
The Role of the Peripheral and Central Nervous Systems in 
Rotator Cuff Disease

Damien Bachasson, PT, PhD1, Anshuman Singh, MD2, Sameer Shah, PhD3,4, John G. Lane, 
MD5, and Samuel R. Ward, PT, PhD1,3,4

1Department of Radiology, University of California San Diego, La Jolla, CA, USA

2Department of Orthopaedics, Kaiser Permanente Southern California, San Diego, CA, USA

3Department of Orthopaedic Surgery, University of California San Diego, La Jolla, CA, USA

4Department of Bioengineering, University of California San Diego, La Jolla, CA, USA

5COAST surgery Center, San Diego, CA, USA

Abstract

Rotator cuff (RC) disease is an extremely common condition associated with shoulder pain, 

reduced functional capacities and impaired quality of life. It primarily involves alterations in 

tendon health and mechanical properties that can ultimately lead to tendon failure. RC tendon tears 

induce progressive muscular changes that negatively impact surgical reparability of the RC 

tendons and clinical outcomes. At the same time, a significant base of clinical data suggests a 

relatively weak relationship between RC integrity and clinical presentation, emphasizing the 

multifactorial aspects of RC disease. This review aims to summarize the potential contribution of 

peripheral, spinal and supraspinal neural factors that may: (i) exacerbate structural and functional 

muscle changes induced by tendon tear, (ii) compromise the reversal of these changes during 

surgery and rehabilitation, (iii) contribute to pain generation and persistence of pain, iv) impair 

shoulder function through reduced proprioception, kinematics and muscle recruitment, and iv) 

help to explain interindividual differences and response to treatment. Given the current clinical 

and scientific interest in peripheral nerve injury in the context of RC disease and surgery, we 

carefully reviewed this body of literature with a particular emphasis for suprascapular neuropathy 

that has generated a large number of studies in the past decade. Within this process, we highlight 

the gaps in current knowledge and suggest research avenues for scientists and clinicians.
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Introduction

The human shoulder complex exhibits a unique anatomical design to allow a wide range of 

motion at various speed and force levels. The shoulder joint complex has an unstable bony 

configuration secured by connective tissues and dynamic stabilizers (rotator cuff muscles) 

controlled by a sophisticated neuromuscular system156; 160. As a consequence, shoulder 

structures, particularly rotator cuff (RC) tendons, are prone to various injuries and 

degenerative disorders19; 120. RC tendon tears are common in the general population103; 122 

and can lead to shoulder pain, impaired functional capacities, and reduced quality of 

life87; 163.

RC tendon tears are not necessarily associated with pain or patient-reported loss of shoulder 

function90; 163; 164, however, asymptomatic patients may develop symptoms in a relatively 

short period of time106. Symptomatic patients usually undergo surgery when nonoperative 

and pharmacological options have been exhausted111; 129. Surgical management decisions 

are mainly driven by patients’ pain, disability, and functional requirements rather than the 

severity of local-tissue damage15. In the short-term, nonoperative treatment may be effective 

in a fraction of patients35; 50; 75 but tissue damage and symptoms may progress over 

time90; 106; 163, further limiting surgery and rehabilitation78; 91; 95; 97. RC tendon repair is 

not universally successful, ~25% of repairs fail to reestablish the integrity of the rotator 

cuff97 (up to 70% in massively retracted tears36) and patient-reported improvements are 

limited78; 97. Pre-operative factors such as age, chronicity, and severity of muscle-tendon 

unit impairments have been repeatedly associated with higher retear-rates and poorer clinical 

outcomes78; 97. Paradoxically, two recent meta-analyses97; 129 suggested that patients with 

intact repairs might not have significant differences in symptom improvement compared to 

patients with recurrent tears. Another major concern is that muscle impairments do not seem 

to reverse, even when repair is intact and function improved at follow-up26.

During the past decades, RC disease has been extensively investigated within the framework 

of tendon pathophysiology, tendon-to-bone healing, and muscular changes following tendon 

tear30;71. A smaller set of studies have investigated how peripheral, spinal, and central 

neural factors are likely to contribute to muscle-tendon unit changes, impaired shoulder 

function, and responses to treatment. Expanding our knowledge, or at least considering the 

potential involvement of both peripheral and central nervous system is critical to improve 

our understanding of RC disease and our ability to appropriately intervene along the 

continuum of RC injury processes. Therefore, this review aims to scrutinize and highlight 

the gaps in current knowledge regarding the nervous system that may be altered in patients 

with RC disease from the peripheral receptors to the brain and from the brain to the 

neuromuscular junction. We summarized how these factors may (i) exacerbate structural and 

functional muscle changes induced by tendon tear, (ii) compromise the reversal of these 

changes during surgery and rehabilitation, (iii) contribute to pain generation and persistence 
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iv) impair shoulder function by impairing shoulder proprioception, kinematics and muscle 

recruitment, iv) contribute to explain interindividual differences in symptoms and response 

to treatment. Given the current and lively interest for peripheral nerves injuries in the 

context of RC disease and surgery, we carefully reviewed this body of literature with a 

particular emphasis for suprascapular nerve injury that has generated a large number of 

studies in the past decade. Within this process, we highlighted the gaps in current knowledge 

and suggested research avenues for scientists and clinicians.

Proprioceptors and Related Spinal Reflexes

Shoulder movements and positional changes induce a deformation of tissues surrounding 

joints, including skin, muscles, tendons, fascia, joint capsules, and 

ligaments24; 27; 47; 121; 143; 155. All these tissues are innervated by mechanically sensitive 

receptors termed proprioceptors that relay information to the central nervous system 

regarding movement, position, and forces exerted on shoulder structures (e.g. muscle 

spindles, Golgi tendon organs, Ruffini endings Pacinian and Meissner corpuscles). The 

distribution and the function of proprioceptors in shoulder joints and soft tissue have been 

investigated in both animal and human studies 40; 51; 138; 140; 143; 146; 155).

Glenohumeral joint and ligaments receptors probably play a minor role in shoulder 

proprioception121 as illustrated by the small proprioceptive deficit observed after shoulder 

arthroplasty21. However they may act as limit detectors triggering protective and synergistic 

reflex muscle activity during movement27; 46; 64; 140; 148; 157. In RC muscles and tendons, a 

large concentration of muscles spindles and Golgi tendon organs have been demonstrated in 

rabbits and rats3; 22; 104; 165 but no human data exist. Current theory suggests that muscle 

spindles are the most important proprioceptors, especially during movement121. They also 

play a critical role in regulating muscle contraction via spinal reflexes, that are essential for 

joint stability and accurate motor control100. Golgi tendon organs are equally important 

proprioceptors, signaling information about force and mass and are also involved in the 

regulation of muscle contraction121.

The effect of tendon disruption on muscle spindles and Golgi tendon organs has been 

studied in a limited number of animal experiments concerning hind limb muscles only. 

Following tenotomy, muscle shortening and changes in the surrounding extrafusal tissue 

modify the morphology of muscle spindles that become slack and distorted168. In the 

chronically tenotomized muscle, atrophy of intrafusal fibers, degeneration of supplying 

axons and fibrotic thickening of the capsule have been reported67; 94 Functionally, acute 

tenotomy decreases muscle spindle discharge56; 159; 168 but interestingly, responsiveness of 

muscle spindles from the chronically tenotomized muscle has been shown to 

increase56; 57; 168. Shortening of intrafusal fibers, increased preliminary stretch caused by 

kinking of intrafusal fibers, change in passive mechanical properties or increased sensitivity 

of spindles have been subsequently proposed as potential explanations for this phenomenon. 

These increases in muscle/tendon afferent outflow have also been suggested to result from 

nonproprioceptive discharge57; 77. Increase in the amplitude of the monosynaptic reflex has 

also been repeatedly observed in the chronically tenotomized muscle10; 61; 74; 159, suggesting 

adaptive changes in motoneurons excitability consistent with the decrease in muscle 
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mechanical loading98. In the Golgi tendon organs, tenotomy also induces morphological 

changes, but the physiological consequences remain to be investigated67. To the best of our 

knowledge, only one study related to proprioceptors function in RC tendon tear have been 

conducted and reported that experimentally-induced inflammation within rabbit RC sensitize 

and increase the firing of mechanical receptors165.

Based on the findings of the aforementioned studies, it is reasonable to speculate that RC 

tendon tear is associated with structural and functional alterations of proprioceptors. Either 

reduced or inconsistent proprioceptive information from the injured muscle-tendon unit and 

altered muscle reflex activity may impair shoulder proprioception and contribute to impaired 

kinematics and muscle recruitment (see also section “Impact of RC Disease on Shoulder 

Muscle Activity”). Finally, the effects of tendon repair on the structure and the function of 

proprioceptors remain entirely unknown. Further experimentations are therefore required to 

assess the relative contribution of these mechanisms to anatomical and clinical impairments 

associated with RC disease.

Central Processing of Proprioceptive information

Proprioceptive information from the shoulder and more broadly from the upper limb are 

conveyed via the spinothalamic tracts and relayed to the somatosensory cortex where it is 

referred to a central body map allowing the conscious awareness of arm position and 

movement in space. Unconscious proprioceptive tracts (i.e. spinocerebellar tracts, projecting 

in the ipsilateral cerebellum) and the cervical propriospinal system are also involved the 

coordination movements involving multiple joints of the arm121; 124.

Measurement of errors in the perceived position, movement detection latency, or ability to 

reproduce a determined force level can be used to globally assess shoulder 

proprioception6; 85; 107; 125; 131. A large fraction of studies involving shoulder 

proprioception assessment have been conducted in patients with shoulder 

instability6; 107; 125. In the overhead athlete with isolated infraspinatus atrophy caused by 

SSN compression, impaired sense of movement associated with different brain activation 

pattern has been reported suggesting an important contribution of RC muscle to shoulder 

proprioception131. Decreased sense of movement88; 4; 130 and a tendency to overestimate the 

target during force reproduction tests89 have been reported in patients with RC tendinopathy 

but no data exist in patients with RC tendon tears. In conditions such as knee disorders, 

functional brain MRI demonstrated reduced activation of sensorimotor cortical areas and 

increased activation in proprioception-related brain regions, however no data exist in 

patients with RC disease69. In healthy subjects, transcranial magnetic stimulation (TMS) 

combined with peripheral nerve stimulation has been used to assess the modulation of the 

propriospinal system124 of the upper limb which is a important determinant for synergies 

between forearm, hand, and shoulder muscles. This system remains to be investigated in 

patients with RC disease.

Proprioception has been insufficiently assessed in patients with RC disease despite its 

recognized importance in other musculoskeletal conditions121. Therefore, further studies are 
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required to assess proprioception in patients with RC disease and patients who have 

undergone RC reconstruction.

Nociceptors, Peripheral and Central Pain Processing

Nociceptors are high threshold receptors that detect signals from damaged tissue or tissue on 

the verge of damage. They can be found in the shoulder, skin, muscles, joints, soft-tissue, 

and bone32; 40; 41; 51; 143; 148; 149. RC disease is associated with local-tissue damage and 

inflammation within the RC and surrounding structures, which release a variety of 

substances that sensitize nociceptors by decreasing their activation threshold (peripheral 

sensitization) resulting in hyperalgesia at the site of injury23; 34; 41. Prolonged release of 

neuropeptides by nociceptive afferent fibers at the dorsal horn may sensitize nocineurons 

and cause long-term changes in pain processing at the spinal level and higher centers that 

result in pain hypersensitivity within, but also outside the original zone of injury162. As 

previously observed in other musculoskeletal conditions53, sensory abnormalities have been 

observed on the injured but also on the non-injured side of patients with RC disease, 

illustrating the involvement of central mechanisms39; 48; 55. Interestingly, patients with a RC 

tendon tear and signs of central sensitization have been shown to have worse clinical 

outcomes after surgery48. Pain may have profound effects on motor behavior mediated at 

various level of the nervous system and impact on numerous motor parameters such as 

reflex amplitude, muscle activity, kinematics, movement planning and brain activation5 (see 

section “Shoulder Muscle Activity and Kinematics”).

Pain remains poorly characterized in patients with RC disease, but the use of existing pain 

assessment tools and the development of biological markers have the potential for 

enhancement in our understanding of pain in RC disease24. Interindividual differences in the 

magnitude of these changes and their persistence after local-tissue damage has healed may 

explain differences in clinical presentation and response to therapies24.

Motor Nerves and Neuromuscular Junction

The motor innervation of the RC muscles is achieved by nerves emerging from the posterior 

and the superior trunks of the brachial plexus, all originating from the C5–C6 cervical roots 

and C4 nerve root in some individuals2; 80; 136; 166. The architecture and the high mobility of 

the shoulder complex predispose nerves to various dynamic or static compressive and/or 

traction injuries147. Cervical radiculopathy, brachial plexopathy and peripheral nerve trunk 

injuries are potential comorbidities of RC tendon tear52; 135. Motoneuron damage 

immediately reduces muscle activation and induces progressive muscle changes proportional 

to the severity of nerve injury145. Over time, the muscle tissue can virtually disappear while 

connective tissue and fat accumulate84 as recently illustrated in the human 

supraspinatus14; 79; 101. A particular interest has been placed in the suprascapular nerve 

(SSN) since it innervates the most affected muscles in RC disease (i.e. supraspinatus and 

infraspinatus) and because it is particularly prone to entrapment105; 135. SSN injury can 

cause shoulder weakness and pain that overlap with the signs of RC disease105.
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SSN injury associated with RC tendon tear, Anatomical Studies

SSN injury is possible given the surgical manipulation of previously retracted muscle(s) 

during RC repair procedures133. In vivo studies have shown that lateral advancement during 

supraspinatus repair initiates a stretch of the SSN44; 161. The main trunk of the SSN may be 

prone to damage but also its smaller branches may be injured44. Following a similar 

principle, medial retraction of the supraspinatus and/or infraspinatus muscles caused by 

tendon tear has been suggested to place excessive traction on the SSN and to promote 

compressive injuries at the suprascapular and/or spinoglenoid notch. In cadavers, 

supraspinatus tenotomy changes the course of the SSN1; 93. Various anatomical variations 

have also been suggested to promote suprascapular entrapment (e.g. deep and narrow shaped 

suprascapular notch60; 108; 118; 123; 150, shape/ossification of the superior transverse scapular 

ligament (STSL)117; 119; 150, arrangements of blood vessels119; 167, configuration of the 

fascia securing the suprascapular nerve to the supraspinatus fossa28, close relationship of the 

subscapularis muscle7). However, the incidence of these anatomical predispositions in 

patients with a RC tendon tear and concomitant neuropathy has never been studied. In 

addition, the potential occurrence of dynamic stretch/compressive strain of the SSN 

promoted by biomechanical and kinematic impairments in patients with RC disease should 

not be neglected20; 116.

These anatomical studies must be acknowledged as the original incentive for investigating 

SSN function in RC tendon tears105. However they have not addressed the question of 

whether these changes are physiologically relevant and whether smaller nerve branches are 

also likely to be insulted clinically.

Prevalence of SSN injury in patients with RC tendon tear

In patients, diagnosis of SSN injury is confirmed by electrodiagnosis that combined needle 

electromyography (EMG) and nerve conduction studies (NCS). Various clinical reports, 

retrospective studies, and prospective studies regarding the prevalence and the impact of 

peripheral nerve injuries before and/or after surgery have been published (see Table I for 

supporting material).

Following tendon repair, a low risk of iatrogenic nerve injury has been reported25; 49; 59; 169 

but comparisons of pre- and post-surgery EMG/NCS data have not been systematically 

performed18; 42; 92; 169. Goutallier et al.42 achieved such comparisons in the largest sample 

of patients and findings confirmed the low incidence of SSN dysfunction after RC repair 

previously reported. In these studies, the long time delay between surgery and 

electrodiagnosis may have allowed nerve recovery. Some case reports also suggested that 

supraspinatus repair may restore the normal course of the SSN, therefore reducing nerve 

strain and allowing its recovery but larger studies are required to prove this concept18; 92. 

The large undocumented occurrence of traumatic events that could have caused direct nerve 

injury often limits data interpretation (see Table I).

Studies suggesting a greater prevalence of SSN motor neuropathy in patients with RC 

tendon tears involve important recruitment bias. In the studies of Boykin et al.12 and Shi et 

al.134, patients were sent for electrophysiological examination for persistent pain and/or 
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severe muscle changes; Similarly, Costouros et al.18 and Mallon et al.92 selected patients 

with severe muscle atrophy and fatty infiltration. While some studies are consistent with a 

higher risk of SSN injury in severely versus slightly retracted tears13; 92, the study of Shi et 

al.134 involving a larger spectrum of RC tears severity does not support this hypothesis. 

These data thus call into question the concept of SSN injury as a direct consequence of 

muscle retraction. Prospective and carefully conducted studies indicate a rare occurrence of 

isolated motor SSN injury in patients with RC tendon tears, even in massive and/or 

traumatic RC tendon tear16; 153. Within the largest patient series in this topic area16, 

peripheral neuropathy was found in 12% of patients and only one patient exhibited positive 

signs of SSN injury.

Heterogeneous and incompletely documented EMG/NCS methods are also major limitations 

when comparing results between these studies13; 92; 134; 153. Some categorize EMG findings 

based upon the isolated or combined occurrence of positive EMG signs134 while others use 

graded scoring based on semi-quantitative assessments of EMG abnormalities16; 18; 134. 

Regarding NCS, some compare latencies to previously published values13; 16 and/or to the 

contralateral side16; 18; 153 while others compared latencies of patients with positive and 

negative EMG findings13. Severe retraction, ultrastructural muscle changes and/or non-

uniform denervation may also complicate EMG/NCS in RC muscles8. US imaging113 and 

multisite EMG assessments may help overcome some of these limitations. Standardization 

of procedure and quantification methods170 must be pursued to enhance the sensitivity of 

EMG. Recent progress in nerve imaging techniques81; 115; 144 may also allow enhancement 

of our ability to study peripheral nerve injuries in vivo.

Relative Contribution of Denervation to Muscle Changes associated with RC Tendon 
Tears: Clinical Data and Animal Models

In humans, imaging techniques cannot discriminate muscle impairments related to tendon 

tear or denervation when they happen simultaneously8. EMG/NCS is limited and an 

objective test such as nerve biopsy cannot be reasonably performed in patients. 

Consequently various animal models of RC disease and/or nerve injury have been developed 

to understand cellular and molecular mechanism underlying muscle changes30.

In rabbits and rodents, tenotomy associated with full nerve transection has been shown to 

produce severe atrophy and fatty infiltration and these data are frequently used to support 

the role of SSN injury in human RC muscle changes65; 66; 72; 82; 126. However if nerve injury 

occurs in humans, denervation is more likely to be incomplete with higher capacity for 

recovery. In rabbits, fatty infiltration has been repeatedly observed following isolated 

supraspinatus tenotomy126; 128; 152 even in absence of retraction151, and independent from 

denervation38, further clouding the cause-effect relationship between nerve injury and fatty 

infiltration. There are many transcriptional pathways that control various aspects of the 

adipogenic, fibrogenic and myogenic programs68. However, distinct pathways may be 

triggered by RC tenotomy or denervation as recently reported in rodents65; 82. Although 

small animal models have a limited ability to replicate human RC disease, previously 

developed transgenic mice associated with tendon and/or nerve injury have great potential to 

further understand RC disease pathophysiology72; 83. Increased availability in human tissue 
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may also allow further investigations of muscle impairments and comparison of data 

obtained in animal models.

Direct Consequences of RC Tendon Tears on Nerves and Neuromuscular Junction

Studies that investigated the consequences of tendon tear on motor nerve and neuromuscular 

junction provide equivocal results61. These effects have been investigated in animal models 

of RC tendon tears in rabbit only. Signs of degenerative histological changes in the 

subscapular nerve after tenotomy of the subscapularis muscle have been reported126 but 

characteristics of these nerve abnormalities remain unclear. Gayton et al.38 reported that 

motor endplates were not significantly affected after tenotomy in rabbits; confirmation is 

required given the small sample size of this work (n=4). A critical point that has not been 

addressed is whether neuromuscular junctions are altered in patients with isolated RC 

tendon tears.

Sensory Nerves

Sensory nerve injuries have received less interest than the motor neuropathies discussed 

above. However the RC and surrounding structures receive sensory innervation from 

numerous sensory nerve branches29; 158 that are equally susceptible to injury. Injury within a 

peripheral nerve trunk induces a local inflammatory response that causes changes in afferent 

fibers and in the central nervous system and may lead to neurogenic pain (see section 

“Nociceptors and Pain Mediating Systems” and Ref.31 for more details). Damage to afferent 

fibers may also contribute to the impairment of the transduction of proprioceptive 

information. SSN block has demonstrated effectiveness in the management of post-operative 

pain63 and pulsed radiofrequency modulation has been reported to provide promising long-

lasting pain relief in experimental models154 and in patients with shoulder pain62. These 

data highlight the important contribution of shoulder nerves in the transmission of 

nociceptive information in patients with RC disease, making them important targets for 

shoulder pain management63; 154.

Shoulder Muscle Activity and Kinematics

Alterations in shoulder muscle activity and kinematics of the glenohumeral and 

scapulothoracic joints have been widely reported in patients with RC disease86; 96; 127. One 

potential contributing factor may be that patients with symptomatic tears display different 

motor control patterns during movement compared to asymptomatic patients127.

Kelly et al.70 observed that symptomatic patients retain supraspinatus and infraspinatus 

activity despite tendon tears but are unable to activate intact deep muscles (i.e. 

subscapularis) as efficient co-contractors and that they may preferentially rely on 

periscapular muscles during elevation. These results have been partially reproduced by 

Cordasco et al.17 and suggest that symptomatic patients fail to develop alternative muscle 

activation strategies to compensate for weakened RC muscles and the resulting altered 

shoulder biomechanics. Importantly, they suggest that RC muscles may continue to be 

activated despite tendon damage. Shinozaki et al.137 recently used positron emission 

tomography with fluorodeoxyglucose (FDG)76; 112 to assess shoulder muscle activity 
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differences between asymptomatic and symptomatic patients. They observed increased 

trapezius activity and lower deltoid activity in the symptomatic group but no differences in 

RC muscles activity compared to asymptomatic patients. This technique appears promising 

but further developments are required, particularly regarding quantification.

An important issue is whether different muscle activity patterns observed in symptomatic 

patients are the cause or the result of pain, or both. Experimentally-induced pain has been 

shown to increase activity in the antagonist muscle during abduction (i.e. latissimus), 

probably in an attempt to limit the compression of painful subacromial structures. Similar 

adaptations have been observed in patients with massive RC tendon tears17; 142. Masking 

pain may reduce these protective mechanisms and further promote local-tissue damage. 

Stackhouse et al.141 reported that pain reduced shoulder strength in external rotation in 

association with a decrease in voluntary activation using the twitch interpolation 

technique102. Sole et al.139 also pointed out that motor adaptation to acute pain may be 

individual- and task-specific58. Given the acute nature of experimentally induced pain5, 

precautions should be taken when trying to generalize these results in patients with chronic 

RC disease.

In patients with RC disease, pain reduction has been shown to improve glenohumeral 

motion and to reduce scapular contribution during arm elevation132. Dramatic increases of 

peak torque and power have also been reported9. Surprisingly, when assessed with isometric 

contractions, pain reduction has been shown to have no relevant effect on shoulder 

strength33; 114 suggesting that pain-related motor impairments may be particularly visible 

during movement.

These experiments observed muscle activity pattern changes under pathophysiologic and 

simulated conditions, however, the relative contribution of muscle-tendon unit impairments, 

biomechanical abnormalities, pain, impaired proprioception, and deterioration of motor 

control in shoulder dyskinesia and weakness remain unclear. Poor coping strategies in 

muscle activation patterns in response to biomechanical changes and pain may contribute to 

worsen local-tissue damage and pain. Interestingly, motor adaptations may also differ 

between individuals, in particular between symptomatic and asymptomatic patients.

Motor Cortical Changes

As in various other conditions, RC disease may induce structural and functional changes in 

the motor cortex that could partly explain changes in motor control and affect muscle 

activation. Little is known about the cortical organization of motoneurons related to 

proximal muscles of the arm, and even less regarding RC muscles99. Functional MRI has 

been previously used but is not discriminant for motor cortical mapping of individual RC 

muscles73. The output of the primary motor cortex (M1) can be objectively measured by 

motor evoked potentials (MEPs) elicited by TMS, providing direct insight on the cortical 

representation and the function of the corticospinal tracts45. Mapping of the infraspinatus 

muscle has been recently described in healthy subjects110 and the same group observed 

positive correlation between pain chronicity and reduced M1 excitability in patients with RC 

disease109 supporting an indirect inhibitory effect of pain on corticospinal excitability in line 
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with current concepts5. However, the effects of limb disuse and other spinal/supraspinal 

neural factors cannot be excluded. Similarly bilateral alterations of corticospinal excitability 

in the deltoid and the first interosseous muscles have been reported in patients with RC 

tendon tears11. However it should be notified that spinal motoneuron excitability must be 

properly assessed to verify that the change in MEPs size is not mediated at the spinal 

level37. C3–4 propriospinal neurons may also influence the excitability of premotoneuronal 

sites and therefore the amplitude of MEPs43; 124. Peripheral nerve stimulation associated 

with TMS has been recently used in healthy subjects to assess the modulation of afferent 

signals on M1 output54 thus opening the possibility for its application in patients with RC 

disease. Further TMS studies are required to confirm the effects of RC disease on the motor 

cortex and to understand how these alterations may impair muscle activation, motor control, 

and shoulder function.

Conclusion and Perspectives

In this review, we identified a large number of neural structures and mechanisms that may 

contribute to pain and shoulder dysfunction in patients with RC disease. These structures 

and mechanisms are summarized in Figure 1. However, numerous questions remain 

unanswered (see Table II). Current data suggest that inflammation and muscle-tendon unit 

impairment disrupt proprioceptive function and reflex muscle activity. Alterations of 

proprioceptive afferents may impair proprioception and motor control, therefore 

contributing to poor muscle activation and impaired shoulder kinematics. However motor 

control and proprioception impairments in patients with RC diseases have been 

insufficiently assessed and require further investigations. Current advances in the 

understanding of pain pathophysiology encourage the enhancement of pain assessment and 

sensory abnormalities that remain poorly characterized in the clinical setting in patients with 

RC disease. Recent experiments suggest that the occurrence of motor nerve injury appears to 

be less frequent than first assumed, yet peripheral nerve dysfunction remains a non-

negligible aggravating factor. Thus, this problem must be considered (perhaps with 

improved diagnostic tools) in clinical practice and further explored through both anatomical 

and physiological studies. Some data also highlight that tendon disruption, disuse, and 

inflammation may have a direct impact on neuromuscular junction and motoneurons but 

further studies are needed for confirmation. Increased availability of human tissue obtained 

during surgeries and animals models of RC disease will also improve our understanding of 

RC disease physiopathology and will help to define markers able to improve the detection of 

muscle denervation process. Damage inflicted to sensory nerves should not be neglected 

because it may contribute to the generation of pain and disrupt the afferent transduction of 

proprioceptive information. Evidence that RC disease induces significant motor adaptations 

and the important role of pain in these changes has been clearly demonstrated. However, the 

contribution of proprioception deficits, motor cortical changes, and modified brain activity 

in patients with RC disease remains to be explored. The problem of motor nervous system 

dysfunction is particularly relevant as the field begins to explore the mechanisms of reduced 

muscle force generation after reconstruction. If these problems are induced or aggravated by 

poor muscle activation, the nervous system impairments may need to be addressed first, and 

perhaps, in a way that is consistent with neurorehabilitation instead of standard 
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musculoskeletal physical therapy. In the clinical setting, all these factors may contribute to 

explain why clinical presentations and responses to treatments can vary considerably 

between individuals despite similar peripheral tissue damage. Therefore, our final proposal 

is that different profiles involving different degrees of biomechanical, motor control, 

proprioceptive, and nociceptive impairments exist amongst patients with RC disease. The 

development of standardized tests achievable in the clinical setting to assess each of these 

aspects is necessary to provide comprehensive assessment and refine the management of 

these patients.
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Figure 1. Potential sites for sensory and motor impairments associated with supraspinatus 
tendon tear
Tendon tear, soft tissue and/or joints damage, and local inflammatory environment sensitize 

peripheral nociceptors (mechanical or chemical high-threshold peripheral nociceptors (e.g. 

Free endings) that cause pain and increase the sensitivity of central pain centers (peripheral 

and central sensitization, respectively). They may also induce impairments in proprioceptive 

outputs (Muscle spindles; Golgi tendon organ, Ruffini endings; Pacinian corpuscles) and in 

the central processing of proprioceptive information (proprioceptive pathways; primary 

sensory cortex. Motoneurons innervating both extrafusal and intrafusal muscle fibers (α- 

and γ– motoneurons, respectively) may equally undergo remodeling and impairments. 

Neuromuscular junction may also be altered as a result of reduced neural activity, muscle 

impairments, and central alterations within the motor nervous system. At the nerve level, 

stretch and/or compression caused by muscle retraction, mass compression, and 

manipulation of the previously retracted muscle or direct nerve manipulation during surgery 
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can result in injury of both sensory and motor axons. The suprascapular nerve may be 

damaged at any point of its path but the suprascapular notch and the cervical roots are 

identified as the most common sites for injury. Nerve(s) damage can further increase pain, 

limit the afferent transduction of proprioceptive information, and aggravate muscle changes.
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Table II

Suggested deleterious nervous consequences of rotator cuff (RC) disease in studies cited in the current review.

Structures/mechanisms Consequences Human RC studies Animal RC studies Human or 
Animal 
non-RC 
studies

Proprioceptors, Afferences and 
Related Spinal Reflexes

Structural/Functional impairments 
of proprioceptors

226 7; 32; 85; 
86; 98; 99; 
112; 128; 
135; 146; 
153; 217; 
226; 229.

↑ Motoneuron excitability 16; 91; 108; 
217

Central Processing of 
Proprioceptive Afferences

↓ Sense of position 180; 182

↓ Sense of movement 126

↓ Sense of force 8; 127

Modified brain activity 102

Nociceptors, Peripheral and 
Central Pain Processing

Peripheral sensitization 51; 62; 63; 207 204

Central sensitization 56; 73; 83

Motor Nerves ± Injury:

 Iatrogenic 74 101 231 231 160] 66; 
222

 Direct consequence of RC 
disease

101; 131; 211 19; 24; 131 
4; 14; 134

96; 97; 106; 118; 
119; 176; 178; 209; 
210

Neuromuscular junction ↓= Acetyl choline receptors
↓ Cholinergic/non-cholinergic 
muscle stimulation

55; 132; 176 92

Sensory Nerves ± Injury 75; 158 85; 135; 
217; 229

Shoulder Muscle Activity and 
Kinematics

Modifications of muscle 
recruitment and kinematics

103; 123; 137; 177 25; 
185; 192; 194; 197; 198 
144

↓ Voluntary activation
↑= Strength with pain reduction

15; 47; 162

Cortical changes ↓ Corticospinal excitability 17; 155

Numbers refer to references; ↓, decreased; ↑, increased; =, unchanged; review articles excluded.
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