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Abstract

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique for measuring
the in vivo autofluorescence intensity decays generated by endogenous fluorophores in the
ocular fundus. Here, we present a software package called FLIM eXplorer (FLIMX) for ana-
lyzing FLIO data. Specifically, we introduce a new adaptive binning approach as an optimal
tradeoff between the spatial resolution and the number of photons required per pixel. We
also expand existing decay models (multi-exponential, stretched exponential, spectral
global analysis, incomplete decay) to account for the layered structure of the eye and pres-
ent a method to correct for the influence of the crystalline lens fluorescence on the retina
fluorescence. Subsequently, the Holm-Bonferroni method is applied to FLIO measurements
to allow for group comparisons between patients and controls on the basis of fluorescence
lifetime parameters. The performance of the new approaches was evaluated in five experi-
ments. Specifically, we evaluated static and adaptive binning in a diabetes mellitus patient,
we compared the different decay models in a healthy volunteer and performed a group com-
parison between diabetes patients and controls. An overview of the visualization capabili-
ties and a comparison of static and adaptive binning is shown for a patient with macular
hole. FLIMX’s applicability to fluorescence lifetime imaging microscopy is shown in the gan-
glion cell layer of a porcine retina sample, obtained by a laser scanning microscope using
two-photon excitation.

Introduction

Fluorescence lifetime imaging ophthalmoscopy (FLIO) is a new technique based on fluores-
cence lifetime imaging (FLIM) that measures the in vivo autofluorescence intensity decays gen-
erated by endogenous fluorophores in the ocular fundus. It produces quantitative images based
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on the lifetimes of the different fluorophores in the fundus and thus extends standard auto-
fluorescence intensity imaging [1, 2]. Each fluorophore possesses a characteristic fluorescence
lifetime, which is also influenced by the environment of the molecule (e.g., the surrounding sol-
vent molecules or substances to which it can bind). Thus, fluorescence lifetime measurements
offer more information from fluorescence than just the intensity. Furthermore, the fluores-
cence lifetime is usually independent from the fluorescence intensity.

The goal of FLIO in the human eye is the early detection of eye diseases and other diseases,
which might be possible using measurements at the fundus. Another application of FLIO is in
basic research, where it can be used, for example, to reveal pathological mechanisms for meta-
bolic diseases [3]. FLIO at the human fundus has the potential to become a valuable diagnostic
tool for discovering functional alterations related to eye diseases, such as age-related macular
degeneration (AMD), diabetic retinopathy, and glaucoma, before permanent morphological
damage occurs. While pathologic changes in the retina are often partially or completely irre-
versible, metabolic changes are not necessarily permanent and can potentially be reversed.
Schweitzer et al. [4] developed FLIO. Recently, fluorescence lifetimes have been determined for
subretinal deposits of metabolic byproducts, called drusen, retinal pigment epithelium (RPE)
cells, and Bruch’s membrane in histological sections of a human donor eye [5]. Further,
changes in fluorescence lifetime parameters have been found in patients with diabetes [6], glau-
coma [7] and patients with Alzheimer’s disease [8].

FLIO is based on fluorescence lifetime imaging [9]. fluorescence lifetime imaging techniques
are used in microscopy [10] and for in vivo tissue characterization and diagnostics [11]. To
extract fluorescence lifetime parameters from FLIM data, a least squares based method [12] is
often used. Therefore, a number of software solutions are available for FLIM. Enderlein and
Erdmann [13] developed the software package FluoFit to fit data with a multi-exponential
decay curve. The TIMP software package [14] performs a global analysis (fluorescence lifetime
components are assumed to be spatially invariant) utilizing a partitioned variable projection
algorithm and includes support for visual interpretation of the results. FLIMFit [15] extends
the global analysis to an arbitrary number of fluorescence decay images in predefined spectral
bands, supports multi-exponential approximation and visualization of the results. Further-
more, commercial software tools such as SPCImage (Becker & Hickl GmbH, Berlin, Germany)
and FluoFit (PicoQuant GmbH, Berlin, Germany) are available.

None of the available software packages can be adapted to the layered structure of the eye,
nor can they account for artifacts or correct for the influence of the crystalline lens fluorescence
on the retina fluorescence (see sections Fluorescence of the Eye and Approximation of the Fluo-
rescence Lifetime for One Pixel). In addition, software for performing an in depth analysis of
the fluorescence lifetime parameters of a single patient or for performing statistical compari-
sons of groups of patients is not available. To address these issues, a software package called
FLIM eXplorer (FLIMX) has been developed and is introduced in this paper. FLIMX imple-
ments known multi-exponential and stretched exponential [16] approaches, as well as new
layer-based multi-exponential approaches. To determine the fluorescence lifetime parameters,
different stochastic and deterministic minimization algorithms are implemented. A common
problem in FLIM and FLIO is a low number of photons in large areas, which can result in
incorrect fluorescence lifetimes. FLIMX solves this problem by introducing an adaptive bin-
ning approach. FLIMX also offers an approach to correct for the influence of the crystalline
lens fluorescence on the approximated fluorescence lifetime of the retina, based on a separate
crystalline lens measurement. 2D and 3D visualizations, segmentations, cluster diagrams, and
histograms as well as descriptive and advanced statistics facilitate interpretation of the fluores-
cence lifetime parameters for single patients and groups of patients. To demonstrate the capa-
bilities of the FLIMX software, this software was applied to evaluate a diabetes mellitus patient,
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a healthy volunteer and a patient with macular hole. It was also used to perform a group com-
parison between diabetes mellitus patients and controls. Moreover, the FLIMX software was
applied to analyze the ganglion cell layer in a porcine retina sample.

Materials and Methods
Instrumentation

FLIO instrumentation has been described in detail elsewhere [17, 18]. Thus, only a short
description is given here. A schematic of the FLIO instrumentation is shown in Fig 1A.

The basis is a confocal scanning laser ophthalmoscope (¢SLO, HRA-2, Heidelberg Engineer-
ing GmbH, Heidelberg, Germany). Fundus images (30°, 256x256 pixels) are recorded in high-
speed mode at 8.8 frames/s. A pulsed diode laser with a wavelength of 473 nm (BDL-473-SMC,
Becker & Hickl GmbH), a pulse width of approximately 70 ps (full width at half maximum)
and a repetition rate of 80 MHz is fiber-coupled (single-mode) into the cSLO to excite the auto-
fluorescence. The laser power in the corneal plane is circa 150 uW, well below the exposure
limits set by the ANSI standards for durations of up to 8 h [19]. A multimode fiber collects the
fluorescence photons and transmits them to filters to block the excitation light. A dichroic mir-
ror (edge-wavelength 560 nm) splits the fluorescence photons into two spectral channels (498-
560 nm and 560-720 nm), and there is one detector for each channel (HPM-100-40, Becker &
Hickl GmbH). Each detector is connected to a time-correlated single photon-counting
(TCSPC) device (SPC-150, Becker & Hickl GmbH). The TCSPC technique [9, 20, 21] generates
time-, space- and spectrum-resolved fluorescence decay datasets.

The instrument response function (IRF) was measured using a 25 pM Eosin Y solution
which additionally contained 5 M potassium iodide. The Eosin Y solution was prepared by dis-
solving Eosin Y powder (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) in a small
volume of dimethyl sulfoxide (DMSO) first. Then water was added to obtain a stock solution
of 2 mM which finally was further diluted down to 25 uM using a solution of 5 M potassium
iodide. The Eosin Y fluorescence can be excited from 350 to 500 nm and ranges between 450
and 680 nm with a sufficient intensity. Based on the reported Rose Bengal fluorescence lifetime
of ca. 16 ps when dissolved in 5 M potassium iodide [22] it is reasonable to assume that Eosin
Y, another Fluorescein derivative, shows similar characteristics which could be confirm by in-
house measurements. Additionally, no differences in terms of shape and width were found in
the IRFs based on the Eosin Y fluorescence in comparison to the IRFs measured using scattered
excitation laser light. To measure the Eosin Y fluorescence based IRF, a flat cylindrical quartz
cuvette with a detachable window and a volume of 90 uL (124-0.5-40, Hellma GmbH & Co.
KG, Miillheim, Germany) was placed slightly tilted in front of the FLIO device. The acquisition
time was set to 2-3 minutes which is comparable to typical measurements in volunteers. The
IRF images showed no sign of spatial variation. The full width at half maximum of the IRF is
172 ps for channel 1 (498-560 nm) and 153 ps for channel 2 (560-720 nm). The IRFs of both
spectral channels are shown in Fig 1B. All IRFs used in this work have similar properties as
those in Fig 1B, including experiment 5.

Fluorescence of the Eye

To measure the fluorescence of the retina using the FLIO instrumentation discussed above, the
excitation light has to pass through the lens. A crystalline lens emits a strong autofluorescence
when excited at 473 nm [23], which lies mostly in the short wavelength channel (498-560 nm)
of the FLIO instrumentation. The excitation pulse generates fluorescence in the crystalline lens
before the pulse travels through the vitreous and reaches the retina. The fluorescence of the
crystalline lens is isotropic and thus also reaches the retina. The reflectance of the human retina
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Fig 1. Schematic of the FLIO instrumentation and the instrument response functions. (A) shows a schematic of the FLIO instrumentation. A 473 nm
pulse laser is fed into a scanning laser ophthalmoscope to excite the autofluorescence of the eye. The fluorescence emission is transmitted by a multimode
fiber to a dichroic mirror (DM), which divides the fluorescence signal into two spectral channels: 498-560 nm and 560—720 nm. Hybrid photomultiplier tube
detectors convert the fluorescence photons into electrical pulses, which are processed by a TCSPC device for each detector. A continuous wave (CW)
infrared laser (IR) illuminates the fundus for online image registration. Blocking filters (BF) protect the detectors from excitation and infrared light. The FLIO
instrument response functions are given in (B).

doi:10.1371/journal.pone.0131640.g001
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is very low (< 2%) as it absorbs most of the incoming light [24]. Further, the confocal proper-
ties of the instrument result in a much smaller contribution of the crystalline lens fluorescence
reflected from the retina in comparison to the directly detected autofluorescence of the crystal-
line lens. Because of the large volume and the strong autofluorescence of the crystalline lens,
the FLIO instrumentation is not able to suppress the autofluorescence signal of the crystalline
lens entirely. The crystalline lens fluorescence will bias the approximated fluorescence lifetime
of the retina, especially if the relative contribution of the crystalline lens becomes larger, e.g. in
older patients with beginning cataract. The time shift tc caused by the distance d between the
crystalline lens and the retina is defined as:

2-d-n
c

tc= (1)
where # is the refractive index and c is the speed of light. For the average Gullstrand Schematic
Eye [25], d is 22.2 mm (the center of the crystalline lens to the retina) and # of the vitreous is
1.3668. From these parameters, the 12.2 ps time resolution of the FLIO instrumentation is suf-
ficient to resolve the resulting fc of 202.3 ps. The autofluorescence of the crystalline lens is visi-
ble as a shoulder in the rising edge of the fluorescence signal (see section Approximation of the
Fluorescence Lifetime for One Pixel).

Binning

In FLIO, the spatially and time resolved TCSPC datasets are typically collected with an average
number of 1000 photons per pixel in the macular region. This number is a compromise
between signal-to-noise ratio (SNR) and acquisition time. If the number of photons is too low,
e.g., for a multi-exponential approximation using three exponential functions, the photons of
neighboring pixels are combined. This process sums up the decay signals for a square shaped
window around each pixel and is called static binning. The edge length I of the window is:

1=2-f+1 2)

where fis the binning factor. Static binning is effectively a moving average filter in the spatial
dimensions. Often, a binning factor of one is used for multi-exponential approximation with
two exponential functions, and a binning factor of two is used for multi-exponential approxi-
mation with three exponential functions.

The fluorescence intensity of the human retina is not homogeneously distributed. The optic
disc is generally weakly fluorescent. High concentrations of macular pigment in the fovea cen-
tralis absorb more of the excitation light than is absorbed in the outer regions, and vessels
block the excitation light, prohibiting retinal fluorescence from underlying tissue. Another
important factor that can contribute to the inhomogeneous distribution of fluorescence is sub-
optimal alignment of the instrument to the patient. In darker regions with low fluorescence sig-
nals, static binning with a fixed binning factor may not collect enough photons for the chosen
approximation model, resulting in inaccurate estimates of the fluorescence lifetimes. Choosing
a higher static binning factor would collect a sufficient number of photons in darker regions,
but at an unnecessary cost of spatial resolution in brighter regions. Furthermore, the number
of pixels involved in static binning increases with the binning factor by a power of two, making
high binning factors unfavorable.

We propose a new adaptive binning approach that overcomes the disadvantages of static
binning by using a circular window centered on each pixel. The radius of the circle is iteratively
increased until a threshold with a predefined minimum number of photons is reached. Thus,
adaptive binning ensures that the required number of photons per pixel is collected at the
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highest possible spatial resolution. Fig 2 shows a comparison of static and adaptive binning for
measuring the fluorescence intensity from a patient with diabetes mellitus. Specifically, it
shows the effects of static binning with a binning factor of two (Fig 2G) and adaptive binning
with a threshold of 100,000 photons (Fig 2K) for the same patient using identical color scaling.
It can be seen that adaptive binning results in a much more homogeneous intensity distribution
because each pixel possesses at least 100,000 photons. Furthermore, the intensity drop off at
the borders of the image is no longer present. Ideally, the fluorescence intensity distribution
after adaptive binning would be completely homogeneous. The loss of global structural infor-
mation in the fluorescence intensity is irrelevant because the fluorescence lifetime is usually
independent of the fluorescence intensity, as stated above. Consequently, adaptive binning has
no relevant effect on the fluorescence lifetime distributions. The data in the photon histograms
were analyzed using a multi-exponential model (Eq 3) with three exponential functions in
combination with incomplete decay (Eq 9). The resulting fluorescence lifetimes as well as the
figure of merit %> (Eqs 10 and 11) are shown next to the photon histogram. The fluorescence
lifetimes for the bright pixel differ between static (Fig 2H) and adaptive binning (Fig 2L) for
less than 6%. In case of a dark pixel, the fluorescence lifetimes differ between static (Fig 2F) and
adaptive binning (Fig 2]) for 17%-44%.

Modelling of TCSPC Data

Different approaches can be used to describe the decay of the time-resolved fluorescence data
[9, 26]. This work concerns the multi-exponential approach, the stretched exponential
approach, the spectral global analysis approach, the layer-based approach and the lens-cor-
rected approach, as well as modelling of incomplete decays, all of which are implemented in
FLIMX.

The multi-exponential approach describes the data with a sum of the exponential decay
curves:

I(t)=IRFxY o;-e5+b (3)

where I is the time-dependent fluorescence intensity, IRF is the instrument response function,
o is the amplitude, 7 is the fluorescence lifetime, 7 is the index of the exponential, the asterisk
denotes a convolution integral, and b is the background, e.g., from thermal noise of the detector
or background light. This method seems beneficial for measuring the time-resolved autofluor-
escence of the human eye in different spectral channels to determine differences between
patients suffering from early AMD and healthy controls [27].

It is not feasible to use more than three exponential functions in Eq 3 because of the
extremely high number of photons required [28]. According to our experience, between
100.000 and 400.000 photons are required for a reliable modelling with three exponential func-
tions. In FLIO measurements, usually 1.000-10.000 photons/pixel are acquired. Thus, the
required number of photons/pixel has to be achieved by binning adjacent pixels using an
approach described above. The number of fluorophores in the human eye is larger than three,
because there are a number of known fluorophores, including lipofuscin / N-retinyliden-N-
retinylethanolamin (A2E), retinal, advanced glycation end products, collagens, flavines and
possibly nicotinamide adenine dinucleotide in its reduced form (NADH). Thus, alternative
modeling approaches such as the stretched exponential have been introduced [16]. A stretched
exponential is able to model the distribution of fluorescence lifetimes by introducing the
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Fig 2. Comparison of static and adaptive binning. TCSPC data obtained from a 39 year old diabetes patient is evaluated. The top row of the photon
histograms displays the raw data (C, E), the middle row shows the photon histograms after static binning (F, H) and the bottom row is after adaptive binning
(J, L). In the magnified insets (A, B), static binning uses all of the pixels inside the gray box, while adaptive binning uses the white pixels (note the different
sizes of the insets). The small black square indicates the seed pixel for the binning. Static binning uses more neighboring pixels for each bright pixel than
adaptive binning (right inset, B), while adaptive binning uses more neighboring pixels for each dark pixel than static binning (left inset, A). The left column (C,
F, J) shows photon histograms for one pixel (black square in A) in a dark region of the intensity image, while the right column (E, H, L) shows photon
histograms for one pixel in a bright region. The middle column displays the fluorescence intensity image (170 x 170 pixels, 59 x59 um?/pixel) of the raw data
(D), after static binning (G) and after adaptive binning (K). The greater loss of spatial contrast with adaptive binning yields a more balanced SNR in the photon
histograms of the underlying binned pixels. The data in the photon histograms were analyzed using a multi-exponential model (Eq 3) with three exponential
functions in combination with incomplete decay (Eq 9). The resulting curve (red) and the corresponding fluorescence lifetimes, the average fluorescence
lifetime, the figure of merit x® (Eqs 10 and 11) as well as the total number of photons are shown next to the photon histogram.

doi:10.1371/journal.pone.0131640.9002

stretching exponent f:
.
I(t) = IRF <oc e () ) +b (4)

Some fluorophores are present in one of the two spectral channels, while others might be
present in both spectral channels. Because the fluorescence lifetime is independent of a fluoro-
phore’s spectral properties, the fluorescence lifetime is identical in both spectral channels. To
exploit this fact, a spectral global analysis for certain exponential functions can be performed.
This method can improve the fluorescence lifetime approximation because more photons are
used in the analysis.

1) = Y IRE, + Y o, e +b, (5)

A

where 4 is the identifier of the spectral channel, and at least a single fluorescence lifetime is
identical in both spectral channels, 7;,; = 7; 2.

The layered structure of the eye causes fluorescence photons from structures that are farther
away from the laser scanner ophthalmoscope to arrive later because of the additional travel
time required for the excitation light and the fluorescence photons. To account for distance,
Schweitzer et al. [29] enhanced the multi-exponential model by a time shift parameter fc,
which is called the layer-based approach here:

t—te;

I(t) =IRFx» o;-e 7 +b (6)

Stretched exponentials (Eq 4) and the layer-based approach (Eq 6) can be combined for dif-
ferent layers of stretched exponentials:

I(t) = IRF+ > a,- e 4y (7)

Time-resolved fluorescence measurements of the crystalline lens show that a single expo-
nential function is not sufficient to describe its decay behavior [30]. Instead of approximating
the fluorescence lifetimes in a mixture of the crystalline lens fluorescence and the retinal fluo-
rescence, the fluorescence decay of the crystalline lens can be directly embedded into the
model. Therefore, the fluorescence decay of the crystalline lens I,,,; has to be measured sepa-
rately. As the distance between FLIO instrument and eye is different for the measurement of
the crystalline lens for technical reasons, its fluorescence signal has to be shifted in time using
fClens. The contribution of the crystalline lens fluorescence is modeled by a,,,s. This approach is
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called the lens-corrected approach here:

t—tc;

8
I(t) = IRF Z &; - ei( i ) + Liens * Ilens(t - tclcns) + b (8)

Often, the fluorescence signal does not decay sufficiently in the time period ¢ between two
laser pulses, which is the reciprocal of the pulse repetition rate. This so-called incomplete decay
can be taken into account using an analytic approach [31] which does not correct the pre-exci-
tation interval. Thus, a numerical approach is used here which also corrects the pre-excitation
interval:

I(t> = Ic(t) + Zlc(t +j- tR) (9)

where I is the fluorescence intensity calculated according to Eqs 3-8 and j is the number of
time periods to consider. The choice of j depends on the fluorescence lifetimes occurring in the
sample, as the exponential components have to be decayed sufficiently in the j-tz time-frame.
In FLIO with a tg = 12.5 ns, a j = 1 is usually enough for the expected fluorescence lifetimes of
up to circa 5 ns.

Approximation of the Fluorescence Lifetime for One Pixel

An example of a time-resolved fluorescence signal from a single fundus-pixel from a healthy
volunteer, approximated using the multi-exponential model (Eq 3) and the lens-corrected
approach (Eq 8), is shown in Fig 3. There are three main intervals in the fluorescence signal:
the pre-excitation interval, the fluorescence rising edge and the fluorescence decay. Usually in
FLIM, the shape of the excitation pulse, the detector response function, dispersion in the opti-
cal pathway as well as relaxation processes directly after excitation and immediately before
fluorescence emission determine the rising edge. In FLIO, the autofluorescence of the crystal-
line lens also affects the rising edge, as discussed above. The autofluorescence of the crystalline
lens is visible as a shoulder in the rising edge in Fig 3 (inset).

To approximate the fluorescence lifetime of the retina using Eqs 3-5, only the decay of the
fluorescence signal is important. For Eqs 6-8, the rising edge of the fluorescence signal must be
taken into account, in addition to the decay.

If the fluorescence lifetimes of a sample are sufficiently short, the pre-excitation interval can
be used to calculate the background b. If incomplete decays are considered (Eq 9), it is often
useful to include the pre-excitation interval data as well.

To approximate the fluorescence lifetime parameters, a global optimum characterized by
the smallest possible figure of merit must be found. To quantify the figure of merit, the y* error
in its reduced form g, is used:

2 1 “ (IM(t]) B Ic(tj))Q
L= m _p; w(tj)

(10)

where m is the number of time channels of the photon histogram, w(%,) is the weighting in time
channel j, I(t;) is the number of measured photons, I.(¢) is the number of calculated photons
using one of the models discussed above and p is the number of free parameters in the model.
The ideal weighting is w(t;) = 0;°, where 0; is the standard deviation of the number of measured
photons, which is the square root of the expected value for data with a Poisson distribution. To
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Fig 3. Example of TCSPC data approximated by the multi-exponential model and the lens-corrected approach. TCSPC data obtained from a healthy
volunteer is evaluated using adaptive binning (black) and approximated by the multi-exponential approach (left) using three exponential functions and the
lens-corrected approach (right) using two exponential function and a separate measurement of the crystalline lens. The data are divided into three intervals:
the pre-excitation interval (A), the fluorescence rising edge (B) and the fluorescence decay (C). The measured data and the multi-exponential model diverge
due to the fluorescence of the crystalline lens in interval (B), which is magnified in the inset. The lens-corrected approach utilizes a scaled and shifted curve of
a separate measurement of the crystalline lens to correct for the influence of the crystalline lens fluorescence in interval (B). For better visibility, the
fluorescence intensity is plotted on a logarithmic scale. The fluorescence lifetimes of the exponential components (4, 12, T3), the average fluorescence
lifetime t,,, as well figure of merit 2 (Eqs 10 and 11) are shown next to the photon histogram.

doi:10.1371/journal.pone.0131640.g003

approximate the weighting, the Neyman approach [32] is used:
W(tj): IM(tj) (11)

In addition, other weighting approaches such as Pearson [32], fitted weighting [33] and
Warren [15] have been implemented in FLIMX as the choice of the weighting is a critical factor
[33].

To find the global optimum of y,, a minimization scheme is required. The summation of
the exponentials is a linear operation. Thus, a linear minimization algorithm can determine the
amplitudes as well as the background. The remaining parameters must be determined by a
non-linear minimization algorithm. Generally, there are two types of non-linear minimization
algorithms: stochastic approaches, such as the evolution strategies [34] and the particle swarm
method [35], and deterministic approaches, such as the Levenberg-Marquardt method [36]
and the Nelder-Mead simplex method [37]. Deterministic approaches are dependent on their
initial solution and often cannot determine the global optimum. Stochastic approaches are
based on random variation and can find the global optimum, but at the cost of a higher compu-
tational effort.
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The following minimization algorithms are implemented in FLIMX: differential evolution
[38], a particle swarm variant [39], and a modified version of the Nelder-Mead simplex method
[37]. Any of them can be applied to a pixel-wise fluorescence lifetime approximation. The sto-
chastic minimization algorithms deliver robust results but require 10 to 100 times more com-
putation time. Thus, a stochastic minimization algorithm can be used, for example, to estimate
an initial solution from a single fluorescence decay profile that is based on an integral of the
fluorescence decay profiles across the image. In a second step, a pixel-wise approximation uti-
lizes a deterministic algorithm, with this initial solution as starting point. Using this procedure
and Eq 3 to compute the fluorescence lifetimes of an image with 256 x 256 pixels, 33 / 44 / 100
minutes were required using one / two / three exponential functions (dataset from experiment
3, 4.00 GHz Intel Core i7 4790K quad-core processor with 16 GB of memory).

All minimization algorithms implement parameter constraints to allow only positive values
for the fluorescence amplitudes, the fluorescence lifetimes and the background. The stretching
exponent is restricted to values between zero and one. Custom constraints can also be defined
to exploit a priori knowledge, e.g., if a certain fluorescence lifetime is expected to occur in the
sample.

Handling of Artifacts in the Fluorescence Lifetime Signal

Reflections in the optical pathway cause artifacts in the photon histogram of the fluorescence
decay. The fluorescence signal decreases over time, starting at the excitation. A reflection of the
fluorescence photons at two or more reflective surfaces/interfaces, e.g., at the surface of a detec-
tor or an optical filter, causes a sudden increase in the fluorescence signal at some point in the
decay because the reflected photons travel an additional distance and, therefore, arrive at a
later point in time. An example of a reflection artifact is shown in Fig 4. Usually such artifacts
are eliminated by avoiding surfaces perpendicular to the optical pathway and by applying anti-
reflection coating to surfaces and fiber ends. However, some residual reflection artifacts often
remain. Thus, an algorithm to detect and remove reflection artifacts was developed. First,
because the positions of the reflection artifacts in the time dimension are invariant for all pixels,
all of the pixels of the image are binned into a single fluorescence decay, resulting in the best
possible SNR. The algorithm then searches the gradient of the fluorescence decay for sections
with a rising gradient to find the starting time of the artifact. The end time is approximated by
adding three times the interval from the starting time to the peak time of the reflection to the
starting time. This procedure was determined empirically using FLIO data. For data with lon-
ger fluorescence decays than usually occurring in FLIO the estimation of the end time would
have to be adjusted. In Fig 4, the detected reflection artifacts are marked in red, with the sec-
tions of the rising gradient colored in dark red and the estimated decay of the artifact in light
red. In contrast to Fig 3, there is much less noise in the fluorescence decay due to the binning
of all of the pixels in the image. The detected reflection artifacts are removed by excluding the
time intervals of the artifacts from all of the computations for the figures of merit for each
pixel.

Improving Approximation by Exploiting Spatial Information

A number of factors affect the approximation of the fluorescence lifetime parameters when uti-
lizing the model function and minimization algorithm discussed above. For example, noise due
to a low number of measured photons can lead to unstable results in the approximation. An ill-
posed model function, e.g., due to a higher number of excited fluorescent substances than
employed exponential functions, can increase the ill-posedness of the problem. Furthermore,
the minimization algorithm may be stuck at a local minimum and, thus, will not be able to find
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Fig 4. Reflection artifacts in TCSPC data after binning all of the pixels of an image. TCSPC data after binning all of the pixels of an image from a healthy
volunteer (black). The automatically detected artifacts caused by reflections in the optical pathway are divided into the rise of the artifact (dark red) and the
decay of the artifact (light red). The latter is approximated as three times the width of the rise. For better visibility, the fluorescence intensity is plotted on a
logarithmic scale. The insets show the magnified segment of the TCSPC data taken from a single pixel (gray). The results of a multi-exponential analysis (Eq
3) using three exponential functions are shown as orange (without removal of the reflection artifacts) and blue curves (with removal of the reflection artifacts).

doi:10.1371/journal.pone.0131640.9004

the global minimum. Spatial a priori information can be used to improve the approximation.
In FLIO with a spatial resolution of circa 34 x 34 um” per pixel, the fluorescence lifetime prop-
erties of a biological tissue are expected to change only moderately from pixel to pixel. Thus,
the fluorescence lifetime parameters for a certain pixel should also provide reasonable initial
approximation for its surrounding pixels. To model a pixel, a figure of merit may also be com-
puted for the adjacent pixels to achieve a spatially smoother fluorescence lifetime approxima-
tion. The resulting y? ; is defined as the combination of the figure of merit according to Eq 10
for the central pixel 17, and the K’th adjacent pixels y; ,,, fitted using the parameters from

central pixel:
2 2 2 1 - 2
Lin = (Xr,cp) + ;Z/{r.APk (12)
k

where # is the number of adjacent pixels.

Iterative Algorithm for the Treatment of Outliers

Because outliers in the fluorescence lifetime images may be present, a separate treatment of
these outliers might be needed to improve the fluorescence lifetime approximation. To search
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Fluorescence lifetime 1
before outlier correction

for outliers after the fluorescence lifetime is approximated for all of the pixels of an image, a
sliding window of a user-defined size is moved over the image. A window size of 7 x 7 pixels
showed good results in practical tests. The window is moved through the images of the fluores-
cence lifetime parameters and the figure of merit. In each window, the central pixel is com-
pared to the median of all of the pixels inside the window. If the relative difference between a
pixel and the median is above a user-defined threshold, the approximation of this pixel is
repeated using the fluorescence lifetime parameters from the pixel with the best figure of merit
inside the window as initial values. The result of the repeated fluorescence lifetime approxima-
tion is accepted only if its figure of merit is better than the original approximation. The applied
threshold depends on the application and the expected changes in the parameter space.
Thresholds of circa 30 percent demonstrated good results in our applications. Fig 5 illustrates
the outlier correction procedure. In the example, 259 outliers were detected and of those, 178
could be improved in one iteration of the algorithm described above. Multiple iterations of the
outlier treatment could improve even more outliers.

Average Fluorescence Lifetime and Spatial Filtering

For some applications, the average fluorescence lifetime 7,, is a good overview parameter. It
can be derived from the fluorescence amplitudes and lifetimes:

Z O(i . Ti
S 3 "

To reduce noise in the fluorescence parameter space, spatial mean- or median-filtering can
be applied to the obtained images. A reasonable size for the filter kernel is either 3 x3 or 5x 5
pixels, depending on the amount of noise in the data. The statistics discussed in the section
below are calculated using the filtered data.

Outlier detection mask for Fluorescence lifetime 1y
after outlier correction

150

Fluorescence lifetime t, (ps)

20

Fig 5. Example of the iterative algorithm for the treatment of outliers. Comparison of a 75 x 75 pixels section (59 x59 um?/pixel) of fluorescence lifetime
14 from the left eye of a healthy volunteer before (left) and after (right) correction for outliers. The color scaling of both fluorescence lifetime plots is identical.
The 259 detected outliers are colored black in the middle subplot, of which 178 could be improved to generate the corrected image. To provide better
orientation, a gray scale image of the fluorescence intensity has been added as an overlay to all three subplots. The macula is in the lower right corner of the
image, where the shortest fluorescence lifetimes (red) occur.

doi:10.1371/journal.pone.0131640.9005
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Regions of Interest

Although visual analysis is important for a general judgment of the image quality, quantitative
analysis is required for the detection of pathologic alterations. Dysli et al. [40] proposed to use
the ETDRS grid introduced by the Age-Related Eye Disease Study group [41] to define stan-
dardized regions of interest (ROI). FLIMX implements the ETDRS grid (see the results sections
of experiments 1 and 2 for exemplary applications of the ETDRS grid). Three concentric circles
in the center of the macula and four radial lines at 45°, 135°, 225° and 315° compose the grid.
The radii of the circles are related to the diameter of the optic disk of an average eye, which is
1500 um. Specifically, the radius of the inner circle corresponds to 1/3 of the optic disk diame-
ter, the radius of the middle circle is equal to 1 optic disk diameter, and the radius of the outer
circle is equal to 2 optic disk diameters. Hence, these radii of the inner, middle, and outer cir-
cles are 500, 1500, and 3000 pum, respectively. Based on this grid, nine subfields are defined:
central, inner superior, inner inferior, inner nasal, inner temporal, outer superior, outer infe-
rior, outer nasal, and outer temporal. Users can also define a custom rectangular ROL For each
subfield of the ETDRS grid or a custom ROI, descriptive statistics including the mean, median,
mode, standard deviation, variance and confidence intervals are used to quantitatively compare
groups of patients. Histograms with user-defined class widths are also computed for the
ETDRS grid subfields and custom ROIs.

Group Comparison

The Holm-Bonferroni method [42] is used for group comparisons. First, a histogram for a cer-
tain fluorescence lifetime parameter, e.g., T, is computed for each volunteer. Then, for each
class in the histogram, a two-sided Wilcoxon rank sum test [43] is performed on the patient
data against the controls. This approach tests the null hypothesis that the data from the patients
and controls are samples from continuous distributions with equal medians against the alterna-
tive that they are not, at a certain significance level. The p-values from the test are compared to
a threshold th:

S

(14)
where s is the significance level and nC is the number of histogram classes for the fluorescence
lifetime parameter. Histogram classes with p-values smaller than the threshold possess a signif-
icant difference in medians between the patients and controls. If such a significant difference is
found for a histogram class, it can be used as a classifier. Subsequently, its specific cut off point
as well as its sensitivity and specificity are determined. The Holm-Bonferroni method can then
be applied to the full image or to a region of interest, such as a subfield of the ETDRS grid. In
the latter case, only pixels inside the ROI are used for the histogram and for the statistics of the
Holm-Bonferroni method. The Holm-Bonferroni method is applied to an exemplary group
comparison in experiment 4.

Implementation

FLIMX was implemented in MATLAB (The MathWorks, Inc., Natick, Massachusetts, USA),
mostly in an object-oriented programming style, as shown in S1 Fig. FLIMX includes a patient
database and has the ability to group patients in studies. For each patient, single measurements
and, if calculated, the corresponding results of the fluorescence lifetime approximation, both
divided into spectral channels, are stored in the database. The backbone of FLIMX is a tree-like
data structure, which stores studies and patients and handles disk access, as depicted in S2 Fig.
The measured data are imported into FLIMX only once and are then saved internally.
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Auxiliary information, such as age, gender, disease state, can be stored for each patient and can
later be used to define subgroups in a study. Patients can be copied or moved between studies.
The parameters for binning, data modelling, minimization, constraints and computation are
also saved by FLIMX, making it possible to trace the study settings from calculated results.
Computational routines are separated into modules, which implement the methods described
in this work. FLIMX’s fluorescence lifetime approximation requires the user to supply an IRF.
The IRFs used in this work and the measurement procedure are described in the instrumenta-
tion section. Graphical user interfaces are available for all aspects of FLIMX, such as changing
settings, altering the data structure, visualizing fluorescence lifetime parameters and statistics,
as well as for access to export abilities.

A tool for generating synthetic, time-resolved fluorescence data is also included in the soft-
ware package. It can be used for the simulation processes, e.g., for the construction of the fluo-
rescence decays based on the fluorescence lifetimes of known fluorophores. In addition, a
batch job manager is included, which allows for the assembly and batch processing of approxi-
mation jobs. The software can handle an arbitrary number of studies and patients with differ-
ent parameter sets. The computation of the fluorescence lifetime parameters can be very time
consuming, depending on the selected minimization algorithm. Thus, FLIMX is able to run the
computation on different pixels in parallel, utilizing multiple CPU cores. A custom built back-
end allows for the user-transparent distribution of work units across multiple compute servers.
Therefore, a slave process is started on each server, which scans a network folder for the work
unit files generated by the FLIMX software. Each work unit can contain several pixels, which
are computed in parallel by the slave process using up to 12 CPU cores (the current maximum
number of parallel processes per MATLAB session). The results of the computation are saved
in the shared folder, and FLIMX uses the results to assemble the images of the fluorescence life-
time parameters. File access is synchronized using semaphores. The CPU core activity and mem-
ory requirements for a typical distributed fluorescence lifetime approximation using the lens-
corrected approach on a 256 x 256 pixel dataset, obtained from a healthy volunteer, are given in
Fig 6A. The critical code paths of the fluorescence lifetime approximation have been optimized
for processing speed. An overview of the CPU time spent on the different stages of the fluores-
cence lifetime approximation is shown in Fig 6B. A large amount of the computation time is not
spent in specific stage of the algorithm, but on other things such as memory allocation, consis-
tency checks, object creation, function calls and general MATLAB overhead. The benchmarks
were performed on a 2.93 GHz Intel Core i7 940 quad-core processor with 12 GB of memory.

To analyze the approximation results, fluorescence lifetime parameters can be visualized in
two- and three-dimensions. The three-dimensional view can be freely rotated. Arithmetic
operations between different fluorescence lifetime parameters and different spectral channels
enable an in-depth analysis of the approximation results.

Example Data

Preface. All research procedures were performed according to the Declaration of Helsinki.
Approval for the study was obtained from the ethics committee of the Jena University Hospital.
Written informed consent was obtained from each volunteer prior to participation in the study.

The following methods were used for all experiments. For Eqs 3-5, only the decay of the
fluorescence signal was used for the fluorescence lifetime approximation. In case of Eqs 6-8,
the whole fluorescence signal, including pre-excitation interval and rising edge, was used. The
figure of merit (Eq 10) was computed using Neyman weighting (Eq 11). As discussed above, an
initial solution for the fluorescence lifetimes of the whole image was computed using the differ-
ential evolution algorithm. For the pixel-wise approximation of the fluorescence lifetimes, the
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Fig 6. Profile of the CPU and memory requirements for FLIMX. (A) shows the fractional CPU core activity for a quad core processor and MATLAB’s total
memory consumption (red) during a distributed fluorescence lifetime approximation of a measurement. (B) shows a breakdown of the CPU time spent on the
different stages of the algorithm (C).

doi:10.1371/journal.pone.0131640.9006

Nelder-Mead simplex method was applied with the initial solution as starting point. Incom-
plete decay (Eq 9) and the treatment of outliers were applied.

Experiment 1: patient with diabetes mellitus. FLIO data were measured in the left eye of
a 39-year-old male patient with diabetes mellitus type 1 without diabetic retinopathy and a
crystalline lens. The motivation of this experiment is to demonstrate the abilities of our adap-
tive binning approach in comparison to static binning. Therefore, static binning with a binning
factor of two and adaptive binning with a threshold of 100,000 photons per pixel were applied
to the FLIO data. The fluorescence lifetime parameters were determined using the lens-cor-
rected approach (Eq 8), with two exponential functions, 8 set to 1 and a separate crystalline
lens measurement.

Experiment 2: healthy volunteer. FLIO data were measured in the left eye of a 59-year-
old male healthy volunteer with a hemorrhage located in the superior temporal region. The
patient had a crystalline lens. The adaptive binning approach with a threshold of 100,000 pho-
tons per pixel was utilized. To determine the fluorescence lifetime parameters, the following
approaches were applied separately:

« a multi-exponential model using three exponential functions (Eq 3)

« the spectral global analysis approach (Eq 5) using three exponential functions, with the short
component fixed for both spectral channels

« the layer-based approach (Eq 6) using three exponential functions, with the long component
able to shift on the time axis

o the layer-based approach in combination with two stretched exponentials (Eq 7), with one of
them able to shift on the time axis
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o the lens-corrected approach (Eq 8), with three exponential functions, 3 set to 1 and a separate
crystalline lens measurement

The results were compared using descriptive statistics.

Experiment 3: patient with macular hole. FLIO data were measured in the left eye of a
68-year-old female patient with a macular hole without overlying operculum. A macular hole
is a structural defect in the sensory retina at the site of the highest visual acuity. The patient
had a crystalline lens. The FLIO data, which were binned by static binning with a binning fac-
tor of two, were analyzed using a multi-exponential model (Eq 3) with three exponential func-
tions. In addition, the FLIO data were binned by the adaptive binning approach with a
threshold of 100,000 photons per pixel and analyzed using the lens-corrected approach (Eq 8),
with two exponential functions, 8 set to 1 and a separate crystalline lens measurement.

Experiment 4: diabetes patients and healthy controls. The motivation of this experiment
is to show the ability of our analysis chain to provide group comparison for groups of patients
or volunteers. This is important because the high inter-individual variability might not allow
for subject specific discrimination for all FLIO applications. We exemplify this group compari-
son on 20 diabetes mellitus patients without diabetic retinopathy, aged 63.9 + 8.2 years, and 21
controls, aged 59.1 + 11.3 years. All volunteers had a crystalline lens. The FLIO data, which
were binned by static binning with a binning factor of two, were analyzed using a multi-expo-
nential model (Eq 3) with three exponential functions. A 71x101 pixels region in the superior
temporal location of the fundus, which included the macula, was manually segmented in all of
the patients and controls. Based on this region, significant differences between patients and
controls were determined using the Holm-Bonferroni method, described in the group compar-
ison section above. The following histogram class widths were used: amplitudes of 1%; fluores-
cence lifetime 1, of 5 ps, fluorescence lifetime 1, of 20 ps, fluorescence lifetime 5 of 100 ps.

Experiment 5: ganglion cell layer in a porcine retina sample. Autofluorescence of por-
cine fundus samples was measured ex vivo using two-photon excited fluorescence imaging.
The technical setup was based on an inverted multi-photon laser scanning microscope (Axio
Observer Z.1 and LSM 710 NLO, Carl Zeiss, Jena, Germany). A femtosecond Ti:Sapphire laser
(Chameleon Ultra, Coherent Inc., Santa Clara, CA) with a pulse width of 140 fs, a pulse repeti-
tion rate of 80 MHz and a wavelength of 760 nm was used to excite the autofluorescence. To
measure the time-, space- and spectrum-resolved fluorescence decay datasets (FLIM data), the
technical setup for the fluorescence lifetime imaging was similar to the FLIO instrumentation.
The system also splits the fluorescence photons into two spectral channels (500-560 nm and
560-700 nm). Young porcine eyes have been obtained from a local slaughterhouse and kept on
ice in Dulbecco's Modified Eagle's Medium (DMEM) cell culture medium (Invitrogen, Karls-
ruhe, Germany) shortly after enucleation. The ocular fundus samples were taken from a para-
macular region and placed into a sample holder filled with DMEM, which was placed onto the
object mount of the microscope with the retina facing towards the excitation laser. Technical
setup and sample preparation have been described in detail elsewhere [44]. The FLIM data
were binned by the adaptive binning approach with a threshold of 10,000 photons per pixel
and analyzed using a multi-exponential model (Eq 3) with two exponential functions.

Results
Experiment 1: Patient with Diabetes Mellitus

Fig 7 shows the fluorescence intensity of static and adaptive binning as well as the average
fluorescence 1y, (Eq 13) and fluorescence lifetimes 1y, T, and 75 for both spectral channels. As
the patient has no diabetic retinopathy, no pathologic changes are visible in the images. The
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Fig 7. Comparison of static and adaptive binning in a diabetes mellitus patient without diabetic retinopathy. The images (149 x 169 pixels, 59

x59 pmz/pixel) of the fluorescence intensity, the fluorescence lifetimes t,,, 4, and 1, are shown in the rows from top to bottom. The columns are static binning
and adaptive binning for both spectral channels respectively. The fluorescence lifetimes were determined using the lens-corrected approach (Eq 8), with two
exponential functions, 3 set to 1 and a separate crystalline lens measurement. The color scaling is identical for the fluorescence intensity and the
fluorescence lifetimes in each spectral channel for better comparison. The ETRS grid is drawn on each subplot for orientation. The low amount of detected
fluorescence photons in the lower left part of the image causes a prolongation of especially fluorescence lifetimes 1, in both spectral channels as well as the
average fluorescence lifetime t,,, in spectral channel 2 in case of static binning. The largest differences are highlighted by white arrows.

doi:10.1371/journal.pone.0131640.9007

amount of detected fluorescence photons is low in the lower left part of the image. This causes
in case of static binning a prolongation of especially fluorescence lifetimes 1, in both spectral
channels and 1y, in spectral channel 2. Adaptive binning shows the expected rather homoge-
neous fluorescence lifetimes around macular and optic disc.
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Experiment 2: Healthy Volunteer

Fig 8A depicts the fluorescence intensity as well as the average fluorescence lifetime t,,, (Eq 13)
and fluorescence lifetime T, (Fig 8B) in spectral channel 1 for the different fluorescence lifetime
approximation models. In the case of the stretched exponentials, only two exponential func-
tions were used, compared to the three exponential functions used in the other cases. Further-
more, the fluorescence lifetime of a stretched exponential is not directly comparable to the
other approaches because it must be interpreted in conjunction with the corresponding f.

The approximated average fluorescence lifetimes were relatively similar, regardless of the
different models underlying the approximation. The stretched exponentials produced shorter
fluorescence lifetime values in comparison to the multi-exponential, spectral global analysis
and layer-based approaches but also showed very similar features, such as longer fluorescence
lifetimes at the thicker blood vessels, the optic disc and the very low fluorescent spot at the
upper left part of the image. The lens-corrected approach did not show such prolonged fluores-
cence lifetimes, except for the optic disc. Furthermore, the average fluorescence lifetimes of the
lens-corrected approach were shorter and more homogenous in comparison to the multi-expo-
nential, spectral global analysis and layer-based approaches.

The fluorescence lifetimes 13, typically the exponential function with the highest amplitudes,
showed larger differences. Only the multi-exponential model detected longer fluorescence life-
times in the optic disc. Interestingly, the results of the layer-based approach and the lens-cor-
rected approach were very similar, although their average fluorescence lifetimes showed
differences, especially at the locations of the larger vessels.

Experiment 3: Patient with Macular Hole

Fig 9 depicts the infrared image (Fig 9A), the average fluorescence lifetime t,,, obtained using
static binning (factor two) and a multi-exponential model with three exponential functions
(Fig 9B and 9C) as well as the average fluorescence lifetime t,,, obtained using adaptive binning
(threshold 100,000 photons) and the lens-corrected approach with two exponential functions
and a separate measurement of the crystalline lens (Fig 9D and 9E) of a patient with a macular
hole. The average fluorescence lifetime is presented in a three-dimensional view (Fig 9B and
9D) beginning at a vertical cross-section through the fovea. The three-dimensional view of the
average fluorescence lifetime (Fig 9B and 9D), in combination with a detailed illustration of a
user defined cross-section in the image (Fig 9C and 9E), allowed for an in-depth analysis of the
local changes in the patient. Cross-sections can be placed at any horizontal or vertical position
of an image. Clearly, the average fluorescence lifetimes of the lens-corrected approach are
much shorter in comparison to the multi-exponential model because the influence of the crys-
talline lens is eliminated. The missing retina tissue inside the macular hole results in a longer
average fluorescence lifetime. Without lens-corrected approach, it is not possible to visualize
the macular hole in the average fluorescence lifetime Ty,

Experiment 4: Diabetes Patients and Healthy Controls

As stated above, the motivation of this experiment is to show the ability of our analysis chain to
provide group comparison for groups of patients or volunteers because of the high inter-indi-
vidual variability. Normalized histograms comparing the diabetes patients and controls for all
of the fluorescence amplitudes and lifetimes, as well as for both spectral channels, are shown in
Fig 10. A shift to longer fluorescence lifetimes in the diabetes patients is clearly visible in all
fluorescence lifetimes and both spectral channels. Significantly different populated histogram
classes were found for all of the fluorescence lifetimes, except for 1, in spectral channel 2. No
significant differences were observed for the fluorescence amplitudes. For each histogram class
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Fig 8. Comparison of the different fluorescent lifetime modelling approaches in a healthy volunteer. The fluorescence intensity as well as the
fluorescence lifetimes 1, (A) and 14 (B) in spectral channel 1 are shown (154 x 154 pixels, 59 x59 pm?/pixel). The color scaling of the fluorescence lifetime
plots is identical in each subfigure. The ETDRS grid is drawn on each subplot, and the mean values are given for each subfield of the grid. The fluorescence
intensity image is the measured signal before binning.

doi:10.1371/journal.pone.0131640.g008

with the highest significance level, the corresponding receiver operating characteristic (ROC)
curve is given next to the histogram. The area under the ROC curve (AUC), as a measure of the
ROC curve’s accuracy, achieves the largest value of 0.85 for fluorescence lifetime T, in spectral
channel 2. Thus, its cut-off point as best trade-offs between true positive rate and false positive
rate would result in the best achievable diabetes detection using only the FLIO data from this
experiment.

Experiment 5: Ganglion Cell Layer in a Porcine Retina Sample

The fluorescence intensity and the average fluorescence lifetime T, for spectral channels 1 and
2 are shown in Fig 11. In spectral channel 1, the ganglion cells possess much shorter average
fluorescence lifetimes (700 ps—900 ps) than their surroundings. In spectral channel 2, the cell
bodies also possess shorter average fluorescence lifetimes (450 ps—650 ps) than their surround-
ings while the cell nuclei possess the shortest average fluorescence lifetimes (350 ps—450 ps).

Discussion

In this work, a new software package called FLIMX is introduced. This software implements a
new adaptive binning method, a number of known as well as new approaches for modelling

Static binning + multi-exponential model Adaptive binning + lens-corrected approach

A Infrared image a2 B a2 b
i - -
o 800 @
£ 700 £
3 3
c =
8 248 3 248
g g
— <4 g
=
3 g 5
=
14 (Dixe/sj y (Di)(e/sj
z C 7z E
Z o
= 800 = 200
5 =
g 700 g
E .= 150
- k] k]
100 150 200 £ 00 g
X (pixels) g g 100
g 500 g
g 400 g %
E 50 100 150 200 250 E 50 100 150 200 250
T T
y (pixels) y (pixels)

Fig 9. Overview of FLIMX’s visualization capabilities and comparison of static binning + multi-exponential model and adaptive binning + lens-
corrected approach for a patient with macular hole. (A) shows the infrared image of the fundus (256 x 256 pixels). The FLIO data are analyzed using a
multi-exponential model with three exponential functions based on static binning (factor two) and by the lens-corrected approach with two exponential
functions and a separate crystalline lens measurement based on adaptive binning (threshold 100,000 photons per pixel). A vertical cross-section through the
fovea centralis at pixel 128 on the x axis is highlighted as a black line. (B) and (D) show the remaining fundus section (pixels 128 to 256 on the x axis, all y
pixels) in a three-dimensional view of the average fluorescence lifetime 1, in spectral channel 1 for static binning + multi-exponential model and adaptive
binning + lens-corrected approach respectively. The average fluorescence lifetimes t,,, along the cross-section are shown in detail in (C) and (E). The
average fluorescence lifetimes are shorter in (D) and (E) because of the eliminated influence of the crystalline lens.

doi:10.1371/journal.pone.0131640.g009
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Fig 10. Results of the Holm-Bonferroni method applied to FLIO measurements to allow for group comparisons between diabetes patients and
controls. The normalized histograms of the fluorescence amplitudes a and lifetimes 1 in both spectral channels are obtained from a multi-exponential
approximation using three exponential functions, for controls (blue) and diabetes patients (red). Histogram classes with significant differences, according to
the Holm-Bonferroni method, are colored in light gray. The class with the highest significance level (the smallest p value) is indicated in dark gray. Only the
fluorescence lifetimes showed significant differences, except for 1, in spectral channel 2. For the class with the highest significance level, the corresponding
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receiver operating characteristic curve (orange) is shown next to the histogram. The cut-off point as best trade-offs between true positive rate and false
positive rate is colored in light blue. The AUC is given under the ROC curve.

doi:10.1371/journal.pone.0131640.9g010

FLIO data, new methods for the treatment of artifacts and outliers, visualization and group
comparison abilities specifically useful for FLIO, but generally also for other means of imaging
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Fig 11. Fluorescence intensity and average fluorescence lifetime of the ganglion cell layer in a porcine retina ex vivo sample. The 256 x 256 pixels
images (34 x34 ym?/pixel) of the fluorescence intensity before binning (left) and the average fluorescence lifetime 1., (right) of the ganglion cell layer in a
porcine retina sample are shown in two spectral channels (top: 500-560 nm; bottom: 560700 nm). Adaptive binning with a threshold of 10,000 photons per
pixel was applied. A multi-exponential model with two exponential functions was used to determine the fluorescence lifetimes. The length of the white bar is
20 pm.

doi:10.1371/journal.pone.0131640.g011
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fluorescence lifetimes. The abilities of FLIMX were demonstrated in four experiments using in
vivo measurements from volunteers and one experiment using an ex vivo microscopy
measurement.

Static binning smoothes all of the image parts with the same strength. In contrast, adaptive
binning smoothes dark parts more and bright parts less, better preserving spatial detail. Static
binning and adaptive binning also use different window shapes. Because of the circularly
shaped window used in adaptive binning, only the closest pixels are used for binning. In the
case of static binning, a square window shape is used, and pixels at the edges of the square
shaped region are farther away from the root pixels than the other pixels. The circular window
is isotropic, while the square window is anisotropic. The calculated fluorescence lifetimes in
Figs 2 and 7 for raw data, static binning and adaptive binning are only of exemplary nature and
are not suitable for a general comparison of other types of data.

FLIMX implements a number of known approaches [9] to model FLIO data, such as the
multi-exponential approach, the stretched exponential approach, the spectral global analysis
approach and incomplete decay, as well as new approaches, such as the layer-based approach,
the lens-corrected approach and any combination of the mentioned approaches. A systematic
investigation of which approach is best suited for FLIO is beyond the scope of this work. The
layer-based approach and its extension, the lens-corrected approach, are the first methods in
FLIM, to actively analyze the rising edge of the fluorescence signal. The layer-based approach
allows for the separation of different fluorescent layers in a sample, if the time resolution is
high enough. In principle, the layer-based approach is able to extract fluorescence information
from different retina layers. The required FLIO system needs a time resolution in the order of
30 fs [29], which is not available today. Further evaluation of the layer-based approach is
necessary.

The benefits of the new approaches proposed in this work are observable in the results of
experiment 3, which compares the standard static binning in combination with the three-expo-
nential approach to our adaptive binning in combination with our lens-corrected approach.
These data indicate, that adaptive binning is able to preserve small structures such as the macu-
lar hole (circular shape with a diameter of circa 15 pixels), which are clearly visible in the aver-
age fluorescence lifetime in Fig 9D and 9E. The prolongation of the average fluorescence
lifetime inside the macular hole is only visible using the approaches presented in this work
because the average fluorescence lifetime of the standard approach is most probably dominated
by the fluorescence of the crystalline lens. Further, the new approaches result in a considerably
reduced noisiness of the average fluorescence lifetime, allowing for a better discrimination of
the pathologic changes and thus, possibly better therapy monitoring. This statement is sup-
ported by the level of noise visible in the comparison of Fig 9B and 9D. Quantitatively, this is
supported by the reduced standard deviation from 79 ps to 28 ps when applying the ETDRS
grid outer ring to the data displayed in Fig 9B and 9D. FLIMX also implements different non-
linear minimization algorithms to determine the fluorescence lifetimes and other non-linear
model parameters. The stochastic minimization algorithms are much more robust in finding a
good approximation result (fluorescence lifetime parameters) and are mostly independent of
the initial solution (starting point), especially for the more complex models such as the lens-
corrected approach. A disadvantage is that multiple runs on the same data may return different
approximation results and not always the optimal approximation result. By increasing the
number of iterations, an optimal approximation result can be guaranteed. This leads to another
disadvantage: the required computational effort is 10-100 times higher in comparison to a
deterministic minimization algorithm, as stated above. Thus, stochastic minimization algo-
rithms are useful to determine an initial solution for an image and not very suitable for a pixel-
wise fit.
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In this work, fluorescence lifetimes are related to different fluorophores for simplification
reasons. However, excited-state dynamics and potential excited-state depopulation pathways
also influence the fluorescence decay. The method proposed to correct for artifacts caused by
reflections in the optical pathway removes only the most important part of the artifacts. The
time range of the detected artifacts is not entirely corrected, as the reflections possess an expo-
nential decay that is as long as the entire FLIO signal. An accurate modelling of the reflections
was not implemented because the anticipated benefits are rather small and the necessary
increase in the complexity of the minimization algorithm may reduce the robustness of the
fluorescence lifetime approximation, leading to unstable fluorescence lifetime estimates.
Another method used to remove artifacts in FLIMX is the iterative algorithm for the treatment
of outliers. This method is effective at rectifying errors in single pixels surrounded by presum-
ably correct pixels. A similar effect may be achieved by median filtering the fluorescence life-
time images instead. However, median filtering can remove small fluorescence lifetime
alterations, e.g., from drusen, and could introduce new artifacts into the fluorescence lifetime
images.

An important step for the quantitative analysis of FLIO data is the adoption of the ETDRS
grid proposed by Dysli [40] because its application is established in ophthalmology. A disad-
vantage is the relatively low number of pixels in each subfield, e.g., 665 pixels in the central sub-
field, given the spatial resolution of the current instrumentation, which may increase the
variance in the statistical analysis compared to larger ROIs.

The Holm-Bonferroni method used in experiment 4 with 41 measurements, each consisting
of two spectral channels, required 452 MB of memory. In this example, a single subject
required approximately 11 MB of memory for the data structures in FLIMX. The amount of
memory per subject may vary due to spatial resolution, ROI size and the number of spectral
channels. Consequently, group comparisons in FLIMX are limited by the memory of the com-
puter being utilized. In the era of 64 bit operating systems and common memory sizes of at
least 4 GB, this limitation does not seem critical. Another computational resource is CPU time,
which is especially important for the fluorescence lifetime computations. As seen in Fig 6, a dis-
tributed computation for a single measurement took approximately 17 minutes. Some available
software packages are considerably faster, most likely due to lower overhead in implementa-
tions other than MATLAB, being restricted to simpler modelling approaches for the FLIO
data, such as the multi-exponential approach, or the application of different minimization
algorithms and parameters.

FLIMX permits the simulation of multiple decay processes, which might be helpful for
interpretation of experimental data or for estimation of required number of photons [28].

Conclusion

A new public domain software package called FLIMX has been demonstrated. This software
has been optimized to extract and analyze fluorescence lifetime data from time-resolved auto-
fluorescence measurements of the human eye, but it is not restricted to this FLIM application.
FLIMX enables detailed investigations of single patients, as well as statistical analysis on groups
of patients, and is most suited for FLIO research. FLIMX, is available under an open source
license at http://www.flimx.de.

Supporting Information

S1 Fig. Schematic of the FLIMX software structure. The gray boxes are related to data stor-
age, the blue boxes symbolize computational modules and the orange boxes symbolize graphi-
cal user interfaces. To reduce the complexity of the figure, only the most important
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connections between the modules are shown.
(EPS)

S2 Fig. Schematic of the FLIMX data structure. The FLIMX data structure is divided into
groups of subjects called studies. Each subject may contain multiple spectral channels. Inside a
channel, the measurement data (TCSPC) and a set of corresponding results from the fluores-
cence lifetime approximation, such as amplitudes and lifetimes, can be saved. A channel can

also contain approximation results imported from third-party software.
(EPS)
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