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Abstract: This study proposes a new water body classification method using  

top-of-atmosphere (TOA) reflectance and water indices (WIs) of the Landsat 8 Operational 

Land Imager (OLI) sensor and its corresponding random forest classifiers. In this study, 

multispectral images from the OLI sensor are represented as TOA reflectance and WI values 

because a classification result using two measures is better than raw spectral images. Two 

types of boosted random forest (BRF) classifiers are learned using TOA reflectance and WI 

values, respectively, instead of the heuristic threshold or unsupervised methods. The final 

probability is summed linearly using the probabilities of two different BRFs to classify 

image pixels to water class. This study first demonstrates that the Landsat 8 OLI sensor has 

higher classification rate because it provides improved signal-to-ratio radiometric by using 

12-bit quantization of the data instead of 8-bit as available from other sensors. In addition, 

we prove that the performance of the proposed combination of two BRF classifiers shows 

robust water body classification results, regardless of topology, river properties, and 

background environment. 
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1. Introduction 

Maintaining clean rivers and lakes is a prerequisite for supplying stable and safe water for humans. 

Conventional water quality assessments are limited to in situ collection and measurement of water 

samples from several spots of a long river or a wide lake for subsequent laboratory analyses [1].  

Even though this method is accurate, it requires substantial time and effort for continuous observation; 

therefore, satellite remote sensing has been used because of its cost-effectiveness and ability to overcome 

the constraints of conventional methods. Satellite remote sensing gathers water quality information over 

a greater range of temporal and spatial scales [1,2]. 

Among several available satellite remote sensors, the Thematic Mapper (TM) and Enhanced 

Thematic Mapper Plus (ETM+) sensors provided by the Landsat 5 and 7 satellites, respectively, are 

widely used for water quality assessment [3]. Landsat satellites have moderate spatial resolution  

(30 m), multi-spectral images (seven or eight bands), and a short revisit interval (16 days) [4].  

Landsat 8, launched on 11 February 2013, carries an improved Operational Land Imager (OLI) sensor 

and the Thermal InfraRed Sensor (TIRS). The OLI sensor provides nine spectral bands (1~9) and TIRS 

provides two spectral bands (10~11), as shown in Table 1. Seven bands from band 2 to band 7 of OLI 

are consistent with the TM and ETM+ sensors. The new two spectral bands, band 1 and band 9 allows 

measuring water resources and coastal zone investigation and improving the detection of cirrus clouds. 

TIRS conducts thermal imaging can be applicable to evapotranspiration rate measure for water 

management [5]. 

Table 1. Wavelength range and spatial resolution of the Landsat 8 OLI and TIRS [5,6]. 

Band Wavelength Range (ૄܕ) Spatial Resolution (m) 

OLI 1 0.433~0.453 (coastal/aerosol) 30 
OLI 2 0.450~0.515 (blue) 30 
OLI 3 0.525~0.600 (green) 30 
OLI 4 0.630~0.680 (red) 30 
OLI 5 0.845~0.885 (Near-IR) 30 
OLI 6 1.560~1.660 (SWIR-1) 30 
OLI 7 2.100~2.300 (SWIR-2) 30 
OLI 8 0.500~0.680 (Pan) 15 
OLI 9 1.360~1.390 (Cirrus) 30 

TIRS 10 10.30~11.30 (LWIR-1) 100 
TIRS 11 11.50~12.50 (LWIR-2) 100 

The OLI sensor provides better signal to noise ratio (SNR) radiometric performance than other 

sensors because it uses 12-bit quantization of the data. Improved SNR performance means more bits are 

available for better land cover characterization [5]. In addition, OLI’s higher SNR makes it possible to 

narrow the spectral bands and reduce the sensitivity of the changes in the atmosphere [7]. 

In general, multispectral images obtained through satellite remote sensing have different spectral 

variations according to the land cover types, such as seawater, vegetation, urban areas, and mountain 

regions. Therefore, water body classification is the first step to assess the water quality automatically. 

Conventional water body classification methods apply one or more heuristic thresholds to spectral 
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images. These methods are simple and obtain good classification results from limited terrain. However, 

these methods result in several false classifications when images consist of complex topologies such as 

mountain shadows, roads, and urban areas as well as rivers and lakes. Recently, Jiang et al. [4] proposed 

automatic river and lake extraction methods by applying the heuristic threshold method. This method 

combined the water indices (WIs) with sequences of thresholds that were determined by experiments to 

extract wide rivers and narrow rivers separately. However, this method has the same problems as 

threshold-based methods according to the artificial or natural terrain change. 

Classifier-based methods deliver better water body classification performance than threshold-based 

methods because these methods do not need to set heuristic thresholds. In these types of methods, 

supervised and non-supervised learning techniques are used for water body classification with 

multispectral images. As for the supervised learning, neural networks [8] and support vector machine 

(SVM) [9] are representative classification methods. In the case of unsupervised learning, region 

growing [10] and ISODATA clustering [2] methods are frequently used in water body classification. 

Even though the two approaches produce better classification results than threshold-based methods, they 

still have two disadvantages. First, supervised learning needs expert experience or existing reference 

data to select appropriate training data [4]. In particular, even though the SVM classifier is a reasonable 

choice for general classification due to its high performance and accuracy, it is not suitable when the 

feature has high-dimensionality and the test data is over 1000 dimensions, due to computational 

complexity [11]. In contrast, random forest (RF) classifier that is an ensemble of decision trees has been 

shown to be effective in a large variety of high-dimensional problems, with high computational 

performance and accuracy than other supervised classifiers [11]. Second, unsupervised learning methods 

need additional post processing to merge particle regions into real rivers and lakes. 

Contributions of This Work 

To solve the problem of supervised learning, our study proposes a new water body classification 

algorithm that uses a combination of two boosted random forest (BRF) classifiers based on  

top-of-atmosphere (TOA) reflectance values and spectral WIs, which were estimated only from the 

Landsat 8 OLI sensors without using TIRS. Figure 1 shows the block diagram of the water body 

classification procedure using OLI sensor data. In the second stage, multispectral images from the OLI 

sensor are represented as TOA reflectance and WI values because a classification result using two 

measures is better than raw spectral images. In the third stage, two types of BRF classifiers are learned 

using TOA reflectance and WI values of training data instead of the heuristic threshold or unsupervised 

methods. The learned BRF classifiers are used to detect the most likely water pixels in the test image in 

the fourth stage. 

This study demonstrates the robust water body classification results of the proposed method by 

comparing them with spectral images of other Landsat series and state-of-the-art water body 

classification methods. 

The remainder of this paper is organized as follows: in Section 2, the image conversion method to 

TOA reflectance and WIs is described. In Section 3, the proposed water body classification method using 

two types of BRF is introduced. In Section 4, we present experiments demonstrating the accuracy of our 
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proposed classification method. Finally, our conclusions and scope for future work are presented in 

Section 5. 

 

Figure 1. The block diagram of the water body classification procedure using OLI sensor data. 

2. Conversion to TOA Reflectance and WIs 

For a water body classification method with higher accuracy, we use two parameters, i.e., TOA 

reflectance and WIs. Originally, the raw digital number (DN) of each spectral band is in a 16-bit unsigned 

integer format and can be rescaled to the TOA reflectance using radiometric rescaling coefficients 

provided in the product metadata file [5]. TOA reflectance has the two following advantages when 

compared with raw DN [3]:  

• it removes the cosine effect at different solar zenith angles due to time difference between  

data acquisitions; 

• it compensates for different values of the exoatmospheric solar irradiance. 

In addition, the WIs are designed to enhance the classification performance between water bodies and 

land [4]. 

2.1. Conversion to TOA Reflectance 

TOA reflectance can be calculated using OLI band data from the reflectance rescaling coefficients 

provided in the product metadata file. Conversion of the DN of OLI data to TOA reflectance ( λ′ρ ), 

without correction for solar angle, is performed using the following formula [5]:  

p cal pM Q Aλ′ρ = +  (1)
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where pM  and pA  are the band-specific multiplicative and additive rescaling factors from the metadata, 

respectively. calQ  is the quantized and calibrated standard product pixel values. λ′ρ  does not contain a 

correction for the Sun angle; hence, the TOA reflectance value with a correction ( λρ ) for the Sun angle 

is computed by:  

cos( ) sin( )SZ SE

λ λ
λ

′ ′ρ ρρ = =
θ θ

 (2)

where SEθ  is the local Sun elevation angle provided in the metadata and SZθ  is the local solar zenith 

angle estimated by (90 )SE° − θ . This study computes only six TOA reflectance values from band 2 to 7 

except for band 1, 8, and 9 because of their specific purpose; Band 1 is used for investigating ocean 

colour and band 8 works just like panchromatic film instead of collecting visible colours. Band 9 is used 

for detecting cirrus contamination in other bands. 

2.2. Water Index Estimation 

As the second feature, we use normalized-difference water index (NDWI) [12] and modified  

NDWI (MNDWI) [13] because they have been successfully used in several water body classification 

methods [3,4,12,13]. NDWI is designed to maximize the reflectance of a water body by using green 

wavelength, minimize the low reflectance in Near-IR, and take advantage of the high reflectance in  

Near-IR of vegetable and soil features [3]. Xu’s MNDWI [13] was developed to enhance open water 

features by modifying NDWI. Moreover it can efficiently suppress and even remove built‐up land noise 

as well as vegetation and soil noise. For estimating NDWI and MNDWI, this study used TOA reflectance 

as the same method of [3,14,15]: 

3 5 3 5( ) / ( )NDWI = ρ − ρ ρ + ρ  (3)

36 3 6 3 6( ) / ( )MNDWI = ρ − ρ ρ + ρ  (4)

37 3 7 3 7( ) / ( )MNDWI = ρ − ρ ρ + ρ  (5)

where the subscript of ρ  represents the TOA reflectance value computed from band 2 (blue), band 3 

(green), band 5 (Near-IR), band 6 (SWIR-1), and band 7 (SWIR-2) of the Landsat 8 OLI wavelength. 

3. Water Body Classification Using Combination of Boosted Random Forest (BRF) 

For water body classification, we first remove shadow pixels using the relation ρ3 < Tshadow because 

band 3 (green) is a more distinguishable band for differentiating water bodies from mountain or hill 

shadows than other bands [16]. Here, shadowT  are the control parameters, large values of which can 

remove real water bodies, whereas small values generate wide false water bodies. This paper sets the 

initial values of shadowT  as 0.08 based on several experiments. 

After removing shadow pixels, we use a BRF classifier that is an ensemble of boosted randomized 

decision trees to classify water bodies accurately. Even though the random forest (RF) classifier [17] 

requires existing reference data in the training process like other supervised learning methods, the RF 

classifier is known to be effective for a large variety of high-dimensional problems with higher 

computational performance and accuracy than other classifiers, such as SVM or neural networks [11]. 
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In addition, because Landsat images have large resolution, RF is more efficient method than other 

classifier in terms of processing speed and accuracy. However, it depends heavily on the number of 

decision trees and requires a certain amount of memory and CPU capacity. Therefore, BRF [18] is 

applied to our classification system to maintain the generality with a small number of decision trees 

when considering the fact that sequential training constructs complementary decision trees for the 

training samples. 

In this study, two types of BRF classifiers are learned separately using different feature vectors instead 

of aggregating as one feature according to the experimental results of [19]. In reference [19], the author 

proved that if the basic characteristics of the two features were different, an artificial combination of two 

different features may worsen the classification performance. In particular, the performance of a random 

forest, which was the classifier used in this study, can be improved when the random forest uses the 

same types of feature. The first BRF classifier is trained using TOA reflectance values computed from 

six bands. The second BRF classifier is trained using three WIs computed from TOA reflectance values. 

For the training of an individual BRF, training data are constructed by the user. This training data include 

rivers and lakes as positive data and urban and lands as negative data. Then, six types of TOA reflectance 

values are extracted from positive and negative data for training the first BRF. For training the second 

BRF, three WIs features are extracted from the same positive and negative data. To perform the training, 

7500 image pixels were randomly selected (2500 pixels from water bodies, 2500 pixels from urban 

regions, and 2500 pixels from mountains). The training data is collected from Seoul City and included 

the urban region and Hangang River and Daegu City that included the Palgong Mountain area. Form 

each training pixel, TOA and WI feature vectors are extracted and these features are applied to BRFs for 

classifier training. The comparative methods, RF classifier and SVM are also used the same training data 

and the performance comparison is described in Section 4. 

Here, we construct two BRFs, BRF1 and BRF2 for each pixel: one uses only the TOA feature and the 

other uses only the WI feature. Because the basic characteristics of the TOA and WIs are different, we 

create two different BRFs rather than combining these into one feature vector according to the 

experiments of Ko et al. [19]. BRF adds a bootstrapping phase during the learning step, which is similar 

to the Adaboost algorithm. The learning of the BRF is summarized below (Algorithm 1). 

Algorithm 1 BRF learning 

1. T: the maximum number of decision trees to grow for BRF  

D: the maximum depth of trees to extend 

M: number of classes 

nS : Training set, including positive (river and lake) and negative (land, mountain and 

building) samples with their labels and weight, 1 1 1{ , , },...,{ , , }; ,N N N iy w y w X y M∈ ∈x x x  

Initialize sample weight (1) 1iw N=  

2. For t = 1 to T do 
Select subset s  from training set nS  

Grow an unpruned tree using the s  subset samples with their corresponding weights. 

For d = 1 to D do 
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Each internal node randomly selects p variables and determines the best split function 

using only these variables. 
Loop: Using different p-th variables, the split function ( )pf v  iteratively splits the 

training data into left (Il) and right (Ir) subsets using Equation (6). 

{ | ( ) },

\

l n p

r n l

I p I f v t

I I I

= ∈ <
=

 (6)

The threshold t is randomly chosen by the split function ( )pf v  in the range 

(min ( ), max ( ))p p
p p

t f v f v∈ . 

Compute information gain GΔ  function ( )pf v  

If ( GΔ = max) then Determine the best split function ( )pf v  for the node d 

Else goto Loop. 

End For 
Store the probability distribution ( | )tP C l  to leaf node 

Output: A weak decision tree 
Estimate class label ˆiy  of the training data with the trained decision trees:  

ˆ argmax ( | )i t
c

y P c l=  (7)

Calculate the error of decision tree tε : 

( ) ( )

ˆ:
/

i i

N Nt t
t i ii y y i

w w
≠

ε =   (8)

Compute weight of the t-th decision tree tα : 

( 1)(1 )1
log

2
t

t
t

M − − εα =
ε

 (9)

If 0α > , then  
Update weight of training sample ( 1)t

iw + :  

( )
( 1)

( )

ˆexp( )

exp( )

t
t i t i i

i t
i t

w if y y
w

w otherwise
+  α ≠

=  −α
 (10)

else 

Reject the decision tree 

End For 

3. Final output: A BRF consists of N decision trees ( N T≤ ) 

The two parameters of the BRF, a depth of tree (D) and the number of trees (T), are set as 20 and 120, 

based on the experimental results of [19]. After a set of BRFs is learned using the positive and negative 

training data, two feature vectors are extracted from every pixel of test data as shown in Figure 2. These 

vectors are used as input to the corresponding learned BRF. The probabilities of a water body class using 

TOA reflectance and using the WIs vector are computed by ensemble averaging of each probability 
distribution of all trees L = ( 1l , 2l ,…, Tl ) using Equations (11) and (12). 
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1

1
( | ) ( | )

T

tTOA Water Water
t

P C L P C l
T =

=   (11)

1

1
( | ) ( | )

T

tWI Water Water
t

P C L P C l
T =

=   (12)

Then, the final probability of a pixel on the water body class is estimated by weighted combination 

of each BRF’s probability:  

1 1( ) ( | ) (1 ) ( | )TOA Water WI WaterP water w P C L w P C L= ⋅ + − ⋅  (13)

The appropriate coefficient of weight 1w  can be adjusted according to the characteristics of water 

type. We set 1w  to 0.5 based on the experimental results described in Section 4. Last, if the final 

probability of ( )P water  exceeds a minimum threshold of 0.5, the pixel is accepted as a water body 

pixel. In Figure 2, the input pixel is classified into water class because the probability of water class is 

larger than that of non-water class. 

 

Figure 2. Water body classification process using the combination of two trained BRFs. The test 

pixel of input image is placed into the class that has the maximum posterior probability. 

After every pixel is classified either as a water body or background, neighboring water body pixels 

are merged into water regions using morphological closing. If the number of pixels of a water region is 

below 30 pixels after merging, it is declared as noise and removed. Proposed system is implemented 

using the same environment of Visual C++ language an Intel Quad-Core i7 processor PC running 

Windows 7 OS. 

4. Experimental Section 

Lake and river have various spectral signatures and they are hardly mapped with one or two 

classification values. Sometimes it’s very easy to map them just with one threshold, and any method can 
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delineate them accurately, while sometimes classification methods cannot delineate them when river or 

lake has different colors according to degree of Secchi depth, turbidity, and chlorophyll-a. 

Therefore, to evaluate the water body classification performance, three areas of Korea with different 

water types and topologies were selected:  

• Area 1- Yedang artificial reservoir of Yesan city that is surrounded by agricultural areas 

• Area 2- Soyangho lake of Gangwon Province that is surrounded by big mountainous areas and it 

also includes mountain shadows. 

• Area 3- the middle Nakdonggang River of Daegu City that is surrounded by agricultural areas and 

mountainous areas. 

Figure 3 shows the test images of the three areas. 

 

Figure 3. Three areas of Korea with different water types and topologies for performance 

evaluation. These images include many types of water features such as rivers, lakes  

and reservoirs. 

In this study we used three types of Landsat sensors, i.e., TM, ETM+, and OLI, in order to investigate 

which sensor provides the best classification result on a water body. We captured TM data on 3 July 

2009, ETM+ data and OLI data on 5 July 2014, at the same three sites. Because TM data does not provide 

data service since 2013, most recent data of the same location was used. In addition, because the ETM+ 

scan line corrector failed (SLC-off) permanently, we used the “dust & scratches” filter of Adobe 

Photoshop to remove noises and fill the gap in the ETM+ data according to the guidelines of the United 

States Geological Survey (USGS) [20] before applying the proposed classification algorithm. For 

performance comparison, TM and ETM+ used the same TOA reflectance using the formula in [14]. 
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The individual Landsat data set consisted of three 800 × 800 images of each area. To assess the 

performance of the water body classification, we asked two experts to crop the water body regions (river 

and lake) of test data as the ground truth using a graphic tool. To quantitatively evaluate the water body 

classification, we used overall accuracy (OA) and Kappa coefficient that have been generally used in 

related works [3,4,16,21]. The OA for each area was estimated by comparing the ground truth of water 

body pixels with the classified pixels obtained using the proposed system (Equation (14)) and Kappa 

measures the percentage of agreement between the ground truth and segmented water body pixel using 

Equation (15): 

number of true positive number of true negative
OA

All pixels in the ground truth

+=  (14)

1 1

2

1

q q

kk k k
k k

q

k k
k

n n n n
Kappa

n n n

+ +
= =

+ +
=

−
=

−

 


 (15)

where n  is the total number of pixels n the reference data, kkn  is the total number of i-th class, kn +  is 

the total number of pixels for the i-th class derived from the classified data, kn+  is the total number of 

pixels for the i-th class derived from the reference data. q  is the total number of class. 

To evaluate the performance of the Landsat 8 OLI sensor, we compared its classification performance 

to that of the Landsat 5 TM and Landsat 7 ETM+ sensors using OA and Kappa on three test images. 

Table 2 shows the two components of accuracy for three different sensors. As shown in Table 2, the OLI 

sensor produced a better classification performance with an average OA rate of 99.90% and average 

Kappa of 0.9942 as compared to 99.05% and 0.9469 for the TM sensor, and 99.73% and 0.9738 for the 

ETM+ sensor. The main reason for higher classification rate of the Landsat 8 OLI sensor is that it provides 

improved SNR radiometric performance by quantizing sensed radiance into 12 bits (4096 levels) of 

meaningful data, rather than the 8 bits (256 levels) used by Landsat ETM+ [5]. Furthermore, OLI sensor 

provides narrow the spectral bands and reduces the sensitivity of the changes in the atmosphere. 

The performance of the proposed classification method was then compared with two categories of 

state-of-the-art methods and the same approach using RFs, i.e., (i) the method devised by Li et al. [3], 

which uses an Otsu threshold method (Otsu threshold) with NDWI and MNDWI and (ii) the method 

devised by Kalkana et al. [9], which uses SVM classifier (SVM); (iii) Combination of two RFs.  

For SVM, Gaussian radial-basis function (RBF) kernel was used to map the input vector to a higher 

dimensional feature space with σ = 1 because SVM with an RBF kernel performs better than other 

kernels. After SVM training with the same training data, if the final score of SVM exceeds a minimum 

threshold of 0.5, the pixel is accepted as a water body pixel. This test uses the same imageries from the 

only Landsat 8 OLI sensors because it showed the highest performance. Moreover, this study applied 

the same shadow removing relation to all comparative methods for objective performance test. 

Table 3 shows that our proposed algorithm produces better water body classification performance 

than the other two methods. In terms of average OA, our method achieved a performance of 99.90%, which 

is 0.59% higher than the Otsu threshold-based method, 0.26% higher than the SVM classifier-based 

method, and 0.21% higher than the RF-based method. In addition, in terms of Kappa, our method 
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achieved a performance of 0.9942, which is 0.0286 higher than the Otsu threshold-based method,  

0.0123 higher than the SVM classifier-based method, and 0.0111 higher than the RF-based method. 

Table 2. Water body classification comparison of three Landsat sensors. 

Place Sensors OA (%) Kappa 
Area 1 TM 97.43 0.873946 
Area 2 TM 99.98 0.999078 
Area 3 TM 99.75 0.967846 

Average  99.05 0.946957 
Area 1 ETM+ 99.76 0.987877 
Area 2 ETM+ 99.90 0.994649 
Area 3 ETM+ 99.54 0.939105 

Average  99.73 0.973877 
Area 1 OLI 99.88 0.993539 
Area 2 OLI 99.90 0.994273 
Area 3 OLI 99.92 0.994965 

Average  99.90 0.994259 

Table 3. Water body classification comparison of three algorithms. 

Place Methods OA (%) Kappa 

Area 1 Otsu threshold 98.31 0.920227 
Area 2 Otsu threshold 99.94 0.997037 
Area 3 Otsu threshold 99.68 0.979753 

Average  99.31 0.965672 

Area 1 SVM 99.19 0.960726 
Area 2 SVM 99.83 0.99122 
Area 3 SVM 99.90 0.993993 

Average  99.64 0.98198 

Area 1 RF 99.82 0.990937 
Area 2 RF 99.40 0.967351 
Area 3 RF 99.86 0.991213 

Average  99.69 0.983167 

Area 1 Proposed method 99.88 0.993539 
Area 2 Proposed method 99.90 0.994273 
Area 3 Proposed method 99.92 0.994965 

Average  99.90 0.994259 

The best classification performance was obtained for Area 3, which had an average OA of 99.92% 

and average Kappa of 0.9949. In contrast, Area 1 had an average OA of 99.88% and average Kappa of 

0.9935. Even though the performance of SVM is similar to the proposed method, the processing speed 

of the proposed method is approximately 12.91 s, which is about 6 times faster than the SVM method 

(82.4 s) using the same testing images as shown in Figure 4. In case of RF-based method, it has somewhat 

lower performance than BRF-based method. From this result, we know that the segmentation accuracy 

can be improved by simple boosting of RF. The main reason for higher classification rate of our proposed 

method is that our algorithm found many potential water body pixels through individual BRF using TOA 
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reflectance and WIs features in the first step. Our method also eliminated a large amount of false water 

body pixels in the second step by averaging the output probabilities of two different BRFs. 
To determine the proper weights for the final probability (Equation (13)) of each feature, we 

compared OA performance using the same test data and proposed method while changing the value of 

weight. As shown in Figure 4, when 1w  was 0.5, the average OA was 99.8985%, which is better than 

when other coefficients were used. The experimental results show that the performance improves with 

the coefficient of 1w . However, when the coefficient of 1w  was greater than 0.5, the performance, in 

particular in terms of the OA, were gradually degraded. Therefore, 1 0.5w =  was adopted as the 

coefficient of weight for Equation (13). 

 

Figure 4. Comparison of OA performance according to the changes of weight for Equation (13). 

Apart from classification disagreement, the processing speed of proposed method was compared with 

two three methods using the same system environment and the same testing images. As shown in Figure 5, 

we can certainly see that Otsu threshold reduces the processing time significantly (5.2 s per image) as 

compared with the proposed (12.91 s per image), RF-based method (16.4 s per image), and SVM (82.4 s 

per image). In a comparison of processing speed, the proposed approach shows a 7.7 s lower performance 

than Otsu threshold. However, classification accuracy of Otsu threshold is relatively much lower than 

proposed approach and accurate water body classification is important factor for water quality analysis. 

Even though the performance of SVM is similar to the proposed method, the processing speed of the 

proposed method is approximately six times faster than the SVM. From the processing speed of proposed 

method (12.91 s per image), we also know that the processing speed can be reduced by boosting  

optimal RFs. When we used the original Landsat image of 8000 × 8000 size, the classification results 

were almost same with the cropped test regions, but the processing time was increased by approximately 

1213 s per image. In contrast, processing time for Otsu threshold was 489 s per image. One of our future 

works is to improve the processing speed as the similar level with Otsu threshold without losing the 

classification accuracy. 
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Figure 5. Comparison of processing speeds between proposed method and two related works. 

Figure 6 shows the water body classification results (marked in red) obtained using four approaches 

at three different places.  

 

Figure 6. Water body classification results of three test areas, (a) Yedang artificial reservoir; 

(b) Soyangho lake; and (c) the middle Nakdonggang River of Daegu city. Classified river 

and lake pixels are marked in red. Miss (solid line) and false (dot line) classifications are 

marked in yellow circles. 

The classification results show that our proposed method classifies each water body correctly 

regardless of topology, degree of water contamination, and background. Our approach gives the best 

classification results, but it also produces miss or false classification results if the width of river is 

narrow, or if the cluttered background contains a structure similar to the river or lake, as shown in  

Figure 6. 
  



Sensors 2015, 15 13776 

 

 

5. Conclusions 

This study proposed a robust water body classification algorithm applicable for both rivers and lakes, 

using TOA reflectance and WI values. For water body classification with higher accuracy, we used two 

types of BRF classifiers and combined the probabilities of the two BRFs into one. This study proved 

that the proposed method, using BRFs with two different features of the Landsat 8 OLI sensor, obtained 

higher classification results compared to the TM and ETM+ sensors. This was because the Landsat 8 OLI 

sensor provides higher SNR imagery than the other sensors. The experimental results using three datasets 

showed that our algorithm has enhanced classification performance compared to other state-of-the-art 

classification methods. 

For future work, our study will first focus on reducing missing and false classification regardless of 

the width of river and background cluttering. Second, our study will try to improve the processing speed 

without losing the classification accuracy because fast processing is important component of real-time 

application. Finally, out study plans to focus our research on measuring water quality based on water 

body classification and TOA reflectance values. 
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