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Abstract

Animal research finds that insulin regulates dopamine signaling and reward behavior, but
similar research in humans is lacking. We investigated whether individual differences in body
mass index, percent body fat, pancreatic $-cell function, and dopamine D2 receptor binding
were related to reward discounting in obese and non-obese adult men and women. Obese

(n =27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were
assessed for percent body fat with dual-energy X-ray absorptiometry and for 3-cell function
using disposition index. Choice of larger, but delayed or less certain, monetary rewards rela-
tive to immediate, certain smaller monetary rewards was measured using delayed and proba-
bilistic reward discounting tasks. Positron emission tomography using a non-displaceable
D2-specific radioligand, [ 'C](N-methyl)benperidol quantified striatal D2 receptor binding.
Groups differed in body mass index, percent body fat, and disposition index, but not in striatal
D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese
women related to preference for a smaller, certain reward over a larger, less likely one
(greater probabilistic discounting). Lower 3-cell function in the total sample and lower insulin
sensitivity in obese related to stronger preference for an immediate and smaller monetary
reward over delayed receipt of a larger one (greater delay discounting). In obese adults,
higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal
D2 receptor binding was not significantly related to body mass index, percent body fat, or 3-
cell function in either group. Our findings indicate that individual differences in percent body
fat, B-cell function, and striatal D2 receptor binding may each contribute to altered reward
discounting behavior in non-obese and obese individuals. These results raise interesting
questions about whether and how striatal D2 receptor binding and metabolic factors, includ-
ing B-cell function, interact to affect reward discounting in humans.
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Introduction

Human obesity is associated with altered dopamine (DA) function [1], altered DA D2-like
receptor binding in brain reward regions [2-3], altered reward-related behavior [4-6], and
insulin dysregulation [7-8]. How these factors relate to each other remains unclear. Under-
standing the precise relations among dopaminergic dysfunction, altered reward behavior, and
metabolic factors may be critical for identifying behavioral subtypes of obesity, and for specify-
ing targets of clinical intervention along the complex pathway linking neuroendocrine hor-
mones and behavior.

In nonhuman animals, the pancreatic -cell-secreted hormone insulin binds directly to
insulin receptors located on DA neurons in brain reward pathways [9], and regulates DA sig-
naling, reward processing, and reward behavior by increasing DA transporter (DAT) density
and function in the striatum [10-12]. Insulin also interacts with D2-like receptors to affect
DA-dependent behavior [13], increases brain reward thresholds [14], and reduces preference
and operant responding for food reward [15-16], non-hedonic food intake [17], and hedonic
food intake in sated animals [11].

Recent human neuroimaging evidence indicates that insulin alters brain activity and
response to food cues in healthy individuals [18-19]. Specifically, insulin administration
decreases palatable food intake [20-21], and oral glucose-induced insulin reactivity lessens
brain activation in response to images of food [22]. In insulin-resistant individuals, the
increased rate of brain glucose metabolism normally associated with insulin infusion is
decreased, particularly in regions related to reward such as ventral striatum [23]. Lower insulin
sensitivity is associated with increased brain activation induced by food images [24] and
increased striatal D2-like receptor binding [3]. Finally, in obese but not lean individuals, activ-
ity in reward-related brain regions mediates the relation between insulin resistance and food
craving [25]. To our knowledge, however, there are no published human studies of the relations
among pancreatic B-cell insulin secretion, striatal D2 receptor (D2R) binding, and food or
non-food reward discounting behavior in the same individual.

The goal of the present study was to determine specific relations among body mass
index (BMI), percent body fat (PBF), B-cell function, D2R binding, and monetary reward dis-
counting behavior in obese and non-obese adults. Steep discounting of delayed rewards is
associated with increased impulsivity and poor self-control whereas shallow discounting of
probabilistic rewards is related to increased risk-taking behavior [26], characteristics that
may fuel problem eating behavior in obesity. We hypothesized that 1) higher BMI and PBF,
2) lower B-cell function, as reflected by disposition index (DI) values, and 3) lower striatal
D2R binding, would relate to greater preference for an immediate, smaller (greater discount-
ing of a delayed reward, DRD) and larger but less certain (less discounting of a less probable
reward, PRD) monetary reward in both non-obese and obese groups. The direction of the lat-
ter hypothesis is based on animal and human studies that indicate associations between
decreased striatal D2-like receptor availability and addiction-like behavior and/or obesity
[1,27-29]. Striatal D2R specific binding was quantified with tc (N-methyl)benperidol
(["'CINMB), a novel radioligand that, unlike other commonly used D2-like receptor PET
radioligands, is over 200-fold selective for D2R over D3 receptors [30], is not displaced by
endogenous DA [31], making it suitable for measuring absolute D2R binding. We further
predicted that lower B-cell function, but not BMI [32] or PBF, would relate to decreased D2R
binding in non-obese and obese groups.

PLOS ONE | DOI:10.1371/journal.pone.0133621

July 20, 2015 2/20



@’PLOS ‘ ONE

Insulin, DA D2R, and Reward in Obesity

Materials and Methods
Participants

Volunteers were assessed with a detailed history, including neurological and physical examina-
tions, psychiatric interviews [33], and routine blood tests (e.g., fasting plasma glucose, lipids,
serum creatinine, hematocrit). Individuals were excluded for history of medical problems (e.g.,
diabetes) as well as other significant neurological, cerebrovascular, cardiovascular, or psychiat-
ric diagnosis (DSM-IV Axis I disorders except for specific phobias), head trauma, any current
or recent dopaminergic drug use (e.g., stimulants, agonists, bupropion, neuroleptics or meto-
clopramide), current heavy alcohol use (males >2 drinks per day, females >1 drink per day) or
illicit drug use [34], history of substance abuse or dependence, or IQ below 70 as measured by
the Wechsler Adult Intelligence Scale [35]. All women were premenopausal. Fifteen non-obese
and 15 obese participants overlap with the sample reported on previously [32].

Ethics Statement

The study (IRB ID#201104109) was approved by the Washington University School of Medi-
cine Human Research Protection Office and the Radioactive Drug Research Committee, and
was carried out in accordance with the principles expressed in the Declaration of Helsinki. All
participants gave written informed consent prior to participation.

Obesity and insulin measures

An average of 13.9 days (S.D. = 17.1) prior to the positron emission tomography (PET) scans
and usually on the same day that reward discounting was assessed, BMI and PBF were obtained
by dual-energy X-ray absorptiometry using the GE Lunar iDXA (GE Healthcare; Chalfont St
Giles, UK; [36]) (1 person completed the reward discounting task 1 month after the PET scan
and another completed the task on the day of the PET scan). Participants also underwent a
2-hour oral glucose tolerance test (OGTT), with arterialized hand vein sampling of insulin, C-
peptides, and blood glucose levels at times -5, 0, 10, 20, 30, 60, and 120 minutes after drinking
a standard 75g glucose load. The oral glucose minimal model provides a measure of insulin
sensitivity that compares well with insulin sensitivity estimated from an intravenous glucose
tolerance test [37]. Pancreatic B-cell function was estimated using this model to calculate a DI
(Disposition Index = insulin sensitivity x insulin secretion for the given amount of glucose).
Unlike the homeostatic model assessment of insulin resistance (HOMA-IR), which is based
solely on fasting levels, this index is a more comprehensive measure of whole body insulin sen-
sitivity that takes into account both the fasting and post-glucose load values [38]. Whole-body
insulin sensitivity was estimated using the Matsuda insulin sensitivity index (Matsuda ISI;
10,000/+/[(Glucoseyy (mg/dL) x Insulin,y (mU/L) x (Glucoseean X Insuling,ean)] [39]; a
higher Matsuda ISI indicates greater insulin sensitivity. Postprandial B-cell insulin secretion
was calculated using the minimal model analysis, providing an index (Phi Total) of insulin
secretion in relation to a plasma glucose concentration that relies on plasma C-peptide as a
function of glucose concentration [38]; higher Phi Total indicates greater pancreatic -cell
secretion of insulin in response to glucose load. DI was selected as the primary insulin measure
of interest because it accounts both for how much insulin is secreted for a given amount of
ingested glucose, and for how effective insulin secretion is at clearing glucose [38]. A higher DI
indicates better B-cell function.
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PET & MRI acquisition, preprocessing, and analyses

Structural magnetic resonance T1-weighted anatomical images were acquired on a Siemens
Magnetom Tim Trio 3T scanner using a 3-D MP-RAGE sequence (sagittal orientation,

TR = 2400 ms, TE = 3.16 ms, flip angle = 8 degrees, slab thickness 176mm, FOV = 256x256mm;
voxel dimensions = 1x1x1 mm). PET images were acquired on a Siemens/CTI ECAT EXACT
HR+ scanner using ([''CINMB). ['!C]NMB was prepared using an automated system based on
published methods [40-41]. Benperidol (Janssen Pharmaceutica) was [''C]methylated with
[*'C]CH;I made with the Washington University JSW BC-16/8 cyclotron and GE PETtrace Mel
MicroLab, and product [''C]NMB was isolated using preparative HPLC. The radiopharmaceuti-
cal was terminally sterilized by membrane filtration (0.2 pM) and reformulated in 10% ethanol
in Sodium Chloride for Injection, USP. The product radiochemical purity exceeded 95%, and
specific activity > 2000 Ci/mmol (74 TBq/mmol). In all studies, the injected dose of unlabeled
NMB was < 7.3 ug. Each participant received 6.4-18.1 mCi [''C]NMB intravenously.

ROIs including the dorsal striatum (putamen, caudate), and ventral striatum (nucleus
accumbens (NAc)) were selected a priori and identified using FreeSurfer [42]. To reduce partial
volume effects, putamen and caudate regions were eroded by approximately 2 mm from the
surface by combining a Gaussian smoothing filter with thresholding. The NAc volume was not
large enough to erode in this manner. For each participant, the dynamic PET images were co-
registered to each other and to the participant’s MP-RAGE image, as described previously [43].
Striatal ROIs and the cerebellar cortex reference region were resampled in the same atlas space
[44], and decay-corrected tissue activity curves were extracted for each ROI from the dynamic
PET data. Non-displaceable binding potentials (BPyp) for DA D2R were determined for each
ROI using the Logan graphical method with the whole cerebellum as the reference region [45].
D2R BPyps for putamen, caudate, and NAc were averaged across left and right hemispheres to
reduce the number of comparisons. The independent variable ‘Striatal D2R BPyp’ was calcu-
lated by summing BPyps for putamen, caudate, and NAc in each individual.

Behavioral paradigms and analyses

Participants completed delayed (DRD) and probabilistic (PRD) reward discounting tasks. Per-
formance on these tasks may relate to dopaminergic signaling [46-47]. In addition, these tasks
are associated with distinct neural mechanisms [48-49] and decision-making processes in
humans [50-51], and were used in previous studies of human obesity [6,52-53]. Participants
first completed 2 separate practice rounds (1 for DRD and 1 for PRD), consisting of 5 trials
each, before completing the actual tasks. Presentation order regarding type of task was ran-
domly assigned. The DRD task consisted of 5 trials per delay condition in which participants
made a series of choices, indicated by mouse click, between two hypothetical monetary rewards
displayed simultaneously on the computer screen: an immediate, smaller amount (to be
received “now”), and a larger, delayed amount to be received in the future at each of 5 delays
(1 week, 1 month, 6 months, 1 year, and 2 years from now). The smaller immediate reward
amount varied from trial to trial but the delayed larger reward was held constant at $500. The
PRD task was identical to the DRD task except that the probability of receiving the larger
amount varied (10%, 25%, 50%, 75%, or 90%) instead of time to obtaining the reward. For each
participant, the presentation order of the 5 different delay and probability conditions was ran-
domized within each task. Visual locations for choices were randomly positioned on the left
and right side of the screen.

For each delay condition and for each probability condition, a series of “indifference points”
was computed in an iterative fashion, representing the points at which the immediate/certain
and delayed/probabilistic amounts were of approximately equal subjective value for an
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individual. For the first choice trial within a delay or a probability condition, the small, imme-
diate/certain amount ($250) was always half of the delayed/less probable larger reward amount.
For each subsequent trial within a condition, the immediate/certain, smaller amount was half
the size of the previous change; the immediate/certain amount increased or decreased in the
direction of the participant’s previous choice. Completion of the tasks yielded 5 indifference
points each for DRD and PRD. Degree of reward discounting in an individual was determined
by calculating area under the curve (AuC) [54], an atheoretical measure of the degree to which
areward decreases in subjective value as a function of delay (DRD4,,c) or probability (“odds
against;” PRD,¢) [55]. AuC values range from 0.0 (complete discounting) to 1.0 (no discount-
ing). Lower AuC values indicate greater discounting as a function of delay or odds against; that
is, lower DRD ¢ reflects greater preference for immediate, smaller rewards, and higher

PRD 4, ¢ reflects greater preference for risky, larger rewards.

Primary statistical analyses

Planned data analyses were conducted using SPSS v. 20.0. For each variable, distribution
normality was assessed with one-sample Kolmogorov-Smirnov tests. Comparisons between
non-obese and obese individuals were conducted using independent samples ¢-tests, Mann-
Whitney U (for non-normally distributed variables), or, in the cases of DI, Matsuda ISI, Phi
Total, striatal D2R BPyp, and reward discounting, analyses of covariance (ANCOVA) covary-
ing for age, education level, sex, and ethnicity. Since only three individuals had ethnicities
other than White or Black, ethnicity was entered as a binary variable—‘White or not.” Differ-
ences in gender and ethnic distributions between non-obese and obese participants were
assessed with Chi-Square tests. Mixed repeated measures ANOV As determined whether sub-
jective values of delayed or probabilistic rewards decreased at the same rate in non-obese and
obese groups. Bivariate correlations were calculated as Pearson’s .

Within-group analyses used hierarchical multiple linear regression models with appropriate
covariates in Step 1 (i.e., age, gender, education, ethnicity, group (group was covaried in total
sample analyses only)). Age and education were covaried because they have been shown to
correlate with our variables of interest in previous studies [32, 56-58]. Step 2 of the model
included a single predictor of interest: BMI, PBF, DI, or striatal D2R binding. The dependent
variable was DRD ¢ or PRD 5, except for the hierarchical multiple linear regression analyses
testing relations among predictor variables. Small group sizes precluded use of an interaction
term (i.e., group x BMI) in these analyses; therefore, regression analyses were performed sepa-
rately in the total sample, non-obese, and obese groups. These separate group analyses were
treated as exploratory and results were corrected for multiple comparisons by the Bonferroni
method (Bonferroni-corrected o = 0.025). Partial correlations (pr) were calculated for each
hierarchical linear regression model to describe the unique variance explained by each predic-
tor variable and outcome variable. These analyses were also performed including only female
participants.

We also explored the effects of B-cell function on variables of interest by examining relations
with Matsuda ISI and Phi Total separately, but only in cases where the relation with DI was sig-
nificant, to minimize the problem of multiple comparisons. Likewise, significant relations with
striatal D2R binding were followed up with examining those between specific ROIs (putamen,
caudate, Nac) and the outcome measure.

A threshold of p<0.05 was used for significance testing except for separate group
hierarchical multiple linear regression analyses, where 0<0.025 due to Bonferroni correction.
Cohen’s effect size calculations for differences between groups (Cohen’s d; [59]) and for each
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Table 1. Participant characteristics.

BMI (kg/m?)
PBF
Age (years)
Education (years)
Disposition Index
Matsuda ISI
Phi Total
Striatal D2R BPyp
DRDauc
PRDauc
Gender Distribution
Ethnic Distribution

Obese (n =

Mean (S.D.)

39.90 (4.76)
48.67 (4.04)
31.5 (6.61)
14.96 (1.91)
123.68 (71.95)
4.05 (2.97)
36.36 (15.71)
10.12 (1.34)
.52 (.27)
.22 (.13)

23 Female, 4

13 Wh, 13 Bl,

hierarchical linear regression (Cohen’s f2; [59]) were completed using StatCalc3 [60]. Other
effect size statistics (r, N zp, @) were calculated by hand or in SPSS.

Results
Participants

Twenty-seven obese adults and 20 non-obese adults participated. Two participants with

BMI > 25 kg/m” (25.9 and 25.1 kg/m®) were included in the non-obese group. All other partic-
ipants included in the non-obese group could therefore be considered true ‘normal-weight’.
There were no PET data for three obese participants due to attrition between behavioral testing
and the PET scan day. The final sample for analyses involving PET data included 24 obese (4
male) and 20 non-obese (5 male) adults; for analyses involving DRD and PRD, data included
26 obese (4 male) and 19 non-obese (5 male) adults.

Group comparisons

Descriptive statistics for demographics and all study variables are summarized in Table 1.
Non-obese and obese individuals differed significantly in BMI and PBF but not years of educa-
tion or age. The non-obese and obese groups did not differ in gender distribution, but ethnicity
distribution was different at a marginally significant level. $-cell function (DI) and insulin sen-
sitivity (Matsuda ISI) were lower, and insulin secretion was higher, in obese relative to non-
obese participants. Consistent with an overlapping sample in a previous publication from our
lab [32], obese and non-obese groups did not differ significantly in striatal D2R BPyp. Reward
discounting behavior did not differ between the non-obese and obese groups on either delay
discounting (DRDy,,¢c) or probabilistic discounting (PRD ¢ (Fig 1). DRD4,c and PRDy,¢c
values were positively correlated across the total sample (r45 = .43, p<0.01), as well as within

27) Non-obese (n = 20) Group Comparisons

Range Mean (S.D.) Range Test Statistic p-value Effect Size
33.2-51 22.42 (2.40) 18.6-27.7 Uss =217 <0.001*** 0.85
39.7-55.6 32.74 (5.87) 20.8-43.6 Ugs =217 <0.01** 0.83
20-40.9 28.64 (5.28) 21.0-39.7 U,ys = 408 0.12 0.23
12-18 15.90 (1.39) 13-18 Uys =578 0.11 0.22
54.4-288.8 276.61 (172.24) 74.6-758.4 Fi41=24.22 <0.001*** 0.37
1.2-10.5 10.02 (5.97) 3.3-21.4 Fi41=2297 <0.001*** 0.36
18.3-93.2 28.69 (7.46) 16.0-41.2 Fi41=4.14 0.05* 0.09
8.2-13.4 10.20 (1.20) 8.6-12.3 Fi3s=1.98 0.17 0.05
.14-.98 .55 (.29) .05-.98 F1.39 =0.00 0.97 0.00
.02-.50 20 (.11) .02-.42 F130=0.56 0.46 0.01
Male 15 Female, 5 Male 231, N=47)=0.75 0.39 0.13
1 Hi 16 Wh, 2 B, 1 Hi, 1 Biracial 221, N=47)=3.41 0.07" 0.27

BMI, body mass index; ISI, insulin sensitivity index; DRD, delayed reward discounting; PRD, probabilistic reward discounting; D2R, dopamine D2 receptor;
BPnp, non-displaceable binding potential; NAc, nucleus accumbens; Wh, white; Bl, black; Hi, Hispanic.

* p<0.05
**, p<0.01
**% p<.001

T p = 0.07 for comparison between obese and non-obese

doi:10.1371/journal.pone.0133621.t001
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Fig 1. Non-obese and Obese Individuals Show Similar Reward Discounting Tendencies. (A) The
subjective value of a monetary reward ($500) decreased as time to its receipt increased (main effect of time:
F4.120 =54.10, p <.001) in a similar manner in non-obese and obese individuals (no main effect of group:
Fi30=.12,p=0.73 or group x time interaction (F4 120 = .36, p = 0.84). (B) The subjective value of a monetary
reward ($500) decreased as the odds against its receipt increased (main effect of time: F4 120 = 88.66,
p<0.001) in a similar fashion in non-obese and obese groups (no main effect of group: Fy 30=.12,p=0.73 or
group x time interaction (F4, 120 = .67, p = 0.62).

doi:10.1371/journal.pone.0133621.g001

the non-obese (119 = .51, p = 0.03) and obese (1,5 = .39, p = 0.05) groups, such that greater pref-
erence for smaller and immediate monetary reward was associated with greater preference for
smaller and certain ones.

Relations of BMI and PBF to reward choice

BMI did not significantly relate to DRD 4,,c within the total sample, non-obese, or obese indi-
viduals (Table 2). When PBF was entered as a predictor in place of BMI, it was not significantly
related to DRD ¢ within the total sample or obese participants. The significance level for this
relationship in non-obese individuals was p = 0.05 but did not survive Bonferroni multiple
comparisons correction (Table 2).

Neither BMI nor PBF were related to PRD, ¢ in the total sample, non-obese, or obese
groups (Table 3).

Relation of B-cell function to reward choice

DI significantly related to DRD 5, within the total sample (Fig 2A, Table 2and S1 Table),
such that individuals with higher B-cell function discounted delayed rewards at a lower rate
than those with lower B-cell function. The significance level of this relationship in obese indi-
viduals was p = 0.05 but did not survive multiple comparison correction. In non-obese individ-
uals, DI and DRD 4, were not significantly related (Table 2and S1 Table).

In follow-up analyses, within the total sample, insulin sensitivity (Matsuda ISI) and
DRD 4, were related at a marginally significant level (S2 Table). This relationship was not sig-
nificant in non-obese individuals but, in the obese group, lower insulin sensitivity was signifi-
cantly associated with greater discounting and survived Bonferroni multiple comparisons
correction (Fig 2B, S2 Table).

Insulin secretion (Phi Total) did not correlate with DRD 4,c in the total sample, obese, or
non-obese groups (F for change in R°<2.39, p>0.14).

DI was not significantly associated with PRD 4, within the total sample or within non-
obese or obese groups (Table 3).

Relation of striatal D2R BPyp to reward choice

Striatal D2R BPyp significantly related to DRD 4 ¢ in obese individuals (Fig 3A, Table 2, S3
Table), such that obese participants with higher striatal D2R BPyp, discounted delayed rewards
to a higher degree than those with lower striatal D2R. This relationship was not significant in
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Table 2. Hierarchical multiple linear regression analyses results in non-obese and obese men and women for delayed reward discounting
(DRDAuC)'

N Partial r for DRDa,c and Predictor Variable F for change in R?, p-value Effect Size (Cohen’s %)
Body Mass Index

Total sample 45 -.05 .08,p =0.78 .01
Non-obese 19 -.39 2.35,p=0.15 .19
Obese 26 .01 .00, p =0.98 .00
Percent Body Fat

Total sample 45 -.05 2.70,p =0.11 .08
Non-obese 19 -.52 4.69, p = 0.05* .36
Obese 26 -.01 .00, p =0.97 .00
Disposition Index

Total sample 45 .38 6.21, p = 0.02* A7
Non-obese 19 43 2.91,p=0.11 .22
Obese 26 .43 4.48, p = 0.05" 22
Striatal D2 Receptor Binding

Total sample 42 -.28 3.00, p = 0.091 .09
Non-obese 19 .05 .04, p =0.85 .00
Obese 23 -.56 7.64, p = 0.01** .45
*, p<0.05

** p=0.01

T p<0.10

# 1p<0.05 but does not survive Bonferroni-corrected significance level (a = 0.025)

doi:10.1371/journal.pone.0133621.t002

Table 3. Hierarchical multiple linear regression analyses results in non-obese and obese men and women for probabilistic reward discounting
(PRDauc)-

N Partial r for PRD,,c and Predictor Variable F for change in R?, p-value Effect Size (Cohen’s f?)

Body Mass Index

Total sample 45 .01 .01,p=0.93 .00
Non-obese 19 -11 .16,p =0.70 .01
Obese 26 -.01 .00, p =0.95 .00
Percent Body Fat

Total sample 45 -.07 .21,p =0.65 .01
Non-obese 19 -.29 1.19,p=0.30 .10
Obese 26 -.01 17,p=0.69 .00
Disposition Index

Total sample 45 -.05 .08,p=0.78 .01
Non-obese 19 .20 .51, p=0.49 .05
Obese 26 -.30 2.01,p=0.17 .09
Striatal D2 Receptor Binding

Total sample 42 -.23 1.86,p=0.18 .06
Non-obese 19 14 .26, p =0.62 .02
Obese 23 -.48 5.15, p = 0.04* .30

# p<0.05 but does not reach Bonferroni-corrected significance level (a = 0.025)

doi:10.1371/journal.pone.0133621.1003
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Fig 2. Insulin Function Relates to Delayed Reward Discounting in Total Sample and Obese Group. (A)
B-cell function across the total sample and (B), insulin sensitivity in obese participants related to greater
preference for a smaller butimmediate monetary reward relative to one that was larger but delayed. Data
points are standardized residuals of variables after controlling for age, gender, education, and ethnicity (and
group in (A)). Clear data points, non-obese; filled data points, obese; DRDa,c, area under the curve for
delayed reward discounting.

doi:10.1371/journal.pone.0133621.9002

non-obese individuals (Fig 3B, Table 2and S3 Table). Within the total sample, the significance
level of the relationship between striatal D2R BPyp and DRD 4, ¢ was trend-level (Table 2and
S3 Table).

Follow-up analyses in the total sample indicated a non-significant trend correlating
DRD 4y c and D2R BPyp for putamen (pr = -0.31, F for change in R?=359, p =0.07) and non-
significant for caudate and NAc (F for change in R*<2.15, p>0.15). Within obese individuals,
D2R binding in the putamen was significantly related to DRD ¢ (pr = -.57, F for change in R?
=8.18,p=0>.01, Cohen’sfz = .48) but not in the caudate or NAc (F for change in R?<4.44,
p>0.05). DRD,,c did not relate to D2R BPyp in any striatal region within non-obese individu-
als (F for change in R°<0.72, p>0.41).

Striatal D2R did not relate to PRD 4, in the total sample or in non-obese individuals
(Table 3). In obese individuals, the statistical significance of this relationship was p = 0.04 but
did not survive multiple comparisons correction (Table 3).

Relation of D2R BPyp to BMI, PBF, and 3-cell Function
Striatal D2R BPyp did not relate to BMIL, PBF, or DI in the total sample or within non-obese or

obese groups (Table 4).
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= | =31 = | #=00,ns
0 . )
£l s? gl s?
H 3 H 2 °
@ @
o1 o, ® 31 °
B — o* 5| 25 ° o % o,
ol @ ol o
gz No{ e . 2|lx N o _o_.__g_—ﬁ—
Jla® . el =1 o ©O o
8 * 5 o o
B4 . B
s . « ° s o
e L 2 ) o
2 A [ 1 2 2 K 0 1 2
Striatal D2R BP\p Striatal D2R BPyp
(standardized residuals) (standardized residuals)
Greater D2R binding Greater D2R binding

Fig 3. Striatal D2 Receptor Binding Relates to Delayed Reward Discounting in Obese but not Non-
obese Individuals. (A) In obese individuals, higher striatal D2 receptor binding related to preference for a
smaller, immediate monetary reward over a larger but delayed reward. (B) This relationship was not observed
in non-obese individuals. Data points are standardized residuals of variables after controlling for age, gender,
education, and ethnicity. DRDa,c, area under the curve for delayed reward discounting; D2R BPyp,
dopamine D2 receptor specific binding.

doi:10.1371/journal.pone.0133621.g003
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Table 4. Hierarchical multiple linear regression analyses results in non-obese and obese men and women for striatal D2 receptor (D2R) binding
and other predictor variables.

N Partial r for D2R binding and Predictor Variable F for change in R?, p-value Effect Size (Cohen’s %)

Body Mass Index

Total sample 44 .05 .10,p =0.76 .00
Non-obese 20 .10 .01,p=0.72 .00
Obese 24 .00 .00, p = 0.99 .00
Percent Body Fat

Total sample 44 .06 .15,p =0.70 .00
Non-obese 20 .03 .01,p=0.72 .00
Obese 24 .06 .06, p =0.82 .00
Disposition Index

Total sample 44 -.08 .26, p = 0.61 .00
Non-obese 20 -.18 .45, p =0.51 .04
Obese 24 -.23 .96, p =0.34 .05

doi:10.1371/journal.pone.0133621.t004

Within-subject Analyses in Women

In non-obese women, PBF significantly related to PRD ¢, such that non-obese women with
higher PBF tended to prefer smaller but certain over larger but less likely monetary rewards
(S4 Table, Fig 4A). This relationship was not observed in the total sample of women or within
obese women (S4 Table, Fig 4B). Otherwise, relationships among variables were not particu-
larly strengthened or weakened in analyses excluding men relative to the results described for
analyses including both men and women (§5-S7 Tables).

Discussion

The current study provides preliminary evidence of relationships between reward discounting
behavior and 3 biological constructs related to obesity: PBF, pancreatic -cell function, and
striatal DA D2R binding in non-obese and obese humans. To our knowledge, this is the first
human study of the relations between pancreatic insulin secretion and any type of discounting
reward behavior in individuals carefully screened for prediabetes and diabetes. Further, in
these same individuals, the relation between striatal D2R binding and reward discounting was
characterized, unconfounded by diabetes or clinically significant addiction-like tendencies (i.e.,
binge eating disorder).

(A) (B)

Less discounting

PRDayc

(standardized residuals)
. N o -
o,
o
o
o
Less discounting
PRDpyc

(standardized residuals)
o

Percent Body Fat ’ Percent Body Fat
(standardized residuals) (standardized residuals)
Fig 4. Body Fat Relates to Probabilistic Reward Discounting in Non-obese but not Obese Women. (A)
In non-obese women, higher percent body fat related to greater preference for a smaller, certain monetary
reward relative to one that was larger but less likely. This relationship was not observed in (B) obese women.
Data points are standardized residuals of variables after controlling for age, education, and ethnicity.
PRDayc, area under the curve for probabilistic reward discounting.

doi:10.1371/journal.pone.0133621.9g004
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In line with our hypotheses, lower B-cell function across obese and non-obese individuals
and lower insulin sensitivity in obese participants related to increased delayed reward discount-
ing. One interpretation of these findings is that individuals with lower B-cell function and insu-
lin sensitivity, which presumably reflect suboptimal insulin response to glucose overload, made
more impulsive choices, choosing smaller but immediate receipt of a monetary reward over a
delayed but larger reward amount. The mechanisms by which B-cell function and insulin
sensitivity may relate to monetary reward discounting in humans remain to be discovered. Cer-
tainly, animal literature directly implicates insulin in regulation of brain reward circuitry [9-
11] and behavior [11,14-17], and human neuroimaging studies show that insulin affects
reward network activation and craving for food [3,18-25]. Overall, these previous reports indi-
cate that insulin regulates appetitive behavior by decreasing craving and consumption of palat-
able food, possibly via its effects on DA transmission and network activity in reward-related
brain regions. To our knowledge, the relationship of reward discounting to measures of -cell
function, insulin sensitivity, or insulin resistance has not been previously studied in animals or
humans. Therefore, the relations between reward discounting and pancreatic p-cell function
and insulin sensitivity observed here require replication.

The relationship we observed in non-obese women between greater probabilistic reward dis-
counting and higher PBF is novel and indicates that women with higher PBF who are not
obese may be more risk-averse since they preferred certain, smaller over less certain but larger
monetary rewards. This finding as well as the near-significant relationship between PBF and
delayed monetary reward discounting in non-obese women makes it tempting to speculate that
non-obese women with relatively high body fat percentage, as observed here with monetary
reward, may tend to consume foods that are easily accessible (more certain and more immedi-
ate) such as fast food relative to healthier meals that require time to plan and prepare. Alterna-
tively, individuals who are more risk-averse may maintain healthy BMI despite preference for
high-fat foods due to restrained (non-impulsive) _consumption of these foods. Interestingly,
relationships between PBF and either type of monetary reward discounting were not observed
in obese women. Future studies may determine whether transition to obesity in non-obese
individuals with high PBF disrupts the relationship between this characteristic and reward
discounting.

Contrary to our hypotheses, higher, rather than lower, striatal D2R binding was correlated
with higher rates of delayed monetary reward discounting in obese individuals. That is, obese
individuals with higher striatal D2R binding preferred smaller but immediate over larger but
delayed monetary rewards. Our hypothesis was based on previous studies in animals and
humans that demonstrate lower striatal D2-like receptor availability in obesity, addiction, and
impulsivity [1, 27-29]. Further, administration of the stimulants d-amphetamine and methyl-
phenidate decreases delay discounting in healthy individuals [61] and individuals with criminal
and non-stimulant substance abuse histories [62], respectively. Some human studies have failed
to find effects of pharmacological DA D2-like receptor agonism [63-64] or antagonism [65] on
delayed discounting in healthy volunteers [64-65] and smokers [63]. However, in accordance
with our finding, some previous studies do demonstrate that increased DA signaling and/or
D2-like receptor availability relate to steeper delayed reward discounting. Administration of
the DA precursor L-dopa increases delayed reward discounting in healthy individuals [65]. In
addition, pharmacologic DA replacement or agonist therapy augments delayed reward dis-
counting in Parkinson disease patients [66—-67] and antagonism of D2R with metoclopramide
decreases discounting in healthy individuals [68]. Also in line with our observation, addiction-
like eating behavior is associated with increased DA signaling, as represented by individual
multilocus genetic profile scores that account for variability in ANKKI alleles A2 and A1 [69],
which are associated with higher and lower D2-like receptor binding, respectively [70]. Finally,
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we very recently found that, in many of the same participants studied here, higher rates of emo-
tional eating relate to higher striatal D2R binding across both non-obese and obese groups,
independent of BMI [71]. Some propose that striatal DA signaling may encode temporal infor-
mation about reward receipt and therefore influence the subjective value of reward, such that
relatively high DA signaling may imbue an immediate, smaller reward with greater subjective
value than a delayed, larger one [65]. Assuming that higher striatal D2R binding reflects
increased striatal DA transmission, our finding is in agreement with this hypothesis. Clearly,
the relationship between striatal DA transmission, including D2-like receptor availability or
D2R binding, and reward discounting may differ based on the population under study. It
would be informative if future studies determined whether severity of disease (i.e. moderate
obesity vs. morbid obesity or substance abuse vs. substance dependence) modulates the direc-
tion of the relationship between striatal DA transmission and reward discounting.

Interestingly, striatal D2R binding in non-obese individuals did not relate to delayed or
probabilistic monetary reward discounting. Lower caudate BOLD response to palatable food
has been associated with self-reported impulsivity in overweight but not healthy weight indi-
viduals [72]. The specificity of our finding and this fMRI study [72] to obese and overweight,
respectively, as opposed to non-obese and normal-weight individuals, may indicate that DA
signaling or striatal activation is more strongly coupled to impulsivity or discounting in indi-
viduals with a propensity for subclinical abnormal eating habits, such as increased desire for
immediate gratification. The question of whether this coupling arises as a result of weight gain
or predisposes individuals to overeating deservers further study, preferably in a longitudinal
study that tracks aspects of DA signaling and reward discounting and/or impulsivity during
weight gain or loss.

Importantly, when we broke down our analyses, D2R binding in dorsal striatal regions
related more strongly to discounting behavior than D2R binding in ventral striatum (p = 0.10).
We may not have had power to detect this relationship, since D2R binding is lower and PET
measurements are therefore more variable in ventral relative to dorsal striatum. Although sev-
eral human neuroimaging studies link discounting behavior, including subjective value of
delayed monetary reward [73-74] and coding of reward magnitude [75] to ventral striatal reac-
tivity, the dorsal striatum is thought to be involved in future reward prediction, with a particu-
lar role in encoding temporal delay to reward [76]. For example, greater caudate BOLD
activation relates to increased discounting for reward receipt that is delayed one year relative to
delays of less than one year [77]. Further, greater delay discounting correlates with dorsal loca-
tions relative to ventral locations of peak brain activation in caudate [78]. Intriguingly, dorsal
and ventral striatal DA transmission or activation may differentially contribute to delay dis-
counting and these relationships may depend on the population under study. For example,
steeper discounting is associated with decreased ventral striatal DA release and D2-like recep-
tor activation in pathological gamblers but correlated with greater dorsal striatal DA terminal
function in individuals with Parkinson disease [79].

Notably, neither B-cell function nor striatal D2R binding were related to probabilistic reward
discounting in non-obese or obese participants. The parameters of our probabilistic discount-
ing task (i.e., large and small reward amounts, probability of receipt), may not have provided
adequate sensitivity to detect individual differences in discounting tendencies. In both non-
obese and obese groups, the range of PRD 5, values was much less than that of DRD 4, values
(Table 1), and this lack of variability, coupled with small sample size, may have obscured any
relationship with our measures of insulin function and D2R binding. Alternatively, the under-
lying processes for delayed and probabilistic discounting may not be identical [80]. For exam-
ple, in probabilistic discounting, larger reward amounts are discounted equally or more than
smaller amounts whereas larger amounts are discounted less in delay discounting [81-82].
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Although higher PBF related to greater probabilistic reward discounting in non-obese
women, non-obese and obese individuals did not differ significantly in delayed or probabilistic
monetary reward discounting. Our results are similar to those of a previous study [52], in
which obese women with binge eating disorder showed steeper discounting compared to obese
without binge eating disorder and non-obese women, who did not differ in rates of delayed or
probabilistic reward discounting, and the two types of discounting were positively correlated
with each other. In other words, preference for immediate reward was related to preference for
certain receipt of reward, as was true across our total sample, who did not have binge eating
disorder. Our findings do contrast with those of three prior studies in which obese women
demonstrated higher rates of delay discounting relative to normal-weight or lean women
[53,83-84]. In one of these studies [83], statistical analyses did not account for significant age
differences between the obese and normal weight groups, which is problematic because age
affects reward discounting [56]. More importantly, the findings were not significant after con-
trolling for education level; this is critical because the obese and normal weight groups differed
significantly in education [83], and education relates to discounting rates [58]. In the other
study [84], the delayed monetary reward was larger ($1,000) and the delay longer (up to 10
years). Therefore, differences in task parameter magnitudes may explain our differing results.
These earlier studies also do not specify whether and how (i.e., self-report vs. blood test) indi-
viduals were screened for prediabetes or type 2 diabetes and none quantified B-cell function,
insulin sensitivity, or insulin secretion. Perhaps differences in discounting between obese and
non-obese groups may be more apparent in obese individuals with more severe metabolic or
psychological pathology.

The lack of a relationship between BMI or PBF and striatal D2R binding is in agreement
with findings from our previous study which did not detect differences in striatal binding
between obese and non-obese individuals (some of whom are included in the present data anal-
yses) [32]. Importantly, even when two individuals with BMI>25 in the non-obese group were
excluded from the analyses, D2R binding was not different between this ‘true’ normal-weight
group and the obese group. In contrast, our present results conflict with other previous studies.
For example, striatal D2-like receptor binding was lower in obese relative to leaner individuals
in some studies [1, 85-86]. However, others have found either higher striatal D2-like receptor
binding in obese individuals [3, 87] or no relationship between BMI and striatal D2-like recep-
tor binding [88-89]. These different findings may be due to several factors. First, the radioli-
gands commonly used in these studies, including [''C]raclopride and ['*F]fallypride, do not
distinguish between D2 and D3 receptors [90] and may be displaced by endogenous DA [91-
92]. The PET radioligand we used, [''C]NMB, overcomes these limitations: it is highly selective
for D2 over D3 receptors [30] and is not displaceable by endogenous DA [31]. Thus, we mea-
sured D2R dopamine receptor binding whereas other studies measured availability of D2 and
D3 confounded by status of endogenous dopamine, which can be influenced by environmental
context. Differences in group characteristics across studies also may produce discordant results.
Our non-obese and obese groups were rigorously screened for diabetes, psychiatric disorders,
and other conditions that may affect DA transmission, thereby limiting confounding variables.
Another explanation for disparate findings is that DA signaling may differ as a function of
BMI severity. As others have speculated [88-89, 93], striatal DA system over-activity induced
by over-eating in less severe forms of overweight or obesity may eventually downregulate stria-
tal D2-like receptor binding, as observed in extremely obese individuals [1, 86]. Alternatively,
obese individuals with higher striatal D2-like receptor binding at baseline may be less prone to
developing more severe obesity or eating pathology. The longitudinal study of clinical eating or
metabolic abnormalities, including binge eating disorder and diabetes may help elucidate if,
how, and when metabolic health and DA signaling function interact to affect reward behavior.
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These possible relationships certainly merit further study, given their potential roles in reward-
related regulation of food consumption.

Finally, the results of the present study suggest that striatal D2R binding does not relate
directly to B-cell function or BMI. The former finding is unexpected given strong evidence that
insulin and DA interact to affect appetitive behavior in nonhuman animals [11-13]. Therefore,
we believe our null finding is likely due to the particular measures (D2R binding, DI) and
experimental conditions (i.e. single time point) employed in our research design. Other fea-
tures of striatal DA signaling, including synaptic neurotransmission and transport, may be
related to measures of insulin secretion, sensitivity, or resistance. Other measures of insulin
function and other metabolic variables (i.e. ghrelin, leptin) may mediate a relationship between
D2R binding and DI and/or reward discounting behavior. In addition, other central neuro-
transmitter systems, including serotonergic and noradrenergic, and other brain regions,
including hypothalamic, prefrontal cortical and subcortical limbic regions, may interact with
insulin function and DA signaling to affect reward discounting behavior (for review, see [47]).

Despite the methodological strengths of the current study, the results are correlational in
nature. For example, low B-cell function may influence behavior or, conversely, individuals
with altered reward behavior may have poor eating habits that lead to poor B-cell function.
Longitudinal or interventional studies of changes in B-cell function or weight will be important
for understanding the direction of these relations. In addition, while we did include gender as a
covariate in regression analyses, we did not directly measure hormone levels in women to
determine menstrual phase, which may interact with cortical DA activity to affect DA-depen-
dent working memory [94] and delay discounting [95]. A number of women in our sample
reported absent or irregular menstrual cycle due to contraceptive method and hysterectomy
(n = 10). Therefore, due to variability in contraceptive type, and lack of hormone levels to
determine menstrual phase during the PET scans, we cannot assess whether menstrual phase
contributed to our results, including differences between non-obese and obese individuals.
Finally, replication and validation of our findings are necessary due to the novel nature of our
findings and our ultimately small sample size, which likely increased Type II error.

Opverall, our results provide initial support for the hypotheses that metabolic health, pancre-
atic B-cell function and striatal D2R binding relate to monetary reward discounting behavior in
humans. Specifically, higher PBF in non-obese women was associated with risk-aversion as
indicated by greater tendency to prefer certain, smaller over larger but less likely monetary
reward. Worse B-cell function in the total sample and lower insulin sensitivity in obese partici-
pants correlated with preference for smaller, immediate over delayed, larger monetary rewards,
an indication of greater impulsivity. Higher striatal D2R binding also related to greater delay
discounting in obese individuals. We found no significant relations between B-cell function
and striatal D2R binding in obese or non-obese individuals. Whether and how insulin and DA
signaling interact to affect reward discounting behavior in humans clearly deserves further
study, as many different aspects of both of these systems other than those studied here (B-cell
function and D2R binding) exist. Replication and extension of our findings by investigation of
other aspects of DA signaling and insulin function will lend support to the notion that these
variables interact in humans to regulate reward-related aspects of eating behavior.
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