCR analysis

Kidney islet grafts were removed from recipient mice at
day 12 post-transplantation, and the mRNA was extracted
using TRIzol (Life Technologies, Carlsbad, CA). Reverse
transcription and quantitative real-time polymerase chain re-
action (qQRT-PCR) were performed using commercially avail-
able reagents (Toyobo, Osaka, Japan). The StepOne Real-Time
PCR System (ABI, Foster City, CA) was used to detect IL-2,
IFN-y, IL-10, transforming growth factor (TGF-f3), and Foxp3.
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P-Actin served as the control. Calculation of the relative ex-
pression was performed using the 27 22T method. The fol-
lowing primer sequences were used for qRT-PCR:
p-actin: forward 5'-CATCCGTAAAGACCTCTATGCC
AAC-3’
and reverse 5-ATGGAGCCACCGATCCACA-3’;
IFN-y: forward 5'-CGGCACAGTCATTGAAAGCCTA-3’
and reverse 5-GTTGCTGATGGCCTGATTGTC-3;
IL-2: forward 5-GGAGCAGCTGTTGATGGACCTAC-3’
and reverse 5-AATCCAGAACATGCCGCAGAG-3;
IL-10: forward 5-GACCAGCTGGACAACATACTGC
TAA-3’
and reverse 5'-GATAAGGCTTGGCAACCCAAGTAA-3;
TGF-p: forward 5-GACCAGCTGGACAACATACTGC
TAA-3
and reverse 5-GATAAGGCTTGGCAACCCAAGTAA-3;
Foxp-3: forward 5’-CAGCTCTGCTGGCGAAAGTG-3’
and reverse 5-TCGTCTGAAGGCAGAGTCAGGA-3’.

Enzyme-linked immunosorbent assay

Supernatants from the mixed lymphocyte reaction (MLR)
after a 72-h incubation and the sera of recipient mice were
collected and frozen at —20°C. ELISAs were performed
using commercially available kits (NeoBioscience Tech-
nology Co., Ltd., Beijing, China) to detect the secretion
levels of IL-2, IFN-vy, IL-10, and TGF-f. The process was
conducted according to the manufacturer’s instruction. Each
reaction was carried out in triplicate.

Statistical analyses

The median survival times of the four groups were calcu-
lated and compared using the Kaplan—Meier method. Data
from MLR, FACS, ELISA, and CBA experiments were ana-
lyzed by one-way analysis of variance (ANOVA) and ex-
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pressed as the meanzstandard deviation. A Bonferroni
correction was calculated and applied because multiple com-
parisons were made during the analysis. A P value <0.05 was
considered statistically significant; P<0.01 and P<0.001 in-
dicated highly significant differences. All analyses were per-
formed using the GraphPad Prism® (GraphPad Software, Inc.,
San Diego, CA) software.

Results

Flow cytometry analysis of iPSC-MSC
surface antigens

iPSC-MSCs exhibited a spindle-shaped morphology and
their identity was confirmed by flow cytometry. The results
showed that the percentage of CD73, CD90, and CD105
triple-positive cells and the percentage of CD14, CD34, and
CD45 triple-negative cells were 86.94 £0.87 and 3.29+2.83,
respectively, where the latter showed no significant difference
compared with the isotype control (Fig. 1). The results
showed that iPSC-MSCs expressed the cell surface marker
characteristic of MSCs (CD73, CD90, and CD105) and were
negative for markers typically absent on MSCs (CD14, CD34,
and CD45). These results suggest that iPS-MSCs display
morphological characteristics of adult MSCs.

Effect of iPSC-MSCs on islet allograft survival

We investigated the effect of iPSC-MSCs on islet allo-
graft survival in STZ-induced diabetic mice by co-
transplantation into recipient mice by kidney subcapsular
injection (Fig. 2A). The survival times of the iPSC-MSCs
and Rapa groups were 14 and 18 days, respectively, both of
which were significantly prolonged compared with 12 days
in the controls (P <0.05, iPSC-MSC group; P <0.001, Rapa
group). iPSC-MSCs combined with Rapa prolonged survival
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Cell surface antigens for iPSC-MSCs analyzed by flow cytometry. (A) iPSC-MSCs were stained with the

indicated mAbs (open white plots) or Ig isotype controls (shaded gray plots) and analyzed by FACS (one representative
FACS experiment is shown). The numbers represent the percentage of cells staining positive for the indicated marker and
are shown as mean + SD (n=4, n represents the number of independent experiments). (B) Statistical analysis of cell surface
antigens. The data are representative of four FACS experiments from the same cell line, but different passages. The
percentage of CD14, CD34, and CD45 triple-negative cells showed no significant difference compared with the isotype
control, while other cell surface antigens had significant differences compared with their corresponding isotype controls.
iPSC-MSCs, induced pluripotent stem cells—mesenchymal stem cells.
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time, compared with Rapa alone (P<0.001), and induced
immune tolerance in 50% of the recipients. Blood glucose
values (measured every 3 days) remained normal in Rapa-
treated iPSC-MSCs, until the mice were nephrectomized at
day 102 post-transplantation (Fig. 2B).

Effect of iPSC-MSCs on the inflammatory response
of STZ-induced diabetic mice following
islet transplantation

To investigate the effect of iPSC-MSCs on grafts in diabetic
mice, grafts were dissociated from recipient mice at day 12 post-
transplantation and processed for histological analysis (Fig.
3A). Grafts from control mice exhibited islet damage and little
insulin secretion. Grafts from iPSC-MSCs or Rapa-treated mice
showed less islet damage, more insulin secretion, and fewer
infiltrating inflammatory cells. iPSC-MSCs+Rapa treatment
preserved the graft most effectively and resulted in a substantial
release of insulin. The overall ranking of rejection/inflammation
is shown in Fig. 3B. The rankings given for the combined
treatment group were significantly lower in terms of rejection/
inflammation than those for the Rapa group (P <0.01). We next
examined the expressions of inflammatory cytokines in graft

and sera using qRT-PCR, ELISA, and CBA flow cytometry
(Fig. 3C, D). IL-2 and IFN-y in the iPSC-MSCs+ Rapa treat-
ment group were downregulated at both the mRNA and protein
levels compared with the Rapa group. These results demon-
strated that iPSC-MSCs and Rapa have synergistic effects on the
expressions of inflammatory cytokines.

Effect of iPSC-MSCs on CD4* and CD8" ratios
in STZ-induced diabetic mice

Flow cytometry was used to investigate the effect of
iPSC-MSCs +Rapa treatment on CD4* and CD8" T lym-
phocytes at day 12 post-transplantation. Although iPSC-
MSCs or Rapa alone effectively decreased the number of
CD4" and CD8" T lymphocytes, iPSC-MSCs combined
with Rapa showed the best inhibitory effect on the prolif-
eration of CD4™ and CD8* T lymphocytes, whether in the
spleen or in lymph nodes (Fig. 4B).

Protective effect of iPSC-MSCs+ Rapa on islet
allografts through Tregs induction

The proportion of splenic and lymph node Tregs was
examined by flow cytometry (Fig. SA). Although the results
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FIG. 3. Preservation of islet graft and infiltration of inflammatory cells at 12 days post-transplantation. (A) Im-
munohistochemical staining for insulin (magnification X 100) and H&E (magnification x 100) in islet grafts, with dark arrows
indicating islets and red arrows indicating inflammatory cells. (B) Representative specimens (n=36) from all treatment
modalities were ranked from 1 to 36 (from least to most) for overall rejection/inflammation, and the median in each group is
shown. (C) Effects of iPSC-derived MSCs and rapamycin on the relative mRNA expression of inflammatory cytokines in the
graft. (D) Effects of iPSC-derived MSCs and rapamycin on the expression of inflammatory cytokines in serum. Each group was
tested in triplicate and the data are representative of three independent experiments (n=3, *P <0.05; **P <0.01; ***P <0.001;
ns, no significant difference). H&E, hematoxylin and eosin. Color images available online at www .liebertpub.com/scd

FIG. 4. Proportion of CD4*
and CD8* T lymphocytes in
the spleen and lymph nodes at
12 days post-transplantation.
(A) Proportion of CD4* and
CD8* T lymphocytes from
one separate experiment. Sta-
tistical analyses of the pro-
portion of CD4* and CD8* T
lymphocytes are shown in (B)
and (C), respectively. Data are
representative of three separate
experiments (n=3, *P<0.05;
**P<(0.01; ***P<0.001; ns,
no significant difference).
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FIG. 5. Protective effect of iPSC-MSCs+Rapa on islet allografts through T regulatory cell induction. (A) T regulatory
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proportions of three separate experiments. Effects of iPSC-MSCs + Rapa on IL-10 and TGF- expression in sera are shown
in (C) and (D); effects of iPSC-MSCs + Rapa on the relative expression of IL-10, TGF-f5, and Foxp3 mRNA in grafts are
shown in (E), (F), and (G). Data are presented as mean = SD of three independent experiments (n=3, *P <(0.05; **P <0.01;
**%P<0.001; ns, no significant difference). IL, interleukin; TGF, transforming growth factor.

showed that both iPSC-MSCs and Rapa induce Tregs
compared with the controls, iPSC-MSCs+Rapa treatment
induced a larger numbers of Tregs compared with the Rapa
group (Fig. 5B). We next examined IL-10, TGF-B, and
Foxp3 expression in the islet grafts and sera of the recipient
mice. iPSC-MSCs +Rapa treatment increased serum IL-10
and TGF-P concentrations (Fig. 5C, D). Furthermore, IL-10,
TGF-f, and Foxp3 mRNA levels in the graft also increased
compared with the Rapa group (Fig. SE-G).

Immunosuppressive mechanisms of iPSC-
MSCs+ Rapa on T-lymphocyte proliferation
and Treg production

T lymphocytes from the four groups were cocultured with
mitomycin C-treated splenic lymphocytes from BALB/c
mice in a 96-well plate for 3 days. The MLR test results
indicated that recipient splenic T cells from combination-
treated mice showed a reduced proliferative response when

stimulated with mitomycin C-treated donor splenocytes
compared with the Rapa group (P<0.01, Fig. 6A). In ad-
dition, IL-2, IFN-vy, IL-10, and TGF-f supernatant levels
were determined using ELISA. iPSC-MSCs+Rapa treat-
ment downregulated IL-2 and IFN-y expression and upre-
gulated IL-10 and TGF-B levels compared with the Rapa
group (P<0.05, Fig. 6B-D). These results suggested that
iPSC-MSCs + Rapa treatment suppressed Thl function and
increased Treg production.

To evaluate the molecular mechanisms underlying these
immunomodulatory properties, we further examined the
possible role of cell contact in the modulation of T-cell
proliferation by iPSC-MSCs+Rapa using Transwell exper-
iments. As shown in Fig. 6F, iPSC-MSCs+ Rapa signifi-
cantly decreased the number of Con A-treated splenic T
cells from normal mice. Moreover, Transwell separation
significantly weakened the immunomodulatory effects of
iPSC-MSCs+Rapa on Con A-treated splenic T cells. These
findings suggested that cell contact could, at least partially,
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interfere with the immunomodulatory effects on lymphocyte
proliferation under iPSC-MSCs+ Rapa treatment.

Discussion

MSCs have previously demonstrated their capacity to
facilitate regeneration and regulate immune responses in a
range of animal models; however, major factors related to
life span and tumorigenicity limit their widespread use in a
clinical setting [28-32]. Recent reports have described
MSC-like cells derived from iPSCs [33-35] with a greater
proliferative capacity, lower immunogenicity, and greater
immunoregulatory function compared with primary MSC

cultures [33,43,45]. In addition, these iPSC-MSCs did not
exhibit the tumorigenic properties associated with iPSCs
[50,51], implying that iPSC-MSCs may be a safer MSC
source. This study investigated the effects of iPSC-MSCs on
islet allografts without using BM-MSC treatment as a con-
trol. Rapa is used frequently in islet transplantation; how-
ever, recent research showed evidence of Rapa toxicity in
islet transplantation in clinical studies. For example, Rapa
exerts dual effects on the islet endothelium by inhibiting
angiogenesis and downregulating receptors that are involved
in lymphocyte adhesion and activation [52]. Furthermore,
Rapa also inhibits the revascularization of isolated pancre-
atic islets [53] and has significant detrimental effects on
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peripheral insulin resistance and -cell function and survival
[54]. Rapa at >0.5mg/kg had detrimental effects on islet
engraftment, while lowering the concentration to 0.1 mg/kg
did not affect engraftment when tested for preventing re-
jection in the full mismatch allogeneic transplant BALB/c to
the C57BL/6 model [55]. This result suggested that the
detrimental effects of Rapa were dose dependent. Therefore,
0.1 mg/kg Rapa was chosen for use in our study. However,
we showed that Rapa alone was inefficient in preventing
rejection, which was consistent with published studies [55].
Thus, a combination of 0.1 mg/kg Rapa with iPSC-MSCs
was used to suppress immune rejection of islet allografts
in this study.

Our results showed that iPSC-MSCs had the morpho-
logical characteristics of adult MSCs. Previous published
experimental studies suggested that MSCs can, under certain
conditions, induce allograft tolerance together with immu-
nomodulatory drugs [9,10,14,19]. In our study, iPSC-
MSCs + Rapa treatment effectively prolonged islet allograft
survival time and even induced immune tolerance in 50% of
the recipients, which was consistent with results using adult
MSCs with 2 mg/kg/day Rapa treatment in heart allografts
[9]. Our results demonstrated that the combined treatment
had synergistic effects.

Adult MSCs isolated from various sources (adipose tis-
sue and Wharton’s jelly) have been reported to equally
suppress proliferation of CD4* and CD8* T-cell subsets in
a dose-dependent manner [56]. Furthermore, adult MSCs
inhibit Thl and IFN-y secretion in vitro [57,58]. Using a
rat model of STZ-induced diabetes, adult MSCs signifi-
cantly improved glycemic control and reduced inflamma-
tory cell infiltration in either allogeneic or syngeneic
pancreatic islet transplantation [59]. In this study, iPSC-
MSCs+Rapa treatment effectively decreased the pro-
portion of splenic and lymph node CD4* and CD8* T
lymphocytes in vivo and strongly inhibited T-cell prolif-
eration. We also found that IL-2 and IFN-y expression was
downregulated. These results suggested that iPSC-MSCs +
Rapa treatment reduces Thl inflammatory cytokines and
may suppress the Thl response.

Several studies have shown that adult MSCs alone, or
combined with immunosuppressive drugs, induce allograft
immune tolerance through Treg induction in vivo [8,9,17].
Berman et al. first reported that infusions of donor or third-
party MSCs reversed rejection episodes and prolonged islet
function, associated with increased numbers of Tregs in
peripheral blood [60]. We hypothesized that iPSC-MSCs act
like adult MSCs to induce Tregs. TGF-f is the perpetrator of
immune suppression through regulatory T cells [61]. Al-
though the in vitro dependency of Treg suppression on TGF-
B is compelling, immune suppression mediated by Treg
in vivo clearly requires TGF-f, because administration of an
antibody against TGF-f blocked protection from colitis
[62]. Moreover, in a type 1 diabetes model, CD8" T cells
bearing a dominant-negative TBRII transgene were incapa-
ble of responding to Treg suppression, resulting in diabetes
progression [63]. Thus, we examined TGF-f expression in
the islet grafts and sera of the recipient mice. The results
showed that iPSC-MSCs+Rapa treatment increased sera
TGF-B concentrations and graft TGF-B and Foxp3 mRNA
levels, compared with Rapa treatment; this result supported
our hypothesis.
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Although a number of studies have revealed the immu-
nosuppressive effects of MSCs, the mechanisms that mod-
ulate this process have not been fully explained. Generally,
contact-dependent mechanisms and soluble factors, includ-
ing 2,3-dioxygenase, prostaglandin-E2, nitric oxide, TGF-p,
and hepatocyte growth factor, are thought to collaborate to
induce MSC-mediated immunosuppressive effects [64,65].
Moreover, IL-10 has been reported to be involved in MSC-
mediated immune regulation. Studies have demonstrated
that addition of MSCs to MLRs increases IL-10 expression,
while adding a neutralizing IL-10 antibody to MLRs results
in recovery of the MLR response in long-term surviving
splenocytes. This suggested that /L-710 mediates MSC sup-
pressive capacity in autologous MSC+ CsA-treated rats
[17]. In this study, we used ELISA and qRT-PCR to mea-
sure IL-10 expression levels. Our results showed that iPSC-
MSCs alone, or in the combination with Rapa, increased
IL-10 secretion in sera and /L-10 mRNA levels in the graft,
whereas Rapa alone did not. Further research is required
to determine whether IL-10 mediates the immunosuppres-
sive effect of iPSC-MSCs+Rapa on T cells. In addition,
Transwell separation significantly weakened the immuno-
suppressive effects of iPSC-MSCs on the proliferation of
Con A-treated splenic T cells, which indicated that the
combined treatment exerts its immunosuppressive effects
through cell—cell contact and the regulation of cytokine
production.

It is worth mentioning that MSCs from the umbilical cord
matrix, adipose tissue, and BM exhibit different capability
to suppress peripheral blood B, natural killer, and T cells
[66]. MSCs derived from the umbilical cord Wharton’s Jelly
displayed the most prominent immunosuppressive effects on
phytohemagglutinin-induced T-cell proliferation, compared
with MSCs derived from BM, adipose tissue, and the pla-
centa [67]. Equine MSCs from solid tissue-derived sources,
including the adipose tissue and umbilical cord tissue, in-
hibited T-cell proliferation by inducing lymphocyte apo-
ptosis, while MSCs from BM and cord blood induced
lymphocyte cell cycle arrest [68]. These studies showed that
MSCs from different tissue sources possess different im-
munomodulatory effects and modulate immune cell function
through overlapping and unique mechanisms [66—68]. Thus,
there may be differences in the immunosuppressive effects
and mechanisms between iPSC-MSCs and MSCs from other
sources, which require further study.

In conclusion, we have demonstrated that iPSC-MSCs
combined with low-dose Rapa reduced the production of
Th1 proinflammatory cytokines and significantly prolonged
islet graft survival compared with iPSC-MSCs or Rapa
alone. Furthermore, iPSC-MSCs alone, or combined with
low-dose Rapa, induced IL-10 production in vivo and in
vitro, which might have resulted from the immunomodulatory
effects of iPSC-MSCs. In addition, iPSC-MSCs combined
with low-dose Rapa significantly induced anti-inflammatory
cytokines and Treg proliferation. The synergistic immuno-
modulatory effects of iPSC-MSCs and low-dose Rapa in islet
transplantation suggest a promising strategy for preventing
transplant rejection. This research also provides a preliminary
experimental basis for applying MSCs not only in clinical
islets but also in other solid organ transplants. However, there
are still several questions that remain to be answered. Most
importantly, the origin of the cell sources and the long-term
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effects of iPSC-MSCs need to be investigated to validate their
safety and effectiveness in vivo. Finally, a more detailed un-
derstanding of iPSC-MSC functions should be determined in a
transplant model.
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