Skip to main content
. 2015 Apr 15;114(1):209–218. doi: 10.1152/jn.00840.2014

Table 2.

Performance of SVM classifiers using only PSD, only PAC, or both PSD and PAC features

Sensitivity/Specificity
Error Naive Mild Moderate Severe
PSD (134 features)
P1 0.11 0.96/0.94 0.83/0.95 0.81/0.97 0.92/0.97
P2 0.14 0.94/0.88 0.84/0.99 0.70/0.95 0.85/0.96
P3 0.14 0.89/0.94 0.69/0.97 0.91/0.84
All 0.19 0.90/0.85 0.76/0.96 0.73/0.91 0.79/0.98
PAC (72 features)
P1 0.52 0.77/0.40 0.26/0.74 0.10/0.89 0.47/0.85
P2 0.59 0.72/0.16 0.11/0.78 0.17/0.84 0.12/0.87
P3 0.57 0.35/0.59 0.08/0.88 0.61/0.31
All 0.61 0.66/0.29 0.16/0.74 0.19/0.69 0.27/0.90
PSD + PAC (206 features)
P1 0.19 0.96/0.82 0.76/0.93 0.66/0.97 0.71/0.97
P2 0.21 0.92/0.73 0.73/0.97 0.53/0.95 0.76/0.96
P3 0.22 0.79/0.86 0.59/0.99 0.85/0.76
All 0.28 0.87/0.74 0.67/0.92 0.58/0.89 0.62/0.96

SVM, support vector machine; PSD, power spectral density; PAC, phase-amplitude coupling.