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Abstract
Hyperhomocysteinemia (HHcy) leads to several clinical manifestations including hepatic

fibrosis. Excess deposition of extracellular matrix (ECM) components including collagen is

the eponymous lesion of liver fibrosis. In this study, we demonstrated that elevated concen-

tration of Hcy induced the expression of collagen type I in cultured human liver cells as well

as in liver tissue of HHcy mice. Meanwhile, Hcy inhibited the expression of histone methyl-

transferase G9a. Mechanistically, silencing endogenous G9a by siRNA enhanced the pro-

moter activity of COL1A1 in LO2 cells. Conversely, overexpressing G9a inhibited the

promoter activity of COL1A1. CHIP assay demonstrated that G9a binds to the neuron-

restrictive silencer element (NRSE) on the promoter of COL1A1. Hcy treatment decreased

the binding of G9a on NRSE, which in turn decreased the level of H3K9me2 on the promoter

of COL1A1, led to upregulation of COL1A1. Taken together, these results provide a novel

mechanism on explaining how HHcy promotes ECM production.

Introduction
Homocysteine (Hcy) is a sulfur containing amino acid that is formed as a primary intermediate
in the methionine cycle [1]. Methionine from dietary sources is converted to S-adenosyl methi-
onine (SAM) by the enzyme methionine adenosyltransferase (MAT). SAM donates its methyl
group to methyl acceptors including phospholipids, DNA, RNA, and protein, and then con-
verted to S-adenosyl homocysteine (SAH), which is then hydrolyzed to Hcy and adenosine in
hepatic tissue. Hcy can either be remethylated to methionine or converted to cystathionine by
cystathionine- β-synthase (CBS) [2]. Elevated plasma Hcy concentrations, a condition known
as hyperhomocysteinemia (HHcy) [3], is the consequence of enzymatic deficiencies and/or
nutritional defects that interfere with the proper metabolism of methionine and/or Hcy [4].
The most common genetic cause associated with severe HHcy is homozygous CBS deficiency
which is characterized by very high levels of plasma total Hcy (tHcy>200μM). The clinical
manifestations of HHcy are very diverse, including mental retardation, cardiovascular prob-
lems, skeletal abnormalities, and hepatic compromise, with fatty accumulation and cirrhosis.
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Hepatic fibrosis is a wound-healing response characterized by accumulation of extracellular
matrix (ECM). In normal liver, ECM is a highly dynamic substratum with a precisely regulated
balance between synthesis and degradation. During chronic liver injury, hepatic fibrosis devel-
ops as ECM production exceeds ECM degradation. Moreover, the composition of matrix is
changed from collagens IV and VI to collagens I, III and fibronectin. There has been tremen-
dous progress in revealing the regulatory mechanisms that control ECM-related gene expres-
sion during fibrosis, and research has focused primarily on transcriptional control pathways.
TGF-β1 has been regarded as the most important growth factor implicated in collagen synthe-
sis in hepatic fibrosis. TGF-β1 signals via its cognate receptors to Smad proteins to enhance col-
lagen I gene transcription [5,6]. In addition, AP-2, NF-1 and c/EBP has been shown to regulate
collagen gene expression [7].

Elevated Hcy levels have long been known to be linked to liver disease [8]. Fatty liver is a
common finding in nutritionally induced HHcy due to methionine overload or folate defi-
ciency. Patients with CBS deficiency also have hepatic steatosis which is accompanied by perisi-
nusoidal or central venous fibrosis and fibrosis of hepatic arterioles [9]. It has been shown that
CBS-deficient mice develop inflammation, fibrosis, and hepatic steatosis [10,11]. The upregula-
tion of collagen I has been detected in the liver of CBS deficient mice and HHcy rats induced
by chronic Hcy administration [12]. However, the molecular mechanism responsible for
HHcy-induced collagen expression is unclear. Increased Hcy elevates the level of SAH which
inhibits transferring methyl group from SAM to acceptors, leads to hypomethylation [13]. It
has been proposed that Hcy-induced DNA hypomethylation is a biochemical mechanism by
which Hcy induces vascular injury [14,15]. However, whether epigenetic modifications such as
DNAmethylation and histone modifications are involved in the pathogenesis of Hcy-induced
hepatic fibrosis is largely unknown.

Neuron-Restrictive Silencing Factor/Repressor Element Silencing Transcription Factor
(NRSF or REST) is a transcriptional regulator that regulates a network of genes by binding a
21–23 bp neuron-restrictive silencing element (NRSE) [16], which in turn recruits a silencing
complex of chromatin remodeling proteins including SIN3A, histone deacetylases 1 and 2 [17],
CoREST [18], methyl-CpG-binding protein 2, and histone methyltransferase G9a [19,20].
NRSF was originally perceived as a silencer of neuron-specific genes [17]. Later studies revealed
that there are over 800 NRSE-containing genes in human genome, underscoring the impor-
tance of NRSF in controlling large programs of transcriptional regulation [19].

In the present study, we found a NRSE in the promoter of both human COL1A1 and mouse
Col1α1, and G9a binds to the NRSE. Upon Hcy stimulation, the expression of G9a is decreased,
results in reduced binding of G9a to the NRSE, which in turn decreased the level of H3K9me2
on the promoter of human COL1A1 and mouse Col1α1, led to upregulation of collagen I both
in vitro and in vivo. This finding provides a novel epigenetic mechanism on explaining how ele-
vated Hcy promotes liver fibrosis.

Results

Hcy induces collagen I expression in cultured normal human liver cells
Previous study has shown that HHcy causes liver fibrosis [10,21]. We thus examined whether
Hcy affects the production of Col I, a major component of ECM. To this end, normal human
liver cells (LO2) were incubated with Hcy (100μM) for indicated time period and then cell
lysates were harvested for Western blotting. Fig 1A and 1B showed that the protein level of Col
I was significantly increased in a time-dependent manner. We further treated LO2 cells with
incremental concentrations of Hcy from 10 to 200μM for 48 h. As shown in Fig 1C and 1D, the
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level of Col I increased progressively with increased concentrations of Hcy. At 200μM of Hcy,
the protein level of Col I was ~15 fold higher than that of untreated cells.

Hcy could regulate Col I production at mRNA or post-translation level. To determine this,
we examined the transcript of human COL1A1 in LO2 cells after Hcy treatment by real time
PCR. As shown in Fig 1E and 1F, the mRNA level of COL1A1 was gradually increased in a
time- and dose-dependent manner after Hcy treatment, indicating that Hcy upregulates
COL1A1 gene transcription in cultured human liver cells.

Fig 1. Hcy induces Col I expression in LO2 cells. LO2 cells were incubated with 100μM of Hcy for indicated time period, or indicated concentration of Hcy
for 48 h. The protein level of Col I was determined byWestern blotting (A-D). β-actin was used to verify equivalent loading. Graphic representation of relative
protein level of Col I normalized to β-actin (B, D). The mRNA level of COL1A1 gene was determined by real time PCR (E-F). Data are mean±SD of three
independent experiments. *p<0.05 versus control cells.

doi:10.1371/journal.pone.0130421.g001
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Hcy induces Col1α1 expression in vivo
To further confirm the effect of Hcy on Col I production in vivo, we generated HHcy mice by
feeding male C57BL/6 mice with a high methionine diet (HM) containing sufficient basal levels
of B vitamins [22,23] for two weeks. The plasma level of Hcy was increased to 67μM±8.7μM,
whereas the plasma level of Hcy is 5.5μM±0.7μM in control mice fed with regular rodent chow
diet (Fig 2A). Liver tissues of HHcy mice and control mice were collected. Real time PCR
showed an upregulation of Col1α1 gene (Fig 2B). Consistently, Western blotting and immuno-
histochemistry staining demonstrated that the protein level of Col I were significantly
increased in the liver of HHcy mice (Fig 2C–2E). To confirm that HHcy causes hepatic fibrosis,
Masson’s trichrome staining was performed. As shown in Fig 2F, compared with that of con-
trol mice, a dramatic increase in ECM accumulation was observed in the liver tissue of HHcy
mice, which is consistent with previous studies [10].

G9a mediates Hcy-induced COL1A1 gene expression
Since we have demonstrated that Hcy modulates COL1A1 gene expression, we determined to
further explore the underlying mechanism. We assessed the promoter regions of both human
COL1A1 and mouse Col1α1 gene using the online prediction service of NCBI and found a neu-
ron restrictive silencing element (NRSE), which has been shown to recruit G9a to silence gene
expression [19,20]. To evaluate the role of G9a in Hcy-induced COL1A1 gene expression,
endogenous G9a was knocked down by siRNA (siG9a) in LO2 cells. LO2 cells were transfected
with siG9a or control siRNA (siNC) and then treated with Hcy (100μM) for 48 h. Western
blotting revealed that silencing endongenous G9a significantly increased the protein level of
Col I when compared with control siRNA trasnfected cells (Fig 3A).

Alternatively, Flag-tagged G9a or empty vector was transfected into LO2 cells followed by
Hcy treatment for 48 h. As shown in Fig 3B, Hcy significantly increased the protein level of Col
I in empty vector transfected cells. Whereas, the protein level of Col I was significantly lower in
G9a overexpressed cells than that of control cells (Fig 3B).

To examine whether G9a directly affect the promoter activity of COLA1 gene, we synthe-
sized a reporter plasmid bearing a 1-kb fragment of the 5’-flanking region of human COL1A1
gene (pCol-GL3) and co-transfected it with siRNA targeting G9a (siG9a) or scramble siRNA
(NC-siRNA). Compared with NC-siRNA, siG9a significantly enhanced the luciferase activity
by 40% (Fig 3C). Next, pCol-GL3 was co-transfected with increasing amounts of Flag-tagged
G9a into LO2 cells. As shown in Fig 3D, the promoter activity was gradually decreased as the
amount of G9a plasmid was increased. A significant decrease was detected when 1μg of Flag-
tagged G9a was transfected. These results support a role of G9a in modulating COL1A1 gene
expression.

Hcy reduces the binding of G9a to the promoter of COL1A1
Since G9a overexpression inhibits the activity of COL1A1 promoter and there is a NRSE within
the promoter region of COL1A1, we hypothesized that Hcy might reduce the binding of G9a to
the NRSE on the promoter of COL1A1. To evaluate this hypothesis, chromatin immunoprecip-
itation (ChIP) assay was performed to determine the chromatin occupancy of G9a in the pro-
moter of COL1A1 using anti-G9a antibody in LO2 cells and mice. ChIP-enriched DNA
samples were analyzed by quantitative PCR (qPCR) using primers spanning human NRSE
DNA sequences (Fig 4A). To evaluate the effect of Hcy on the binding activity of G9a, LO2
cells were treated with 100μM of Hcy for indicated time period. ChIP assays revealed that bind-
ing of G9a to the promoter of COL1A1 was decreased in a time-dependent manner (Fig 4B).
Furthermore, we treated LO2 cells with indicated amount of Hcy for 48 h. Fig 4C showed that
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the binding of G9a to the promoter of COL1A1 was gradually decreased in a dose-dependent
manner. Similarly, the binding of G9a to the promoter of Col1α1 was also significantly
decreased in the liver of HHcy mice (Fig 4D). Collectively, these data indicate that a decrease of

Fig 2. Increased Col I expression in liver of HHcymice. (A) C57BL/6 mice were fed with regular rodent
chow or a high methionine diet (HM) for two weeks, and then liver tissues were collected. (A) The plasma
concentration of Hcy in mice. (B) The mRNA level of Col1α1 gene was determined by real time PCR. (C) The
protein level of Col I was determined by western blotting. β-actin was used to verify equivalent loading. (D)
Graphic representation of relative protein level of Col I normalized to β-actin. Data are expressed as mean
±SD, n = 6. *p<0.05 versus mice fed with regular rodent chow. (E) Immunohistochemical staining for Col I in
the liver of HHcy mice. (F) Representative micrographs show that HHcy caused hepatic fibrosis. Liver
sections from either control mice or HHcy mice were subjected to Masson’s trichrome staining. Scale bar,
50μm.

doi:10.1371/journal.pone.0130421.g002
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G9a binding to the promoter of COL1A1might play a role in Hcy-induced COL1A1
expression.

Hcy reduces the level of H3K9me2 on the promoter of COL1A1
Since G9a is the primary enzyme for dimethylation of histone H3 lysine 9 (H3K9me2), we next
examined whether histone H3 lysine methylation levels were also altered by Hcy. ChIP assay
using H3K9me2-specific antibodies revealed that Hcy decreased the level of H3K9me2 on
COL1A1 promoter in a time- and dose-dependent manner (Fig 5A and 5B). Similarly, the level
of H3K9me2 on Col1α1 promoter was also dramatically decreased in the liver of HHcy mice
(Fig 5C). These results suggest that upregulation of Col I might be caused, at least partially, by
a loss of repressive epigenetic histone modification on its promoter.

Fig 3. Hcy-induced Col I expression is mediated by G9a. (A) LO2 cells were transfected with scramble siRNA (siNC) or siRNA targeting G9a (siG9a) and
then treated with 100μM of Hcy for 48 h. Whole cell lysates were harvested, the protein levels of G9a and Col I were determined byWestern blotting. β-actin
was used to verify equivalent loading. (B) LO2 cells were transfected with Flag-tagged G9a or empty vector, and then treated with 100μM of Hcy for 48 h. The
protein level of G9a and Col I was determined byWestern blotting. β-actin was used to verify equivalent loading. (C) LO2 cells were transfected with either
siNC or siG9a together with pCol I-luc plasmid and pRL. Relative luciferase activity was presented. *p <0.05 versus siNC transfected cells. (D) LO2 cells
were transfected with empty vector or indicated amounts of Flag-tagged G9a together with pCol I-luc plasmid and pRL. Relative luciferase activity was
presented. *p <0.05 versus empty vector transfected cells. Data are mean±SD of three independent experiments.

doi:10.1371/journal.pone.0130421.g003
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Hcy downregulates G9a expression both in vitro and in vivo
The decreased binding of G9a to the promoter of both human COL1A1 and mice Col1α1
might be caused by a reduced protein level of G9a. To test this possibility, LO2 cells were
treated with various concentrations of Hcy for indicated time period. Western blotting revealed
that Hcy gradually decreased the protein level of G9a in a time- and dose-manner (Fig 6A–
6D). Furthermore, the protein level of G9a in liver tissue of HHcy was also significantly lower
than that of control mice (Fig 6E and 6F).

To examine whether Hcy inhibits G9a expression at the transcription level, LO2 cells were
treated with various concentrations of Hcy with indicated time period and then mRNA was
extracted for real time PCR. As shown in Fig 6G and 6H, the mRNA level of G9a was gradually
decreased in a time- and dose-dependent manner after Hcy treatment. Moreover, the mRNA
level of G9a in the liver tissue of HHcy mice was also significantly lower than that of control
mice (Fig 6I), indicating that Hcy suppresses the transcription of G9a gene.

Fig 4. Hcy decreased the binding of G9a to theCOL1A1 promoter. (A) Schematic representation of the promoters of COL1A1 andCol1α1 gene. NRSE
region and primers used for ChIP assay were marked. (B-C) LO2 cells were treated with 100μM of Hcy for indicated time period (B), or indicated
concentration of Hcy for 48 h (C), and then harvested for ChIP assay by using anti-G9a antibody. The changes in G9a on theCOL1A1 promoter were
examined by q-ChIP PCR. Data are means±SD of three independent experiments. *p<0.05 versus untreated cells. (D) Liver tissues of wild type mice and
HHcy mice were collected for ChIP assay by using anti-G9a antibody. The changes in G9a on theCol1α1 promoter were examined by q-ChIP PCR. Data are
expressed as mean±SD, n = 6. *p<0.05 versus mice fed with regular rodent chow.

doi:10.1371/journal.pone.0130421.g004
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Discussion
Gene regulation by extracellular stimuli involves not only transcription factors binding to their
cognate DNA binding sites but also epigenetic changes in chromatin [24]. The transcriptional
mechanisms on the overproduction of ECM during the process of organ fibrosis have been
extensively studied. Collagen I is a downstream target gene of TGF-β/Smads pathway and its
expression is induced by TGF-β in fibrotic organs [25]. Previous study showed that CBS-
deficient mice (tHcy 205μM) develop liver fibrosis concomitant with an enhanced expression
of Col I and TGF-β [8,9], suggesting Hcy-induced TGF-β expression is a mechanism for
Col1α1 gene induction. In the present study, we provided evidence that the transcription of Col
I gene is regulated by histone methyltransferase G9a. ChIP assay demonstrated that G9a binds
to the promoter of human COL1A1 and mice Col1α1, catalyzes local H3K9me2 to maintain
Col I expression at low level under normal condition. Whereas, Hcy downregulates G9a
expression, which in turn decreased the level of H3K9me2 at the promoter of COL1A1, leading
to COL1A1 gene induction. This finding suggests that changes of histone modifications con-
tribute to Hcy-regulated gene expression. Previous study demonstrates that TGF-β increases
the recruitment of SET7/9, a H3K4 mono-methyltransferase, to the promoter of Col1α1,
increases H3K4me1 level at the promoter of Col1α1, results in Col1α1 gene induction in rat

Fig 5. Hcy decreased the level of H3K9me2 on the COL1A1 promoter. (A) (A-B) LO2 cells were treated
with 100μM of Hcy for indicated time period (A), or indicated concentration of Hcy for 48 h (B), and then
harvested for ChIP assay by using anti-H3K9me2 antibody. The changes of H3K9me2 on the COL1A1
promoter were examined by q-ChIP PCR. Data are means±SD of three independent experiments. *p<0.05
versus untreated cells. (C) Liver tissues of wild type mice and HHcy mice were collected for ChIP assay by
using anti-H3K9me2 antibody. The changes in H3K9me2 on theCol1α1 promoter were examined by q-ChIP
PCR. Data are expressed as mean±SD, n = 6. *p<0.05 versus mice fed with regular rodent chow.

doi:10.1371/journal.pone.0130421.g005
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Fig 6. Homocysteine decreases G9a expression both in vitro and in vivo. LO2 cells were incubated with
100μM of Hcy for indicated time period (A-B), or indicated concentration of Hcy for 48 h (C-D). The protein
level of G9a was determined byWestern blotting. β-actin was used to verify equivalent loading. Graphic
representation of relative protein level of G9a normalized to β-actin (B, D). Data are mean±SD of three
independent experiments. *p<0.05 versus control cells. (E) Liver tissues of HHcy mice were collected from
HHcy mice or control mice fed with regular rodent chow. The protein level of G9a in liver was determined by
Western blotting. β-actin was used to verify equivalent loading. (F) Graphic representation of relative protein
level of G9a normalized to β-actin. (G-H) LO2 cells were incubated with 100μM of Hcy for indicated time
period (G), or indicated concentration of Hcy for 48 h (H). The mRNA level of G9a was determined by real
time PCR. (I) Liver tissues were collected from HHcy mice or control mice fed with regular rodent chow. The
mRNA level of G9a in the liver was determined by real time PCR. Data are expressed as mean±SD, n = 6.
*p<0.05 versus control mice fed with regular rodent chow.

doi:10.1371/journal.pone.0130421.g006
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mesangial cells [26]. Moreover, histone deacetylase inhibitor trichostatin A abrogated the stim-
ulatory effect of TGF-β on collagen I transcription in skin fibroblasts [27,28] and renal proxi-
mal tubular cells [29]. Since TGF-β1 is upregulated in the liver of HHcy mice, it is possible that
TGF-β-induced histone modifications also contributes to HHcy-modulated ECM genes
expression.

G9a, a key methyltransferase responsible for H3K9me2 at euchromatin and facultative het-
erochromatin, does not contain a DNA binding sequence [30]. Previous studies demonstrate
that recruitment of G9a by NRSF is important in the repression of neuronal genes outside of
the nervous system [31,32]. In the present study, we found, for the first time, that there is a
NRSE in the promoter of COL1A1, and G9a is recruited to the COL1A1 promoter via the
NRSE. This finding adds COL1A1 gene as a new member to the family of NRSE-containing
genes, and supports the role of NRSF in controlling large programs of transcriptional
regulation.

G9a is widely expressed in most tissues including fetal liver, bone marrow, peripheral blood
leukocytes, thymus, lymph node, spleen and developing skeletal muscles [33]. Cancer tran-
scriptome analysis revealed that G9a is overexpressed in many different types of tumors includ-
ing hepatocellular, colon, prostate, lung and invasive transitional cell carcinomas and in B cell
chronic lymphocytic leukemia, and responsible for various aspects of tumorigenesis, including
cellular differentiation, proliferation and epithelial to mesenchymal transition [34]. Therefore,
it is important to identify factors that could modulate the expression of G9a. Previous study
showed that repeated administration of cocaine decreases G9a mRNA levels in nucleus accum-
bens, and results in increased gene expression [35,36]. In the present study, we identified Hcy
as another factor which inhibits G9a gene expression. Previous study reported that Hcy accel-
erates protein degradation [37,38]. We treated LO2 cells with proteasome inhibitor MG132,
and lysosome inhibitor chloroquine, but did not observed any obvious effect on Hcy-induced
G9a suppression (data not shown), indicating that Hcy does not promote G9a degradation. We
next measured mRNA level of G9a and found that Hcy decreased G9a mRNA in a time and
dose-dependent manner, suggesting that Hcy modulates G9a expression at the transcription
level.

The transcription regulation of G9a has been much less explored. Previous study showed
that transcription factor C/EBPβ binds to the promoter of G9a, and C/EBPβ activates G9a
expression during preadipocyte differentiation. Increased G9a expression results in enhanced
H3K9 dimethylation at the C/EBPα promoter, which in turn represses C/EBPα expression
[39]. Using the online prediction service of NCBI, we found 6 potential binding sites of C/
EBPα in the proximal promoter region (from -1000bp to the transcription start site) of G9a
gene. It is therefore possible that HHcy downregulates G9a expression through regulating the
expression of C/EBPα and/or C/EBPβ. In supporting this hypothesis, previous studies have
shown that both C/EBPα and C/EBPβ are expressed at high levels in the liver and play decisive
roles in hepatocyte proliferation and differentiation [40]. Moreover, the cebpa promoter
region contains CpG islands and cebpa gene expression is elevated in dnmt1-deficient
embryos [41]. Since increased Hcy elevates the level of SAH which inhibits transferring
methyl group to acceptors, Hcy might induce C/EBPα expression through inhibiting DNA
hypomethylation at the promoter of C/EBPα, which in turn modulates G9a expression. Note-
worthy, we found that Hcy treatment caused a more dramatic decrease in G9a protein than
that of mRNA, suggesting that post-transcriptional mechanism is also involved in Hcy-modu-
lated G9a expression.

Hcy-induced DNA hypomethylation has been proposed as a biochemical mechanism by
which Hcy modulates gene expression. However, results have been inconsistent in many ani-
mal studies. Hcy increased cellular SAH concentration in endothelial cells, but not in vascular
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smooth muscle cells [42]. Moreover,in CBS null mice, higher SAH concentrations were
detected in all tissues studied, but lower DNAmethylation status was only detected in the liver
[43]. These studies suggest other mechanisms might be implicated in Hcy-modulated gene
expression. Our study showed that Hcy downregulated the expression of histone methyltrans-
ferase G9a, which in turn decreased the level of H3K9me2 at the promoter of COL1A1, suggest-
ing the involvement of histone modifications in Hcy-modulated gene expression. In line with
our finding, previous study demonstrated that Hcy reduced the binding of methyl CpG binding
protein 2 (MeCP2) and increased the bindings of acetylated histone H3 and H4 at the cyclin A
promoter [15]. Increasing evidence demonstrates that H3K9 hypermethylation serves as a
docking site for the chromatin modifier protein heterochromatin protein 1(HP1), which in
turn recruits DNMT1 and stimulates its activity leading to DNA hypermethylation in the sur-
rounding area [44,45]. By using the online prediction service of NCBI, we found a couple of
CpG islands in the promoters of both COL1A1 and Col1α1 gene. Therefore, Hcy-mediated
G9a repression might lead to DNA hypomethylation to reinforce the epigenetic activation of
gene transcription. Consistently, it has been shown that disrupting the function and expression
of G9a by its inhibitor and siRNA resulted in a marked reduction in DNA methylation at the
COX-2 promoter and led to the restoration of COX-2 expression [46,47]. Conversely, co-
recruitment of G9a, DNMT1, and HP1 to the promoter of the survivin gene stimulates
H3K9me2 and DNA hypermethylation [44,45].

Taken together, our study showed that Hcy downregulates G9a expression, which in turn
decreases the binding of G9a and the level of H3K9me2 on the promoter collagen I gene, leads
to its upregulation. Because G9a specifically catalyzes H3K9me2, it is conceivable that Hcy-
mediated G9a repression causes a decrease in global euchromatic H3K9me2, which might alter
the expression of numerous genes. Therefore, it will be of great interest to further explore the
involvement of G9a-mediated histone modification in HHcy-induced multi-organs damage.

Materials and Methods

Cell culture and treatment
Human hepatic cell lines (LO2) (American Type Culture Collection, Manassas, VA) were cul-
tured in DMEM supplemented with 10% FBS (Life Technologies, Gaithersburg, MD) at 37°C
in a 5% CO2 incubator. Fresh medium containing DL-Hcy was replaced every 24 h. DL-Hcy
was purchased from Sigma-Aldrich (St Louis, MO).

Plasmid constructs
Human G9a were amplified and subcloned into pcDNA3.1 vector. To generate pCol-GL3
reporter plasmid, a fragment containing 1500bp upstream of the transcriptional start site of
human COL1A1 promoter was amplified and subcloned into pGL3 vector (Promega, Madison,
WI). Primers used were as follow: Forward 5’-CCCGGTACCAGAGAAATGAACAGGGCA-3’,
Reverse 5’-CCCCTCGAGACTGGCCCGGGCCCCTTT-3’. All expression constructs were gen-
erated by standard PCR-based cloning strategies, and all expression constructs were verified by
DNA sequencing.

RNA Interference
Oligonucleotide siRNA duplex was synthesized by Shanghai Gene Pharma (Shanghai, China).
RNAi oligonucleotides were transfected into LO2 cells using the Lipofectamine 2000 (Invitro-
gen, Carlsbad, CA) according to the manufacturer’s instructions. The sequences of RNAi
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oligonucleotides were as follows: scramble siRNA: UUCUCCGAACGUGUCACGU; G9a siRNA:
CCAUGCUGUCAACUACCAUGG

Real-time PCR
Total RNA was extracted from cells or tissues using Trizol reagent (Invitrogen,Carlsbad, CA).
cDNA was synthesized from 2μg of RNA using the SuperScript kit (Invitrogen). Reaction was
performed on a 7500 Sequence Detection System (Applied Biosystems). Primers used in this
study were as follows:

human G9a Forward 5’-ACAGAGGAAGAGGTAGGCCC-3’,
Reverse 5’-CCATGAACTCTCTCGGTGGC-3’;

human COL1A1: Forward 5’-GAGATGATGGGGAAGCTGGA-3’,
Reverse 5’-GCACCATCATTTCCACGAGC-3’;

human GADPH Forward 5’-AGAAGGCTGGGGCTCATTTG-3’,
Reverse 5’-AGGGGCCATCCACAGTCTTC-3’;

mouse G9a Forward 5’-TTCCTTGTCTCCCCTCCCAG-3’,
Reverse 5’-CTATGAACTCTCTCGGCGGC-3’;

mouse Col1α1: Forward 5’-GAGAGGTGAACAAGGTCCCG-3’,
Reverse 5’-AAACCTCTCTCGCCTCTTGC-3’;

mouse GADPH Forward 5’-ggtgaaggtcggtgtgaacg-3’,
Reverse 5’-ctcgctcctggaagatggtg-3’.

Western blotting
Cells and liver tissues were lysed with immunoprecipitation assay buffer (25mM Tris-HCl, pH
7.4, 150mM KCl, 5mM EDTA, 0.5% Na deoxycholate, 0.1% SDS, 1% NP-40). Lysates were sub-
jected to Western blotting using method described previously [19]. The following primary anti-
bodies were used in this study: anti-G9a (Abcam ab40542), anti-Col I (Abcam ab34710), anti-
dimethyl-H3K9 (Abcam ab1220) and β-actin (Huatesheng Biotechnolgy, Fushun, China).

ChIP assay and q-ChIP PCR
Chromatin immunoprecipitation (ChIP) assay was performed as described previously [19].
Briefly, 2×107cells were fixed with 1% formaldehyde at 37°C for 10 min and were then lysed on
ice for 15 min. These lysed extracts were subjected to shearing by sonication. After centrifuga-
tion at 14,000 rpm for 15 min, the soluble chromatin was subjected to immunoprecipitation
with indicated antibodies, and then the complexes were drawn off with protein A-agarose
beads and washed sequentially with low-salt, high-salt, LiCl, and Tris-EDTA buffers and were
finally extracted with freshly prepared 1% SDS-0.1 M NaHCO3. Heating the samples at 65°C
for 6 h, and then DNA was purified with a Qiagen DNA extraction kit. Primers used in this
study were as follows: human COL1A1: Forward 5’-GCTGGGAAGGAGGGTCTCTA-3’,
Reverse 5’-TGAGAGATGGAGTGGGGAGG-3’; mouse Col1α1 Forward 5’-CATGGCCAGGA
GGACCTTTT-3’, Reverse 5’-TTGATGGAGAGCTGGGAGGA-3’.

Animals and Experimental Design
Wild-type C57BL/6 mice, obtained from and housed in Southern Medical University animal
facility,at the age of 6–9 weeks, were fed with either standard rodent chow or HM diet
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containing 19.56g/kg (2%) methionine and sufficient basal levels of B vitamins [22]. After 2
weeks on the diet, mice were sacrificed. Blood was collected by cardiac puncture. Liver tissues
were removed, flash-frozen, and stored at -80°C. All experiments were approved by the South-
ern Medical University Ethics Committee for Animal Experiments and strictly adhered to the
guidelines for animal experiments of Southern Medical University. All surgery was performed
under pentobarbital sodium, and all efforts were made to minimize suffering.

Immunohistochemistry
Liver was fixed overnight in 4%paraformaldehyde solution in phosphate-buffered saline. Sec-
tions (4 μm thickness) were deparaffinized with xylene, followed by rehydration in ethanol.
Hydrogen peroxide (3%) was used to eliminate endogenous peroxidase. Sections were incu-
bated overnight at 4°C with primary antibodies against Col I (Abcam 34710). After extensive
washing in PBS buffer, sections were then incubated for 30 minutes with secondary antibodies
(Dako, Carpinteria, CA). The immunostaining was examined by an Olympus BX51 micro-
scope (Olympus, Tokyo, Japan). Positive stains were quantified using image analysis software
(Image Pro-Plus, Media Cybernetics, Silver Spring, MD).

Masson Trichrome Staining
Selected liver sections were stained using the Masson Trichrome Stain Kit (Richard-Allan Sci-
entific, Kalamazoo, MI) according to the manufacturer’s protocols.

Hcy measurement
Total plasma Hcy concentration was measured using Homocysteine-EIA Kit (Axis Shield,
Scotland) according to the manufacturer’s instructions. Hcy measurement was calibrated to
the NIST standard reference material SRM1955.

Luciferase reporter assays
LO2 cells were transfected with pCol-GL3 reporter plasmid, pRL null together with siG9a or
Flag-tagged G9a using Lipofectamine 2000 (Invitrogen). Cells were harvested 48 h after trans-
fection and the luciferase activities were analyzed by the luciferase reporter assay system (Pro-
mega, Madison, WI) on a GloMax 96 MicroplateLuminometer (Promega). Renilla luciferase
activity was normalized to firefly luciferase expression for each sample.

Statistical analyses
Data were expressed as means ± SD. Comparisons between two groups were conducted using
the two-tailed t test. Differences among more than two groups were compared using one-way
ANOVA. P<0.05 was considered statistically significant.
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