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Abstract

Obesity and its associated health disorders and costs are increasing. Males and females differ in 

terms of how and where body fat is stored, the hormones they secrete in proportion to their fat, 

and the way their brains respond to signals that regulate body fat. Fat accumulation in the intra-

abdominal adipose depot is associated with the risk for developing cardiovascular problems, 

type-2 diabetes mellitus, certain cancers and other disorders. Men and postmenopausal women 

accumulate more fat in the intra-abdominal depot than do premenopausal women, and therefore 

have a greater risk of developing metabolic complications associated with obesity. The goal of this 

review is to explore what we know about sexual dimorphisms in adipose tissue accrual and 

deposition. Elucidating the mechanisms by which sex hormones may modulate the way in which 

fat is accumulated and stored is a critical area of research due to the prevalence of obesity and the 

metabolic syndrome, and the rapid increase in propensity for these diseases following menopause.
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1. Introduction

Obesity is a leading cause for the development of adverse metabolic effects, including non-

insulin dependent diabetes mellitus, dyslipidemia, and cardiovascular disease [1,2]. There 

are important sex differences in the prevalence of these metabolic diseases. Ovarian 

hormones appear to be protective against the metabolic syndrome because prior to 

menopause, women have much fewer obesity-related metabolic disorders, and the 

prevalence of these metabolic disorders increases dramatically in women after menopause 

[3].

1.1. Adipose tissue distribution and its relationship to the metabolic syndrome

Health risks due to obesity vary depending on the location / accrual of adipose tissue [4]. 

Differences in distribution of adipose tissue suggests that not all adipose tissue is created 
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equally. Rather, different adipose depots have different properties that can have important 

consequences on health outcomes. Adipose tissue distributed in the abdominal or visceral 

region (‘android’ or male-pattern body fat distribution) carries a much greater risk for 

metabolic disorders, than does adipose tissue distributed subcutaneously [5]. In contrast, 

subcutaneous (‘gynoid’, or female-pattern) fat distribution is poorly correlated with risk for 

these metabolic disorders [6]. Whereas we know the health consequences associated with 

visceral fat deposition, very little is known about the metabolic consequences of 

subcutaneous fat. Additionally, very little is known about the regulation of fat distribution, 

or more specifically, how excess nutrients are partitioned/stored into the different adipose 

tissue depots.

1.2. Intra-abdominal/visceral adipose tissues

Intra-abdominal adipose tissue is metabolically and functionally different from subcutaneous 

adipose tissue, and is characterized by having relatively more capillaries and efferent 

sympathetic axons per unit volume than does subcutaneous adipose tissue [5]. Furthermore, 

intra-abdominal adipose tissue has adipogenic, metabolic, pro-atherogenic, and pro-

thrombotic characteristics [7]. There is a higher level of catecholamine-induced free fatty 

acid and glycerol release from intra-abdominal adipose tissue to the portal venous system in 

obese men relative to age- and BMI-matched women [8].

Surgical removal of intra-abdominal adipose tissue in humans results in decreased insulin 

and glucose levels [9]. Additionally, in male rats removal of intra-abdominal adipose tissue 

prevents the onset of age-dependent insulin resistance and glucose intolerance [10]. 

Removal of visceral fat improves glucose tolerance in both male and female mice [11], 

whereas removal of subcutaneous adipose tissue does not improve any aspect of the 

metabolic syndrome in humans [12] or in rodents [10,11]. Furthermore, in a recent paper by 

Tran et al. [13], they found transplantation of subcutaneous adipose tissue into 

intraabdominal adipose tissue improved metabolic parameters.

1.3. Subcutaneous fat

Subcutaneous fat is dispersed within a broad area under the skin, is relatively poorly 

innervated and vascularized, and has a larger average cell diameter than intra-abdominal 

adipocytes [5]. Subcutaneous adipose tissue was intended for fatty acid uptake and storage 

of excess calories in both men and women [14,15] , since lipid deposition provides an 

evolutionary advantage that allows efficient storage of maximal calories per unit volume of 

tissue. The capacity to store lipids within the subcutaneous depot is the key to facing famine 

when there is a limited caloric supply. This is especially important for females who need to 

utilize the energy stored to augment the caloric demands placed on the body from breast 

feeding. Therefore one hypothesis is that the deposition of adipose tissue in the 

subcutaneous depot of females is evolutionarily conserved, and that deposition of fat in this 

depot protects females from the diseases associated the metabolic syndrome and obesity.

1.4. Sex hormones regulate lipolysis and lipogenesis

The amount of fat stored in adipose tissue is the net difference between the rates of 

lipogenesis and lipolysis. In situations where metabolic fuels are not sufficient to meet 
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energy needs, a lipolytic cascade is initiated that results in the breakdown of energy stored in 

the form of triglycerides into free fatty acids and glycerol via hormone-sensitive lipase. 

Catecholamines trigger lipolysis via membrane-bound α- and β-adrenoceptors [16]. 

Specifically, catecholamines stimulate lipolysis via β1-, β2- and β3-adrenoceptors and 

inhibit lipolysis via α2-adrenoceptors [17]. Lipolysis correlates positively with activation of 

the sympathetic nervous system [18], which may further enhance free fatty acid release into 

portal circulation [8]. Female rats have higher lipolytic capacities and a lower α2/β3-

adrenoceptor ratio in intra-abdominal adipose tissue than do male rats [19].

In situations where there is a prolonged positive energy balance, adipocytes take up 

circulating fatty acids, which leads to increases in both adipocyte size and number. This is 

manifested more generally as an increase in body fat mass [20]. The major pathway of free 

fatty acid uptake is mediated by lipoprotein lipase, an enzyme that hydrolyses meal-derived 

triglycerides into chylomicrons and very low density lipoprotein triglycerides at the capillary 

endothelium. Visceral adipose tissue uptake of triglycerides is greater in men than in women 

[21].

1.5. Teleological explanation for differences in fat distribution

The underlying reasons that males and females store excess calories in different depots are 

presumably due to differential evolutionary and sexual selection pressures [22]. Visceral fat 

can be mobilized rapidly to respond to shorter-term energetic challenges. Consequently, one 

reason to store fat in the visceral depot is to make it more accessible for specific intermittent 

activities. If males are more responsible for hunting, gathering, or immediate protection, 

then it would make sense to store calories in a fat depot with greater lipolytic activity, which 

would facilitate rapid mobilization.

In contrast, the lower lipolytic rates in subcutaneous adipose tissue allow for this fat depot to 

respond to chronic metabolic challenges such as what occurs during gestation and lactation 

in females. Therefore, the weight gained during pregnancy is disproportionately in 

subcutaneous adipose tissue, thereby facilitating the female's ability to counteract the 

metabolic challenge associated with gestation and lactation. These findings support the 

concept that subcutaneous, but not visceral, adipose tissue is the preferred energy source 

utilized during late gestation in female rats. Additionally, in women, subcutaneous fat depots 

are more lipolytically active during lactation than are visceral fat depots; thus subcutaneous 

adipose tissue is utilized as an important source of energy supply during lactation.

2. Energy balance regulation

Body weight regulation is thought to occur through negative feedback mechanisms which 

characterize most homeostatic systems [23]. Signals act in the brain to regulate food intake, 

and ultimately the amount of calories stored in adipose tissue and thereby work to keep 

overall adiposity levels relatively constant. In addition to paying attention to total body fat, 

the brain pays attention to where the fat is distributed. Signals such as leptin, insulin and 

estrogen may play a role in communicate with the brain/CNS the overall level of adiposity 

fat and body fat distribution.
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2.1. Leptin

Leptin provides a powerful catabolic signal to the brain by inhibiting food intake and 

increasing thermogenesis [24]. Leptin is secreted from adipose tissue in direct proportion to 

fat content, and it penetrates the blood-brain barrier to interact with leptin receptors in the 

hypothalamus and brainstem [25]. Direct leptin action on target tissues has previously been 

demonstrated to stimulate lipolysis and fatty acid oxidation in adipose tissue, skeletal 

muscle, and the pancreas [26] to decrease triglyceride content and secretion rates in the 

liver, and suppress insulin expression and secretion from pancreatic β-cells [27,28].

Although there are several splice variants of the leptin receptor, the long form of receptor 

(termed OB-Rb) is the critical variant for regulating energy balance [29]. OB-Rb are 

localized in several brain areas including the ventromedial hypothalamic nucleus (VMN) 

and the arcuate nucleus (ARC) [30] as well as in peripheral tissues including adipose tissues, 

skeletal muscle, adrenal glands, pancreatic islets, liver, kidney, lymph nodes, and gonads 

[31]. Animals lacking leptin, leptin receptor, or downstream leptin signaling, exhibit 

profound obesity [32]. Administration of leptin to leptin-deficient mice, as well as 

restoration of OBRb in the brain of rats lacking the receptor, ameliorates this obese 

phenotype (e.g., [33]). In an attempt to assess the role of leptin signaling in the brain vs the 

periphery, transgenic animal models have been developed. Cohen et al. [34] deleted OB-Rb 

from neurons (OBRsynKO) and demonstrated that the mice were obese, whereas deletion of 

the OB-Rb from the liver had no discernable phenotype. Recently, de Luca et al., [35] 

demonstrated that restoration of OB-Rb in the CNS using synapsin I (Syn1)-Rb reversed the 

obese phenotype of the Leprdb/db, substantiating a critical role of CNS leptin signaling for 

the regulation of food intake and body weight.

Leptin controls body weight in part through activation of the sympathetic nervous system 

(SNS [36]). Functional connections have been established between white adipose tissue 

(WAT) and/or brown adipose tissue (BAT), via the SNS outflow from hypothalamic regions 

using the viral transneuronal tract tracer, pseudorabies virus (PRV) [37]. Leptin, via these 

connections, increases lipolysis, thermogenesis, and energy expenditure and suppresses 

pancreatic insulin secretion [38]. There is negative feedback between SNS and leptin 

production in adipose tissue through activation of the β3-adrenergic receptor [39]. Chemical 

sympathectomy alters CNS leptin-induced body weight regulation [40]. Ob/ob and db/db 

mice show hyperphagia, hyperinsulinemia and decreased sympathetic outflow leading to 

obesity [41]. Therefore, a pathway exists by which leptin could initiate a signal mediating 

SNS outflowto specific adipose depots. This could influence the mobilization of lipid stores 

in that depot, [42] thus influencing adipose tissue deposition.

In addition to providing information about overall adipose mass, leptin provides information 

about body fat distribution. Leptin levels have a higher correlation with subcutaneous than 

with visceral fat levels [43]. Because females have more subcutaneous fat than do males, an 

important implication is that the “adiposity” message conveyed to the brain differs in males 

and females, and is correlated with fat distribution [44,45]. Leptin levels are higher in 

females, even before puberty, compared with males, and this is independent of differences in 

body composition [46]. After puberty, estrogen and testosterone modulate leptin synthesis 

and secretion, apparently via sex steroid receptor-dependent transcriptional mechanisms 
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[47]. One conceptual model of how sex hormones may regulate fat distribution is that 

estrogen enhances leptin's ability to up-regulate sympathetic activity to stimulate lipolysis 

specifically in the visceral depot, thereby facilitating fat deposition in the subcutaneous 

depot.

Leptin levels are inversely correlated with testosterone [48] and exposure of human fat cells 

to testosterone or dihydrotestosterone inhibits leptin expression [49]. In aging and obese 

men, there is increased aromatase activity and conversion of androgens to estrogen and this 

is associated with increased plasma leptin [50]. Testosterone replacement normalizes 

elevated serum leptin levels in hypogonadal men and in castrated male rats.

In women, leptin fluctuations during the menstrual cycle directly correlate with estrogen, but 

not with progesterone [51]. Finally, peripheral or central estradiol administered either to 

ovariectomized females or intact males increases hypothalamic sensitivity to leptin and 

favors body fat accrual in the subcutaneous over visceral adipose depot [44]. These studies 

suggest that estrogen regulates energy balance and body fat distribution by interacting with 

leptin signaling pathways. Consistent with this hypothesis, estrogen deficiency impairs 

central leptin sensitivity [44,45,52].

2.2. Insulin

Insulin is also considered to be an adiposity signal, despite several important differences 

with leptin. Leptin is secreted directly from adipocytes in proportion to their metabolic 

activity, whereas insulin is secreted from pancreatic β cells in response to increases of 

circulating glucose. Thus, although both the circulating levels of leptin and insulin are 

directly proportional to the amount of total adiposity, leptin is a more stable signal for two 

reasons. First, the metabolic activity of adipocytes is more stable than are circulating glucose 

levels that change with feeding, exercise, and stress. Second, is that the half-life of plasma 

leptin is approximately 45 min, much longer than that of insulin with a half-life of 

approximately 2 to 3 min. Consequently, insulin's ability to predict adipose tissue levels is a 

result of the integrated signal of insulin over time rather than at any particular moment in 

time.

While both leptin and insulin cross into the brain via dedicated transport processes to act on 

specific receptors to regulate energy balance and elicit net catabolic responses, there are 

important differences in their actions in males as compared to females [44,45,53]. Male rats 

are relatively more sensitive to the catabolic action of insulin delivered into the CNS, 

whereas female rats are relatively more sensitive to the catabolic action of leptin delivered 

into the CNS [44,45]. A comparable phenomenon has been reported in a recent human study 

showing that men, but not women, lose body weight, body fat and waist circumference 

following intranasal insulin administration [53]. This approach increases insulin 

concentration in the cerebrospinal fluid and thereby alters brain functions [54]. Therefore, 

sex differences in sensitivity to the catabolic effects of insulin exists in rodents and humans.

2.3. Estrogens

Estrogens comprise a group of structurally related, hormonally active molecules that 

regulate critical cellular signaling pathways and, by doing so, control cell proliferation, 
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differentiation and homeostasis. Estrogens constitute one major group of female sex 

hormones [55]. The natural forms of estrogens are 17β-estradiol, estrone, and estriol. 

Estradiol circulates in high levels and potently activates estrogen receptor (ER) mediated 

transcriptional activity to a greater extent than estrone or estriol. Estradiol is involved in 

many physiological functions including development, growth, energy homeostasis, and 

reproductive physiology. Estradiol secretion is under the control of the hypothalamic-

pituitary-gonadal axis (HPG axis) and following secretion, reversibly binds to sex hormone 

binding globulin and, with lower affinity, to albumin.

Estrogen-action is mediated by ER's which are ligand-inducible nuclear transcription factors 

and they regulate the expression of target genes by binding to specific response elements 

(EREs) on DNA. [56]. ERs are localized predominantly in the nucleus ER (nER) [57–59] 

and binding to the nER is thought to be responsible for the genomic actions of estrogens. 

The “classical” nuclear ERwas cloned in 1985 [60] and renamed ERα when a second 

nuclear ER, ERβ, was discovered ten years later [61]. ERα is necessary for estradiol's 

genomic actions with respect to body weight regulation [62], whereas ERβ functions more 

as a modulator of estrogen actions [63]. ERα and ERβ, are products of two different genes 

located on separate chromosomes [64–68]. There are several ER mRNA splice variants 

which have been described [69]; however, their biological functions are not yet known.

Estradiol is able to evoke a ‘fast’ non-genomic response in many tissues, through a plasma 

membrane associated ER (mER) [70–76] and/or ERα [77]. The rapid signaling cascades 

induced by estrogens include activation of ion channels, the MAPK pathway; the CREB 

pathway, the phophatidylinositol 3-kinase (PI3 K)/Akt pathways; the G-protein coupled 

receptor (cAMP and intracellular calcium); and the nitric oxide pathway [74–76,78]. The 

rapid non-genomic ER pathway appears to involve mechanisms associated with 

neuroprotection and aging [79,80], reproduction [76,81], and body weight regulation [82–

86]. However, dissociating the genomic vs non-genomic pathways is still a subject for 

ongoing research.

2.4. Regulation of body weight by estrogen

Food intake and body weight regulation is potently influenced by estradiol in adult females 

of many species. In female rats during estrus there is a phasic decrease in food intake [87–

91]. Changes in food intake directly related to the cycling of estrogen in women have been 

difficult to characterize due to small differences in consumption over the days of the cycle. 

However, progressive decreases in eating through the follicular phase have been reported in 

old-world monkeys, which have gradual increases in estrogen throughout the follicular 

phase comparable to those of humans [92,93]. Over the 10 to18-day duration of this phase of 

the menstrual cycle, the difference in intake is sufficient to affect energy balance and 

adiposity. There are some reports of an increase in energy expenditure during the luteal 

phase in women; however, this increase is small and unlikely to compensate for changes in 

intake [94–96].

Ovariectomy (OVX), bilateral removal of the ovaries, results in reductions in circulating 

estrogen and increases daily food intake and promotes weight gain in rodents [44,97]. 

However, food intake and energy homeostasis following ovariectomy in women (usually 
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referred to as oophorectomy) have not been extensively studied. There is one report 

suggesting that lack of estrogen abolishes the cyclicity of food intake [98–100]. In women 

who displayed intermittent anovulatory cycles, food diaries reflected changes in intake 

present during cycles in which ovulation occurred, but not during cycles when ovulation did 

not occur [101,102]. Thus although these findings are suggestive, specific documentation of 

estrogen's role in modulating food intake across the cycle in women remain uncertain.

The transition to menopause provides an experimental environment to begin to address the 

questions about estrogen's role on food intake and body weight in women. However because 

menopause is a long, gradual process and estrogen secretion does not cease abruptly 

following the last menses, collection and interpretation of these data are complicated 

[46,103,104].

The most direct evidence that estradiol controls feeding is that a cyclic regimen of estradiol 

treatment to OVX rats, designed to mimic the changes in plasma estradiol levels across the 

estrus cycle, normalizes meal size, food intake, and body weight gain to the levels observed 

in gonadally intact rats [97]. More specifically, administration of estradiol to an OVX rodent 

in the middle of the light phase increases plasma estradiol levels in the first night after the 

injection, which corresponds to the increase of plasma estradiol during the proestrus phase 

of an intact rodent [97]. Rats eat less the second night after the estrogen injection, which 

corresponds to the decrease in food intake during the night of estrus in intact animals [97]. 

Thus in OVX rats, estradiol is sufficient to restore eating behavior and to maintain normal 

body weight [97].

As previously indicated, leptin and insulin are considered adiposity signals and transduce 

hormonal input into neurobiological responses to make compensatory adjustments by 

regulating food intake and energy expenditure, and consequently regulate total body fat 

stores [25]. Estrogen also fulfills these criteria and thus can be considered another potential 

‘adiposity signal’. Specifically, it is released from the ovaries, crosses the blood-brain 

barrier, binds to ERs located in key hypothalamic nuclei, and reduces food intake and body 

weight. Additionally, when delivered directly into the ventricular system, it decreases food 

intake possibly through its actions on the same neurons that are responsible for leptin's 

anorectic responses (for review: [105]).

Estrogen and leptin have overlapping target nuclei. Hypothalamic cells that are 

immunoreactive for ERs also express leptin receptors [106]. There is extensive 

hypothalamic co-localization of the long form of the leptin receptor and ERs, Ob-Rb and 

ERα, in the critical brain regions that modulate energy homeostasis, including ARC, VMN 

and parvicellular portion of the paraventricular nucleus (PVN). This colocalization suggests 

a closely coupled interaction between these peripheral signals and the regulation of 

behavioral and neuroendocrine mechanisms of energy homeostasis [106]. In addition to 

anatomic overlapping of their receptors, estrogen influences leptin receptor expression. 

Estrogen treatment of intact female rats downregulates the long form or signaling form of 

the leptin receptor in the hypothalamus [107]. Estrogen levels during the estrus cycle also 

appear to regulate the expression of the leptin receptors, such as Leptin receptor expression 

levels in the choroid plexus is lowest during proestrus, the stage of the estrus cycle with the 
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highest levels of estradiol [107]. Although circulating leptin does not change during the 

estrus cycle, ARC Ob-Rb expression is highest during estrus and metestrus [107], providing 

a potential mechanism for cyclic variations in energy intake and activity seen in females. 

Consistent with this idea, peripheral or central administration of 17 β-estradiol to 

ovariectomized female rats restores central leptin sensitivity [44]. In addition, administration 

of 17 β-estradiol increases sensitivity to central leptin, and decreases sensitivity to central 

insulin in male rats [44]. These findings suggest that gonadal steroids interact with the 

adiposity message conveyed to the brain by leptin and insulin, resulting in differential 

sensitivity to these signals in males and females [44].

2.5. Estrogen regulates adiposity

Visceral fat varies inversely with estrogen levels [108]. Visceral fat accumulation occurs in 

females when estrogen levels become sufficiently low. This is possibly due to direct effects 

of estrogen, as sex steroid hormone receptors (including progesterone and androgen 

receptors [PR and AR] as well as ER) are expressed in adipose tissues [109]. Subcutaneous 

adipose tissue has higher concentrations of ER and PR; however, visceral adipose tissue has 

higher concentrations of AR [110]. Furthermore, subcutaneous adipose tissue has few 

androgen receptors, and estrogen down-regulates AR expression in subcutaneous fat [111]. 

In accordance with the negative regulation between estrogen and AR in the adipose tissue, 

adipose tissue-specific AR knockout mice have increased intra-adipose estradiol levels, 

which further leads to subcutaneous obesity and hyperleptinemia with enhanced leptin 

sensitivity [112].

Ovariectomized female rats gain fat, specifically visceral fat with no change of subcutaneous 

fat [44]. Peripheral or central administration of 17 β-estradiol to ovariectomized females and 

changes their body fat distribution to mirror that of intact females. Additionally, altering the 

sex hormone milieu in males with 17 β-estradiol administration increases subcutaneous fat 

deposition [44]. An important implication from these findings is that estrogen regulates body 

fat distribution.

Heine et al. [113] reported that male and female mice with a targeted deletion in the ERα 

subunit (αERKO) have increased adiposity, consistent with other evidence linking estrogen 

with body weight regulation and adipocyte function. Recently, site-specific deletion of ERα 

in the VMH, a brain region critical for body weight regulation, demonstrated the role of 

estrogen activation of ERα in the regulation of body weight [62]. Specifically, lack of 

estrogen activation of ERα results in obesity due to an anabolic process, with changes in 

energy expenditure primarily mediating the weight gain [62]. These data are consistent to a 

previous finding in the ERα total body knockout mice are obese primarily due to changes in 

energy expenditure, rather than to changes in food intake [113,114]. Together, these data 

suggest that estrogen signaling within critical hypothalamic nuclei is responsible for the 

regulation of body weight via modulating energy expenditure.

Abnormal adiposity has been associated with the XbaI polymorphism of the human ERα 

gene, in which guanidine is substituted for adenine in exon one of the gene [115–117]. In a 

cross-sectional epidemiological sample of over two thousand middle-aged, premenopausal 

Japanese women who have the polymorphism, there is increased fat mass and increased 
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waist-hip ratios, an index of visceral adiposity, compared to pre-menopausal women with 

the normal genotype [115,117]. The polymorphism does not affect adiposity in 

postmenopausal women or in men. Thus, polymorphisms of the human ERα gene may 

impair estrogen signaling and lead to increased visceral adiposity and its attendant health 

risks.

2.6. Androgens and adipose tissue

We would be remiss if we did not mention the potential role for androgens in regulating 

body adiposity; however, data on the role of androgens and body fat distribution appear to 

be contradictory. On one hand, abdominal obesity is associated with reduced testosterone in 

plasma; on the other hand, androgens directly promote lipid mobilization and inhibit lipid 

uptake in adipocytes. There are reports which suggest androgens facilitate intra-abdominal 

fat deposition - as demonstrated by observations that high doses of androgens to female-to-

male transsexuals leads to a change in adipose tissue deposition to resemble more android 

body fat accrual [118]. However, other reports suggest low levels of androgens facilitate 

deposition of fat in the intra-abdominal depot [119]. Regardless of its direct role in 

facilitating adipose distribution into one depot or the other, androgens have been shown to 

enhance the lipolytic capacity of cultured male rat adipose precursor cells by increasing the 

number of β-adrenoreceptors and the activity of adenylate cyclase [120]. An increase in fatty 

acid turnover has been observed in human males treated with testosterone, and in these 

studies they found that testosterone treatment inhibited the activity of adipose tissue LPL 

[121]. Evidence of a direct action of androgens in adipose tissue also comes from studies 

that have demonstrated the presence of androgen receptors [122] and androgen binding 

[123] in both human and rodent adipose tissue. At the adipocyte level, androgens directly 

modulate lipid mobilization and lipid uptake, presumably by binding to androgen receptors 

expressed in adipose tissue.

3. Summary

Sex specific distribution of body fat has important implications for how obesity influences a 

wide variety of co-morbid conditions. Evidence links differences in body fat distribution to 

gonadal steroids which have important effects on the regulation of energy balance. As a 

result, males and females also appear to have important differences in the systems that 

regulate energy balance and body weight. Females store energy in the subcutaneous depot 

when energy is surfeit and utilize subcutaneous fat under energy challenging conditions. The 

more global implication is that much of the underlying health risk of obesity is conferred by 

intra-abdominal rather than total body fat. Therefore, elucidating the role of gonadal 

hormones in mediating body fat distribution may provide novel strategies for therapeutic 

targets. Further, understanding how intra-abdominal fat is regulated may provide other 

opportunities to lower intra-abdominal fat levels in the general population and thereby lower 

many of the co-morbidities associated with growing rates of obesity. It is our contention that 

much more research must be done to understand how males and females differ with respect 

to metabolism, and how approaches to weight loss can be tailored to each sex.
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