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Culturing before DNA extraction represents a major time-consuming step in whole-genome sequencing of slow-growing bacte-
ria, such as Mycobacterium tuberculosis. We report a workflow to extract DNA from frozen isolates without reculturing. Pre-
pared libraries and sequence data were comparable with results from recultured aliquots of the same stocks.

In recent years, studies employing whole-genome sequencing
(WGS) of Mycobacterium tuberculosis isolates have demon-

strated its value in understanding transmission patterns, recurrent
tuberculosis (TB), development of drug resistance, and bacterial
evolution (1–9). In parallel, improvements of next-generation se-
quencing platforms and library preparation workflows make it
possible to determine the genome sequence from bacterial DNA
samples in the time span of 1 week. Reculturing isolates for DNA
isolation has been reported as a necessary step in published WGS
studies (2, 4, 7, 10). As culturing of slow-growing bacteria, such as
M. tuberculosis, takes from 1 week to several weeks, it constitutes
the main time-consuming process in WGS projects (11–14).
While initially large amounts of DNA were required for reliable
WGS library preparation, newly developed library preparation
protocols for bacterial samples typically require about 1 to 10 ng of
DNA (e.g., Illumina Nextera XT [1 ng], New England BioLabs
NEBNext Ultra [5 to 1,000 ng], and Bioo Scientific NEXTflex
ChIP-Seq [1 to 10 ng]). Therefore, faster and reliable methods for
DNA isolation would enable a considerable decrease in the time
needed to perform WGS analyses. In this regard, a recent study
proposed a WGS workflow starting from early positive liquid cul-
tures of the MGIT system (15), potentially enhancing the speed of
WGS procedures as part of routine diagnostics.

Furthermore, reculturing of isolates from even well-main-
tained frozen stocks can fail entirely, usually excluding the respec-
tive isolate from any further analysis. A recent publication re-
ported failure rates of up to 50% for M. tuberculosis glycerol stocks
(16). New methods enabling WGS analysis directly from frozen
stocks without reculturing can rescue genotype information, es-
pecially from historic collections of isolates.

In this study, we investigated and tested a protocol for per-
forming WGS of DNA extracted directly from frozen glycerol
stocks, which were all historic isolates from patients diagnosed
with fully susceptible TB between 1992 and 2012, circumventing
the step of reculturing altogether.

For validation, we sequenced DNA from cultured aliquots of the
same frozen stocks in parallel. In total, we included 40 frozen glycerol
stocks (1992 to 2012) stored at �80°C at the International Reference
Laboratory of Mycobacteriology at the Statens Serum Institut (Co-
penhagen). All were processed according to a standard lysis protocol
with heat inactivation and sonication as is usually used for PCR (17,

18). Lysates were concentrated with Microcon filters (Merck KGaA,
Darmstadt, Germany), followed by a purification with ethanol
(EtOH) precipitation and bead clean up (AMPure XP bead; Beckman
Coulter, Krefeld, Germany) (15). For culture, aliquots of frozen
stocks were put on solid Löwenstein-Jensen (LJ) slants and incubated
at 35°C. After approximately 10 weeks of growth, DNA extraction
was performed with the traditional cetyltrimethylammonium bro-
mide (CTAB) procedure (19) from visible colonies. For each extrac-
tion method, we measured final DNA concentrations with the Qubit
2.0 Fluorometer (Fig. 1; see also the supplemental material for further
details). Libraries for WGS were prepared from DNA samples with
the Nextera XT kits and run on Illumina next-generation sequencing
platforms (MiSeq) as instructed by the manufacturer (Illumina, San
Diego, CA, USA). Respective fastq files were submitted to the EMBL
EBI ENA short read archive (accession number PRJEB9308). Reads
were mapped to the genome of the M. tuberculosis reference strain
H37Rv (GenBank accession number NC_000962.3) with the
alignment program SARUMAN (20). For variant detection in
mapped reads, we employed minimum thresholds of 10� cover-
age and 75% allele frequency and filtered results for repetitive
regions (1, 2). Detected variants were manually curated using the
Integrative Genome Viewer software (21) to visualize mapped
reads.

Of the 40 selected glycerol stocks, 35 were successfully se-
quenced from DNA extracted from glycerol stocks and culture.
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Five isolates were excluded due to failure to grow (n � 4) on
any media (LJ, liquid Dubos, blood agar) or continuous failure
of library preparation from DNA directly isolated from stock
(n � 2). For the remaining 35 isolates, the median DNA con-
centration from direct isolation was 0.67 ng/�l (range, 0.2 to
3.8 ng/�l). DNA extraction with direct lysis of glycerol stocks,
DNA concentration, and purification takes less than a day in
total. In comparison, most samples grown on LJ medium are
normally visible within 3 to 8 weeks, and DNA extraction with
the CTAB procedure takes 3 days.

For the two methods, mapping of the genome to the reference
strain revealed a genome-wide coverage in the range of 98.8% to
99.5% and medians of 99.3% for glycerol stocks and 99.4% for
cultured aliquots. The median percentages of the reference ge-
nome fulfilling thresholds for variant detection was 97.9% (range,
96.6% to 98.9%) for glycerol stocks and 98.5% (range, 97.5% to
98.9%) for cultured aliquots.

Analysis of whole-genome sequencing data revealed only two
instances where paired genotypes from glycerol stocks or cultured
material differed in detected variants. In these cases, sequence data
for cultivated aliquots exhibited one additional single nucleotide
polymorphism (SNP) compared to the H37Rv reference genome.
We detected one SNP in the rRNA gene Rvnr01 at position
1471870 for sample GE0078 and one nonsynonymous SNP in the
Rv3085 gene-coding region at position 3199069 for sample
GE0079 (see Table 1).

Library preparation and whole-genome sequencing succeeded
for 38 (95%) of the glycerol stocks with a DNA yield well in the
range required for WGS library preparation (range, 0.2 to 3.8 ng/
�l). In contrast, culture and DNA extraction succeeded for 36 of
the 40 (90.0%) glycerol stocks. In total, DNA was obtained from
39 of the 40 lysed frozen stocks with one or both methods. Refer-
ence mapping-based analysis gave excellent results, with at least
96.6% of the reference genome covered at high quality (10� cov-
erage, 75% allele identity) for directly isolated DNA and DNA
extracted from cultured stocks.

In conclusion, DNA extraction, library preparation, and se-
quencing was successful in three samples that exhibited no
growth on LJ slants; hence, the proposed method can even be
used for samples where reculturing is not possible. As results
are comparable between DNA obtained directly from frozen
stocks versus DNA extracted from cultured aliquots, this study
shows that reculturing of frozen glycerol stocks is not needed in
order to perform whole-genome sequencing analysis for epide-
miologic research. On the contrary, reculturing might intro-
duce mutations in the genome, which likely happened in two
cases for our sample set. In samples with distinct clones, cul-
turing might also change the relative ratio for intrapatient
evolving clones (7) and for coinfections (22). This would be
even more pronounced for strains carrying fitness-reducing
resistance mutations (23). Since direct lysis of frozen stocks,
concentration, and purification can be performed in 1 day

FIG 1 The workflow of DNA extraction from 40 frozen glycerol stocks with same day direct lysis from frozen glycerol stocks or reculturing of aliquots.
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while reculturing and DNA extraction with the CTAB proce-
dure takes several weeks, this finding can facilitate implemen-
tation of WGS as a routine clinical tool.

Nucleotide sequence accession number. Sequence reads were
submitted to the EMBL EBI ENA short read archive under acces-
sion number PRJEB9308.
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TABLE 1 DNA concentration and reference genome coverage for DNA extracted from directly lysed glycerol stocks or from recultured
aliquotsa

Year
Sample
no.

DNA from directly lysed samplesb DNA from recultured samples Comparison

Qubit (HS)
before
purification
(ng/�l)

Qubit (HS)
after
purification
(ng/�l)

Cov any
(mean)

Cov
any (%)

Cov
unamb (%)

Visible
growth

Qubit (HS)
after 1:2
dilution
(ng/�l)

Cov any
(mean)

Cov
any (%)

Cov
unamb (%)

Library from
(gly/LJ)

No. of
SNPs

1992 GE0005 0.08 0.07 52.1 99.4 98.3 No Yes/no
1992 GE0006 0.22 0.16 63.6 99.4 98.2 Yes 29 92.4 99.4 98.5 Yes/yes 0
1992 GE0007 0.39 0.15 Yes 79 56.4 99.2 97.6 No/yes
1992 GE0008 0.71 0.37 61.7 99.4 98.3 Yes 16 83.7 99.5 98.7 Yes/yes 0
1992 GE0009 0.71 0.23 64.7 99.3 98.3 No Yes/no
1992 GE0011 0.47 0.99 No No/no
1992 GE0012 0.18 0.18 94.3 98.9 98.0 No Yes/no
2002 GE0022 Too low 0.53 64.4 99.4 98.1 Yes 63 111.3 99.4 98.6 Yes/yes 0
2003 GE0028 0.37 0.37 59.9 99.2 97.7 Yes 87 90.0 99.3 98.2 Yes/yes 0
2003 GE0030 0.30 0.75 92.4 99.4 98.5 Yes 57 78.7 99.4 98.5 Yes/yes 0
2005 GE0039 0.20 0.17 68.0 99.2 97.9 Yes 74 111.6 99.4 98.6 Yes/yes 0
2005 GE0040 0.70 0.22 92.3 99.5 98.9 Yes 37 118.4 99.4 98.6 Yes/yes 0
2005 GE0041 0.40 0.27 70.8 99.4 98.3 Yes 33 105.3 99.5 98.7 Yes/yes 0
2005 GE0042 0.71 0.91 63.6 99.3 97.6 Yes 14 107.1 99.4 98.7 Yes/yes 0
2005 GE0044 0.48 0.30 71.0 99.3 97.9 Yes 42 102.2 99.4 98.5 Yes/yes 0
2005 GE0045 0.09 1.30 73.4 99.3 98.1 Yes 50 89.3 99.3 98.3 Yes/yes 0
2005 GE0046 0.36 0.34 66.5 99.3 98.1 Yes 90 89.5 99.4 98.6 Yes/yes 0
2005 GE0047 0.76 0.89 67.7 99.3 98.2 Yes 28 77.2 99.4 98.5 Yes/yes 0
2005 GE0048 0.32 0.44 54.4 99.3 98.0 Yes 37 65.1 99.3 98.2 Yes/yes 0
2005 GE0049 0.29 0.24 59.3 99.3 98.0 Yes 42 58.2 99.4 98.2 Yes/yes 0
2005 GE0050 0.36 0.39 64.2 99.3 97.8 Yes 26 56.0 99.4 98.3 Yes/yes 0
2006 GE0052 0.22 0.78 71.7 99.3 98.1 Yes 37 102.5 99.5 98.8 Yes/yes 0
2005 GE0054 1.93 2.32 73.0 99.3 98.0 Yes 50 87.1 99.4 98.7 Yes/yes 0
2005 GE0055 1.53 3.17 75.3 99.4 98.0 Yes 20 65.3 99.4 98.4 Yes/yes 0
2006 GE0056 0.79 1.21 82.5 99.4 98.3 Yes 59 85.9 99.4 98.6 Yes/yes 0
2006 GE0057 0.69 0.90 56.3 99.4 97.9 Yes 81 93.0 99.3 98.5 Yes/yes 0
2006 GE0058 0.66 0.64 67.6 99.3 97.9 Yes 34 75.3 99.4 98.4 Yes/yes 0
2008 GE0069 0.68 0.68 67.6 99.4 98.1 Yes 65 91.6 99.4 98.6 Yes/yes 0
2008 GE0070 0.30 0.37 69.8 99.4 98.1 Yes 20 67.9 99.3 98.2 Yes/yes 0
2009 GE0072 1.05 1.18 55.7 99.2 97.6 Yes 74 85.0 99.4 98.5 Yes/yes 0
2009 GE0073 1.28 1.47 87.0 99.2 97.6 Yes 31 69.3 99.4 98.5 Yes/yes 0
2009 GE0074 1.56 1.61 70.2 99.2 97.5 Yes 101 111.3 99.5 98.8 Yes/yes 0
2009 GE0077 2.05 3.76 75.7 99.3 98.1 Yes 71 88.5 99.4 98.6 Yes/yes 0
2009 GE0078 2.15 2.55 69.3 99.4 98.1 Yes 107 118.4 99.5 98.8 Yes/yes 1
2009 GE0079 2.01 1.45 59.4 99.3 97.9 Yes 169 117.1 99.5 98.9 Yes/yes 1
2009 GE0080 0.66 0.54 60.3 99.1 96.9 Yes 65 72.3 99.3 98.2 Yes/yes 0
2009 GE0081 1.87 1.66 64.7 99.3 97.8 Yes 50 60.9 99.3 98.1 Yes/yes 0
2009 GE0082 1.44 1.43 63.0 99.2 97.6 Yes 98 75.1 99.4 98.4 Yes/yes 0
2012 GE0148 0.69 0.70 70.2 98.8 97.7 Yes 33 56.3 98.8 97.5 Yes/yes 0
2012 GE0151 0.70 0.65 67.9 99.3 97.9 Yes 91 112.2 99.5 98.8 Yes/yes 0
a In total, analysis of sequencing data from paired DNA samples differed in two cases. An additional SNP was found for the recultured aliquot: for sample GE0078 one SNP at
position 1471870 in the rRNA gene Rvnr01 and for sample GE0079 one nonsynonymous SNP at position 3199069 in the Rv3085 gene.
b HS, high sensitivity; cov, genome coverage; unamb, unambiguous; gly, glycerol stocks.
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