
HSV-I and the cellular DNA damage response

Samantha Smith1 and Sandra K Weller*,1

1Department of Molecular Biology & Biophysics, University of Connecticut Health Center, 
Farmington, CT 06030, USA

Abstract

Peter Wildy first observed genetic recombination between strains of HSV in 1955. At the time, 

knowledge of DNA repair mechanisms was limited, and it has only been in the last decade that 

particular DNA damage response (DDR) pathways have been examined in the context of viral 

infections. One of the first reports addressing the interaction between a cellular DDR protein and 

HSV-1 was the observation by Lees-Miller et al. that DNA-dependent protein kinase catalytic 

subunit levels were depleted in an ICP0-dependent manner during Herpes simplex virus 1 

infection. Since then, there have been numerous reports describing the interactions between HSV 

infection and cellular DDR pathways. Due to space limitations, this review will focus 

predominantly on the most recent observations regarding how HSV navigates a potentially hostile 

environment to replicate its genome.
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HSV-1 is a ubiquitous human pathogen responsible for significant disease during acute 

infection. In addition, HSV-1 causes latent infections in sensory neurons for the life of the 

host with the potential for reactivation and recurrent disease. It is becoming increasingly 

clear that viruses like HSV have evolved complex interactions with their hosts. Because 

viruses rely on host cellular machinery during infection, they have evolved to usurp cellular 

processes. On the other hand, cells have intracellular antiviral defenses designed to fight 

viral infections. Thus, although HSV-1 may utilize some components of the DNA damage 

response machinery to replicate its genome, other components are antiviral, and HSV-1 has 

developed mechanisms to avoid antiviral restriction. The complex interaction between 

HSV-1 and the cell reflects an evolutionary tug of war in which cells have evolved antiviral 

mechanisms that are, in turn, counteracted by viral strategies that promote lytic infection. 

This review will focus on recent examples that demonstrate the intricate interactions 

between HSV-1 and host cell DNA damage response pathways.
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The earliest stages of HSV-1 infection

HSV-1 has a large double-stranded linear DNA genome (152 kb), and viral DNA synthesis 

takes place in the infected cell nucleus in large globular domains called replication 

compartments. Replication compartments serve to concentrate and partition viral and 

cellular proteins that are required for productive infection. At the earliest stages of infection, 

however, cellular proteins are recruited to the vicinity of viral genomes in an attempt to 

thwart the infection. For instance, PML and other ND10 proteins form virus-induced PML-

nuclear bodies (viPML-NB) that are associated with repression of vial gene expression 

(reviewed in [8]). ViPML-NBs are subsequently disrupted by the E3 ubiquitin ligase activity 

of ICP0 [9]. As described below, other cellular proteins, many of which also exert antiviral 

effects, are recruited to viral genomes including cellular histones as well as components of 

the DNA damage response pathways. HSV has evolved to counteract antiviral mechanisms 

primarily through the action of ICP0. Some components of the DNA damage response 

(DDR) may also be beneficial to viral infection, and in this review, we will discuss how 

HSV navigates this complex cellular environment to create conditions that are conducive to 

productive viral infection.

HSV-1 DNA replication is closely associated with recombination

The virus encodes seven essential replication proteins: the origin-binding protein (UL9), the 

single-strand DNA-binding protein (SSB; ICP8), the heterotrimeric helicase/primase 

(UL5/8/52), the polymerase (UL30) and the polymerase processivity factor (UL42). 

Replication occurs in a biphasic manner, beginning with an UL9-dependent phase and later 

switching to a mechanism that does not require UL9 [10,11]. The HSV genome contains 

three origins of replication: two copies of oriS and one oriL (reviewed in [12]). Current 

models suggest that together ICP8 and UL9 trigger the melting of one of these origins 

followed by recruitment of the helicase/primase complex and the HSV polymerase to carry 

out unwinding and elongation, respectively [12].

HSV-1 DNA replication produces concatemers, which are required for the generation of 

progeny; however, the mechanism by which they are formed is unclear. It has long been 

recognized that HSV-1 genomes undergo a high degree of recombination [1,13–19]. 

Although it has been proposed that the viral genome circularizes and rolling circle 

replication leads to the formation of concatemers, several lines of evidence suggest that 

HSV DNA replication is more complex. Controversy still remains over whether the 

incoming viral genome circularizes prior to replication [20,21]. HSV-1 replication proteins 

are able to catalyze rolling circle replication in vitro [22–25], but it has not been shown 

conclusively that rolling circle replication occurs during infection. Simple rolling circle 

replication does not explain the observation that genomic inversions occur as soon as viral 

DNA synthesis can be detected [15,26,27]. In addition, replication of the HSV-1 genome 

produces X and Y branched structures that can be visualized by electron microscopy and 2D 

gel electrophoresis [27,28]. These structures are reminiscent of recombination intermediates 

and suggest a more complex mode of replication. We have suggested that the HSV 

replication machinery promotes a unique form of DNA replication that utilizes a 
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recombination-dependent mechanism to produce concatemers, which are required for 

packaging infectious virus [3,29].

The notion that HSV replication machinery promotes recombination-dependent replication 

is supported by experiments using HSV-1 as a helper virus to facilitate replication of other 

viruses and amplicons. For instance, replication of SV40 DNA by the six-core HSV-

encoded replication factors and SV40 large T antigen produces concatemers composed of X-

shaped DNA structures that may represent recombination intermediates [30]. Since SV40 

replication normally produces two circular daughter molecules, it is noteworthy that the 

presence of HSV replication proteins can alter the mode of replication to generate complex 

concatemeric DNA [31]. In addition, adeno-associated virus (AAV) propagated using HSV 

as a helper virus produces high molecular weight forms of DNA that are not observed when 

adenovirus is used as a helper [32]. Thus, in the context of an HSV-1 infection, 

recombination may play a role in the generation of high molecular weight AAV concatemers 

that have a complex structure. Taken together, these data are consistent with the notion that 

the HSV replication machinery is inherently recombinogenic, giving rise to complex 

concatemeric DNA.

In addition to the core HSV replication machinery, we have identified a virus-encoded two-

subunit recombinase that is reminiscent of the well-studied RedExo/β system of phage 

lambda [33,34]. The lambda RedExo/β recombinase has been shown to perform strand 

annealing reactions in vitro. [33,34]. In addition, RedExo/β and related recombinases from 

other bacteriophages have been shown to promote in vivo recombination-mediated genetic 

engineering using short homologies – ‘recombineering’ in bacteria (reviewed in [29]). The 

HSV recombinase comprises UL12, a 5′–3′ exonuclease, and ICP8, which in addition to its 

role as a single-strand DNA-binding protein (SSB) can also function as a single-strand DNA 

annealing protein (SSAP). UL12 and RedExo share conserved sequence elements, and both 

proteins interact with their partner SSAPs, ICP8 and Red-β, respectively (reviewed in [29]). 

The precise role of the UL12/ICP8 complex during infection remains unclear. We initially 

proposed that UL12 might be responsible for processing replication intermediates into a 

form suitable for encapsidation [35]; however, recent work has suggested that the viral 

recombinase may be involved at an earlier step of infection during DNA synthesis to 

influence the mode of replication itself [36]. Thus, UL12 may stimulate a pathway of 

recombination-dependent replication required to produce concatemers that can be packaged 

into infectious virus.

A role for cellular DDR proteins in viral DNA replication has been suggested based on the 

observation that several cellular factors involved in homologous recombination (HR) 

including MRE11, RAD50, NBS1 and RAD51 are recruited to viral prereplicative sites and 

replication compartments [3,37–41]. In addition, both ICP8 and UL12 have been shown to 

interact with many DDR proteins [39,42–44]; however, attempts to identify the precise roles 

played by these proteins in HSV DNA replication have not been straightforward. For 

instance, although HSV may take advantage of cellular components to promote viral DNA 

replication, many DDR pathways promote antiviral mechanisms such as silencing and the 

induction of innate immune signaling. Because many components of cellular DDR pathways 

have complex and overlapping roles, it has been difficult to tease apart the precise functions 
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of cellular DDR pathways during infection. Furthermore, DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs), ATM and the MRN complex also participate in other cellular 

processes and may play roles in HSV replication that are distinct from their roles in DDR 

pathways.

Cellular DNA damage response pathways

In order to maintain its genetic integrity, the cell encodes a variety of mechanisms 

collectively termed the DDR. The pathway by which cellular DNA is repaired depends on 

multiple factors, including cell type and cell cycle, as well as the nature and severity of the 

DNA lesion. Certain pathways are only activated during S phase at replication forks. Some 

types of repair require a template strand, while others do not, and some types of damage can 

be repaired by several mechanisms. The cell can utilize either direct chemical reversal of 

damage or excision repair to replace damaged or mismatched bases in DNA. Excision repair 

requires a template strand and the removal of stretches of nucleotides or bases. This 

mechanism encompasses base excision repair (BER), nucleotide excision repair and 

mismatch repair (MMR). For double-strand breaks, the cell employs recombination-

mediated repair. When DNA damage cannot be repaired by any of these strategies, the cell 

may utilize damage tolerance mechanisms, like translesion synthesis, postreplication gap 

filling or replication fork regression. These mechanisms do not repair the damaged DNA, 

per se, but allow replication to proceed, often resulting in mutations. If damage is too great, 

the biological response tips from repair/tolerance toward cell cycle arrest and apoptosis.

MMR proteins are required for efficient HSV-1 replication

MMR overview

The MMR pathway is a highly conserved mechanism that is responsible for detecting and 

repairing mismatched bases, as well as insertion-deletions loops (IDLs) that arise during 

DNA replication. Single-base mismatches and 1–2 base IDLs are recognized and bound by 

the MSH2/MSH6 heterodimer, while larger IDLs are bound by the MSH2/MSH3 

heterodimer. The MLH1/PMS2 heterodimer is then recruited to help organize other MMR 

proteins, such as EXOI and RPA, onto mismatched DNA to facilitate resection and repair.

MMR & HSV

Both MSH2 and MLH1 are required for efficient replication of HSV-1 in normal human 

cells and are localized to viral replication compartments [43]. In addition, interactions have 

been reported between ICP8 and UL12 and MMR proteins MSH2, MSH3, and MSH6 

[39,43]. Interestingly, however, these proteins may have functions in HSV infection that are 

distinct from their canonical roles in recognizing mismatched DNA. MLH1 is recruited to 

viral genomes at the earliest stages of viral infection, and depletion of MLH1 in the context 

of viral infection inhibits immediate early gene expression [43]. On the other hand, MSH2, 

which is generally thought to function before MLH1, is apparently recruited after MLH1 

and may play a later role in HSV infection [43]. These results suggest that although both 

MLH1 and MSH2 are required for efficient HSV infection, MLH1 may play a role in viral 

infection that is independent of MSH2 and may be distinct from the MMR pathway. MLH1 

was also shown to be a component of PML-NBs, although unlike other components of these 
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nuclear bodies, it is not degraded by ICP0 [43]. It will be of considerable interest to further 

explore the precise roles of both MLH1 and MSH2 during HSV infection.

HSV-1 influences pathway choice for double-strand break repair

DSBR overview

Probably the most well studied type of DNA repair is double-strand break repair (DSBR), 

which encompasses a variety of recombination-mediated pathways with distinct but 

overlapping functions. These mechanisms include: HR, single strand annealing (SSA), 

classic nonhomologous end joining (C-NHEJ), and microhomology-mediated end joining 

(MMEJ; Figure 1). The three pathways shown on the right side of Figure 1 (HR, SSA and 

MMEJ) require some degree of homology; whereas, C-NHEJ does not. The homology-

driven pathways involve resection of DNA followed by annealing to a complementary 

strand. HR is generally more accurate than the other DSBR pathways, since HR employs 

strand invasion into a homologous chromosome or sister chromatid. SSA and MMEJ, on the 

other hand, are more error prone, often resulting in deletions or genomic translocations. 

Another type of homology driven repair, synthesis-dependent strand annealing (SDSA) 

occurs during DNA replication in response to stalled replication forks. C-NHEJ does not 

require homology and can directly fuse unrelated DNA molecules (reviewed in [45]). 

Despite the potential for generating errors, C-NHEJ is the preferred mechanism of repair in 

higher eukaryotes and can occur during G1, S and G2 phases of the cell cycle.

DSBR & HSV

As shown in Figure 1, several cellular DDR mechanisms are available for recombination/

repair during HSV-1 infection. In order to determine whether HSV utilizes one or more of 

these pathways during infection, chromosomally integrated GFP correction assays were used 

to measure the frequency of DSBR by C-NHEJ, MMEJ, HR and SSA in infected cells [36]. 

Using these assays, we have shown that HSV infection stimulates SSA; however, HR, C-

NHEJ and MMEJ were inhibited [36]. These results suggest that HSV has evolved to utilize 

SSA, and in the following sections we will explore possible reasons and mechanisms for the 

apparent inhibition of the other three pathways in infected cells.

HSV-1 inhibits classic nonhomologous end joining

C-NHEJ overview

As stated above, classic nonhomologous end joining (C-NHEJ) involves the direct fusion of 

nonhomologous dsDNA ends. This process involves at least three steps: recognition of DSB, 

end trimming/processing of nonligatable termini and ligation. C-NHEJ is promoted by the 

Ku70/86 heterodimer, which recognizes DSBs and binds to dsDNA ends. Ku70/86 recruits 

the DNA-PKcs, which aligns DNA ends. End processing occurs if the DNA ends are not 

easily ligatable, containing either nonhomologous regions or unusual structures such as 

DNA hairpins. Cellular enzymes thought to play a role in the end-processing step include 

DNA-PKcs, Artemis, PNKP, TdT and polymerases (pols) λ and μ (reviewed in [46]). The 

ligation step of C-NHEJ requires XRCC4, which interacts with both LIG IV and DNA, and 
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is thought to be necessary for LIG IV recruitment to the DSB. XRCC4 also interacts with 

XLF; however, the precise role of XLF in NHEJ is not yet known [47].

C-NHEJ & HSV

The HSV genome contains nicks and gaps that are randomly located and present on both 

strands. Because the HSV-1 genome has dsDNA ends in addition to nicks and gaps, it is 

tempting to speculate that one or more of the DDR pathways might be activated by the 

genome as soon as it enters the nucleus. In fact, cells transfected with viral DNA exhibit 

RPA32 S4/S8 phosphorylation, a mark specific for DNA-PK activation [48]; however, 

DNA-PK is not activated in HSV-infected cells. It has been recognized since 1996 that 

DNA-PKcs activity is attenuated in HSV-infected cells in an ICP0-dependent manner 

(Figure 2) [2,48,49], leading to the suggestion that components of the C-NHEJ pathway are 

antiviral. In fact, HSV-1 replication is more efficient in cells lacking the catalytic subunit of 

DNA-PKcs [49], and in Ku-deficient murine embryonic fibroblasts, viral yields are 

increased by almost 50-fold [39]. In addition, we have recently demonstrated that ICP0 is 

required to relieve suppression of HSV-1 DNA infectivity caused by DNA-PKcs [48]. 

Possible reasons for the antiviral properties of C-NHEJ will be discussed below.

Homologous recombination components play positive & negative roles in 

HSV-1 infection

HR overview

HR is mediated by the PI3 kinase-like kinase, ATM, which is activated when the MRN 

complex (MRE11, RAD50 and NBS1) senses a double-strand break. ATM has numerous 

substrates, including the histone variant, H2AX, the phosphorylated form of which is called 

γH2AX [50]. The γH2AX signal can spread as far as one to two megabases from the initial 

site of damage in an ATM- and MDC1-dependent manner [51]. This extensive 

phosphorylation is responsible for the appearance of damage foci observed by 

immunofluorescence microscopy [52]. Additional downstream effectors are then recruited to 

damage foci in a sequential fashion following ubiquitination of H2A-type histones by RNF8 

and RNF168 (reviewed in [53]). RNF8/RNF168-dependent ubiquitin conjugation is required 

to recruit and stabilize downstream repair proteins, such as BRCA1, 53BP1 and RAD51 

([54–56]; and reviewed in [53]). MRE11 and CtIP facilitate the initial end resection step, 

after which EXO1 and BLM carry out extensive resection [57,58]. Following end resection, 

ssDNA is coated by RPA, which is important for activation of the ATR pathway. RAD51 

filaments assemble on RPA-coated DNA and facilitate strand invasion, resulting in a D-loop 

structure. During HR, this process results in Holliday junctions, which must be resolved to 

produce repaired, linear dsDNA. Strand invasion can also proceed via another mechanism, 

SDSA, which does not produce Holliday junctions (described below). Once the DSB has 

been repaired, DDR proteins dissociate from the DNA resulting in the resolution of 

damaged foci.
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Manipulation of HR during HSV-1 infection

Although chromosomal integration assays suggested that HR is suppressed during HSV-1 

infection [36], several components of the cellular HR machinery are required for efficient 

virus production. Virus production is deficient in cells lacking ATM, MRN (MRE11, NBS1, 

RAD50) and WRN [37,39,42]. In addition, we and others have demonstrated that HSV-1 

induces ATM activation, as evidenced by the recruitment and phosphorylation of ATM, 

MDC1, NBS1 and CHK2 [37,38,40]. Lilley et al. demonstrated that damage foci containing 

γH2AX and MDC1 are still able to form in IR-treated HSV-infected cells [37]; however, 

BRCA1 and 53BP1 are not recruited to damage foci because RNF8 and RNF168 are 

degraded by ICP0 (Figure 2) [59]. Thus, although ATM is activated in HSV-infected cells, 

HR itself is inhibited, consistent with the observation that HR is inhibited in HSV-infected 

cells using the chromosomal reporter assay [36]. Interestingly, since HR proteins upstream 

of RNF8 and RNF168 are recruited to replication compartments and are required for 

efficient replication, it is possible that some of these components play positive roles during 

infection that are distinct from HR [37,39,42].

ATR-CHK1 signaling is disrupted in HSV-infected cells

ATR-CHK1 pathways

In uninfected cells, the checkpoint kinase, ATR, is activated in response to stretches of 

ssDNA adjacent to dsDNA, like those found at stalled replication forks. ATR is also 

activated by substrates produced during ATM-mediated end resection. Thus, ATM 

activation generally results in activation of the ATR pathway [60,61]. RPA is recruited to 

stretches of ssDNA, and recruits ATR and ATRIP. ATR signaling also requires the 

recruitment of the 9–1–1 (RAD9-RAD1-HUS1) checkpoint clamp, which in turn recruits the 

ATR-activator, TopBP1, which results in phosphorylation of CHK1 on S317 and S345 and 

RPA32 on S33.

ATR-CHK1 inhibition during HSV-1 infection

In uninfected cells, activation of ATM would be expected to result in the activation of ATR. 

Interestingly, ATR-CHK1 signaling is disrupted during HSV-1 infection even though 

HSV-1 DNA replication activates ATM signaling (Figure 2) [37,38,40,62]. ATR is not 

activated in HSV-infected cells, even if these cells are treated with hydroxyurea (HU), 

which causes replication fork stalling [62,63]. We have recently identified the mechanism 

by which HSV-1 inhibits ATR signaling: four replication proteins (ICP8 and the three 

components of the helicase/primase complex) can bind to substrates that contain ssDNA 

adjacent to dsDNA, which are similar to substrates recognized by RPA and ATR. Thus, 

these four viral proteins prevent the loading of the 9–1–1 complex and the subsequent 

recruitment of TopBP1, effectively disabling ATR signaling. It is still not clear why HSV 

has evolved to prevent ATR signaling. It is known that in uninfected cells, ATR signaling 

can stabilize stalled forks and prevent fork collapse in order to prevent the formation of DSB 

[64]. Although DSB formation would be deleterious for cells, it may be beneficial during 

HSV replication, perhaps by stimulating recombination. This is supported by the observation 

that artificial activation of ATR results in reduced recombination between coinfecting 

viruses [65]. Although HR is inhibited in infected cells, other mechanisms of recombination 
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such as SSA may be stimulated under these conditions (discussed below). Despite the 

observation that ATR signaling is prevented in HSV-infected cells, ATR and several 

proteins in this pathway are recruited to viral replication compartments and are essential for 

efficient virus production [62,65]. These results suggest that ATR pathway proteins play 

positive roles in HSV infection that are distinct from ATR signaling. Alternatively, it may 

be beneficial for HSV-1 to recruit these proteins to viral genomes as a way to inhibit cellular 

DNA replication.

The Fanconi anemia pathway plays a positive role in HSV infection

FA pathway overview

In uninfected cells, the Fanconi anemia (FA) pathway is activated by ATR during S-phase in 

response to replication stress caused by stalled forks and interstrand cross-links (ICLs) 

[66,67]. The FA pathway has been shown to promote replication restart by coordinating 

homology-mediated repair (HR and SSA) and translesion synthesis [66,68,69], modulating 

MMR [70,71] and suppressing C-NHEJ [72]. The FA pathway is composed of at least 15 

proteins, which are divided into three functional groups: the core complex, the ID complex 

and downstream effectors. Activation of the FA pathway requires monoubiquitination of the 

ID complex (FANCI and FANCD2) by the FA core complex (FANCA, B, C, E, F, G, L and 

M), which together with FAAP24 and FAAP100 form a multisubunit E3 ubiquitin ligase, 

and the E2-conjugating enzyme, UBE2T. FA activation is also dependent on 

phosphorylation of FANCI and FANCD2 by ATR [73,74].

The FA pathway & HSV-1 infection

Recently, the Mohr lab demonstrated that FA proteins are necessary for efficient HSV-1 

replication and transcription and suggested that these proteins act as regulators of DNA 

repair pathway choice during infection [44]. HSV-1 potently activates the FA pathway, by 

monoubiquitination of FANCI-D2, which seems to require HSV pol and DNA replication 

(Figure 2) [44]. In addition, they demonstrated that FANCI interacts with ICP8, pol, UL42, 

UL12 and dUTPase and that FANCD2 interacts with the helicase subunit, UL5 [44]. 

Furthermore, they showed that HSV-1 replication was restricted in FA-deficient cells, and 

that this restriction was partially eliminated by treatment with the DNA-PKcs inhibitor, 

NU7441 [44]. These results suggest that the FA pathway may play a role in restricting 

DNA-PKcs activity during HSV-1 infection. Previous reports demonstrate that FA pathway 

proteins stimulate SSA. This is consistent with the notion that these proteins direct repair 

toward the SSA pathway while inhibiting C-NHEJ in HSV-infected cells.

SSA is stimulated in HSV-1 infected cells

SSA overview

SSA is a form of homology-mediated repair, although it is more error prone than HR, and 

can cause deletions and chromosomal translocations. SSA is initiated when a double-strand 

break occurs between two repeated sequences oriented in the same direction. Homologous 

regions of single-stranded DNA are exposed through extensive end resection by a 5′–3′ 

exonuclease. Annealing is facilitated by RAD52, which is an SSAP [75,76]. Following 
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annealing, it is believed that nonhomologous 3′ overhangs are cleaved by ERCC1/XPF 

(reviewed in [77]). Green fluorescent protein (GFP) reporter assays have been used to 

identify the cellular components required for SSA, and interestingly, most appear to overlap 

with other DDR pathways [75,76,78]. For instance, the single-strand annealing protein 

Rad52 is also involved in assembly of Rad51 filaments during HR, and ERCC1/XPF are 

also implicated in nucleotide excision repair and MMEJ (reviewed in [77]).

HSV-1 stimulates SSA

GFP correction assays have demonstrated that HSV stimulates SSA, raising the question of 

whether SSA is carried out by viral or cellular proteins (or both). As mentioned above, HSV 

encodes a two-subunit recombinase (UL12 and ICP8). The alkaline nuclease (UL12) 

component of the HSV-1 recombinase is necessary and sufficient to stimulate SSA [36]. 

Stimulation of SSA was abrogated in the nuclease-dead mutant, UL12 D340E, suggesting 

that UL12 nuclease activity may be required for end-resection prior to SSA [36]. Direct 

involvement of ICP8 in this process has been difficult to demonstrate because ICP8 is also 

essential for DNA synthesis. Additional experimentation will be required to assess the 

possible involvement of cellular SSA proteins such as RAD52 and the ERCC1/XPF 

complex.

HSV-1 may also utilize MMEJ/SDSA to repair DSBs during replication

MMEJ & SDSA overview

Perhaps the least-understood DSBR mechanism is MMEJ. Like SSA, this process requires 

resection to expose regions of homology and annealing of homologous regions. Unlike SSA, 

however, MMEJ is thought to require a small amount of homology (5–25nt) for end joining 

to occur. Although MMEJ is not well defined, several proteins are thought to participate in 

this process, including: PARP1, XRCC1, ERCC1/XPF, LIG III and possibly the MRN 

complex [79–84]. Interestingly, MMEJ has been shown to have an important role in the 

repair of DSBs at collapsed replication forks [85] and may play a role in SDSA (reviewed in 

[86]).

A model for A-NHEJ/SDSA during HSV-1 infection

As stated above, it is clear that recombination is tightly linked to DNA replication during 

HSV-1 infection. Thus, in addition to classic SSA, it is possible that the HSV-1 may use an 

SDSA mechanism (reviewed in [29]). SDSA utilizes strand exchange, in which the 5′ end of 

dsDNA break is resected, and the 3′ end is annealed to a homologous region at a single-

strand region of a growing replication fork (reviewed in [86]). Interestingly, the 

recombineering machinery employed by the lambda RedExo/β and other bacteriophage-

encoded recombination systems such as RecE/T are also dependent on DNA synthesis 

(reviewed in [29]). Recombineering can be performed with either single- or double-stranded 

oligonucleotides and is used to efficiently incorporate mutations into bacterial genomes. 

Single-strand oligonucleotides are coated by an SSAP such as lambda Redß or RecT and 

inserted at the DNA replication fork. When double-stranded oligonucleotides are used, the 

exonuclease degrades one entire strand. In the model shown in Figure 3A, the remaining 

strand is coated with the SSAP and incorporated on the lagging strand template (reviewed in 
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[29]). A more elaborate situation has been proposed to occur during replication of viral 

genomes (Figure 3B) [87]. According to this scenario, a DSB on one viral genome is 

concurrently resected and annealed at the lagging strand template. This model was originally 

proposed by Kuzminov ([88]; and reviewed [29]). Additional experiments will be required 

to determine whether HSV utilizes this type of synthesis-dependent annealing reaction 

during replication; however, it is known that the HSV-1 recombinase, UL12/ICP8, is 

capable of performing strand exchange in vitro and that recombination is linked to DNA 

synthesis [34].

PARP/PARG may play positive & negative roles during HSV-1 infection

PARP overview

PARP proteins utilize NAD+ to catalyze the covalent attachment of poly-ADP ribose (PAR) 

chains to proteins. Although there are 17 members of the PARP family, PARP-1 is 

responsible for nearly all PARylation that takes place in the cell, and only PARP-2 has been 

shown to complement a PARP-1 mutant [89]. Interestingly, PARP-1 plays both pro- and 

anti-recombinogenic roles and regulates many DDR pathways. In addition to its role in 

MMEJ, PARP-1 also plays a crucial role in recovery from replication fork stalling through 

stimulation of HR. PARP-1 senses and is recruited to nicks, ssDNA breaks and dsDNA 

breaks and PARylates itself and other proteins. The PAR post-translational modification is 

thought to control the activity and function of several DDR proteins such as MRE11, NBS1 

and DNA-PKcs. Thus, PARP-1 plays an important role in chromatin remodeling and the 

recruitment and regulation of cellular DDR proteins. On the other hand, excess DNA 

damage can result in overactivation of PARP and lead to cell death. The enzyme, PARG,, 

catalyzes the removal of PAR chains and is required to prevent cell death and promote 

replication restart via HR [90,91]. In the absence of PARG, PAR chains are thought to 

accumulate on DNA, preventing RPA binding and as a result, RPA32 phosphorylation by 

DNA-PKcs is inhibited [91]. Thus, the PARP/PARG balance plays an important role in 

modulating the DNA damage response.

PARP/PARG & HSV

A study to examine metabolic changes in HSV-infected cells revealed that PARP is 

activated during infection. Vastag et al. reported that NAD+ levels are decreased during 

HSV-1 infection [92], and PARylation carried out by activated PARP1/2 during HSV-1 

infection was found to be responsible for the observed NAD+ depletion [93]. Since 

PARP1/2 sense nicks and ssDNA breaks, it is possible that nicks and gaps in the viral 

genome are responsible for PARP activation. Whether nicks and gaps in viral genomes are 

repaired during the early stages of infection by DDR machinery is not known; however, 

PARP binding and the subsequent recruitment of repair proteins may represent an attempt to 

fill in gaps. Interestingly, PARG is degraded by ICP0 during HSV-1 infection [93]. Thus, it 

is possible that although PARP is activated by infection, the downstream DNA repair 

processes facilitated by PARG are prevented by ICP0. This may be a mechanism by which 

HSV counteracts the antiviral activity of some DDR pathways such as C-NHEJ. Although 

ICP0 degrades DNA-PKcs in some cells, the activity of DNA-PKcs is inhibited even in 

Vero cells in which DNA-PKcs are not degraded [40,48,94]. As mentioned above, in the 
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absence of PARG, DNA-PKcs activity is inhibited. The degradation of PARG by ICP0 may 

thus contribute to the inhibition of DNA-PKcs, implying that HSV has evolved more than 

one mechanism to inhibit DNA-PKcs and C-NHEJ. We are intrigued by the possibility that 

gap filling facilitated by PARP/PARG and circularization by C-NHEJ are antiviral and 

contribute to genome silencing. The ability of ICP0 to degrade both DNA-PKcs and PARG 

may be a means by which HSV prevents circularization, consistent with the demonstration 

by Jackson and Deluca that in the presence of ICP0, circularization of the viral genome is 

prevented [20]. Further experimentation will be required to test this model and address the 

controversy over whether circularization occurs during lytic infection.

Some DDR proteins function as DNA sensors in intrinsic & innate immune 

responses

DDR & antiviral defense

When HSV-1 infects a cell, the viral genome is released from the capsid into the host cell 

nucleus, which may be an intrinsically hostile environment for invading pathogens. Cellular 

defense strategies include three inter-related arms: intrinsic antiviral mechanisms, innate 

immune signaling and the adaptive immune responses. We are intrigued by the observation 

that DNA damage-sensing proteins are able to sense ‘foreign’ DNA and trigger various 

types of antiviral responses. It is tempting to speculate that these responses are part of a 

larger network of antiviral defense mechanisms and that some DDR pathways may have 

evolved initially to counteract environmental pathogens such as viruses.

Intrinsic antiviral mechanisms

Intrinsic antiviral proteins are cellular factors that are constitutively expressed and poised to 

inhibit infection immediately following viral entry [95]. The first recognized intrinsic factors 

target retroviruses, and the number of retroviral defense factors has now grown to include 

Fv-1, TRIM5α, APOBEC3G and SAMHD1. More recently, it has been recognized that 

nuclear factors such as PML (TRIM19) exert antiviral effects that target herpesviruses, 

especially HSV and HCMV [96,97]. As described above, incoming viral genomes recruit 

PML into viPML-NBs that have been associated with repression of viral gene expression 

[96]. Other proteins that are recruited to viral genomes at the earliest stages of infection may 

also be part of the intrinsic antiviral network. For example, DNA-PKcs may modulate 

transcription of viral genes through several mechanisms. It has been reported to modulate 

RNAP II activity and inhibit the ability of RNAP II to bypass DSBs [98,99]. Alternatively, 

if DNA-PKcs and Ku proteins are recruited to viral DNA ends, they might be expected to 

activate C-NHEJ resulting in the circularization of viral genomes and the subsequent 

promotion of chromatinization and epigenetic silencing [2,100]. Activation of RNF8 and 

RNF168 and the ubiquitination of H2A has also been suggested to cause genome silencing 

[59]. In addition, IFI16 is a DNA sensor involved in innate IRF-3-mediated signaling as well 

as intrinsic antiviral responses. IFI16 has also been shown to sense microbial DNA and 

promote epigenetic silencing of DNA lacking or loosely associated with chromatin, such as 

HSV-1 genomes [101]. Thus, the ability of various cellular components, including DDR 

proteins, to silence viral gene expression appears to be a common mechanism by which cells 

have evolved to counteract viral infections. The ability of ICP0 to degrade PML, DNA-
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PKcs, RNF8/168 and IFI16 demonstrates that HSV has evolved to evade intrinsically 

antiviral silencing mechanisms.

DDR proteins may act as DNA sensors that trigger innate immune responses

In addition to intrinsic defenses such as repression of viral gene expression, cells have 

elaborate signaling mechanisms to trigger innate and adaptive immune responses to viral 

infection. Viral nucleic acids are the predominant pathogen-associated molecular patterns 

produced during viral infection and are recognized by pattern recognition receptors. It has 

been suggested that the cell distinguishes between viral and endogenous nucleic acids based 

in part on their cellular compartmentalization and chemical differences in the DNA itself. 

For example, DNA that is present in a compartment other than the nucleus, such as in 

endosomes or in the cytoplasm, may be identified as foreign. Cytosolic sensors of viral/

microbial DNA include: DNA-dependent activator of IFN (DAI), RNA polymerase III, 

PHYIN family proteins (such as IFI16 and AIM2), DExD/H-box helicases (like RIG-I), 

DNA-PKcs, cGAS and STING (reviewed in [102]). On the other hand, in the nucleus the 

cell relies on chemical differences in DNA to distinguish between foreign and endogenous 

DNA. For example, unmethylated CpG DNA is chemically distinct from cellular DNA and 

will flag viral DNA as a pathogen-associated molecular pattern [103].

In addition to the possible roles in intrinsic antiviral mechanisms described above, it appears 

that DNA-PKcs may also stimulate innate immune signaling. DNA-PKcs has been reported 

to sense and respond to DNA and to induce transcription of Cxcl10, IL-6 and IFN-β as part 

of the IRF-3 innate immune response [104]. In that report, Ferguson et al. also demonstrated 

that HSV-1 infection stimulates IL-6 transcription in MEFs and that this stimulation is 

partially relieved in DNA-PKcs knockout cells (Prkdc-/- MEFs). It is thus possible that 

DNA-PK exerts its antiviral effects by several different mechanisms including initiating an 

innate signaling cascade. Recent studies have demonstrated that IFI16 also may play roles in 

both the intrinsic and innate antiviral responses [105–107]. HSV-1 triggers IRF-3 induction 

and activation of the inflammasome in human fibroblasts in an IFI16-dependent manner 

[106,108]. ICP0 degrades IFI16 as part of the immune-evasion strategy of HSV-1 [106].

The future outlook of HSV-1 & cellular DDR research

Can drugs that target DDR be used as antiviral treatments?

HSV-1 is a ubiquitous pathogen that infects approximately 95% of the human population 

and causes oral and genital lesions; and ocular infections, like herpes keratitis, that can cause 

visual impairment. In immunocompromised individuals, HSV infection is far more serious, 

causing severe illness and even mortality. Resistance to frontline herpes antiviral drugs, such 

as acyclovir, occurs at low frequency in immunocompetent individuals and is more common 

in immunocompromised patients [109,110]. Thus, there is a significant need for additional 

therapeutic strategies to supplement traditional nucleoside analog drug treatments and limit 

drug resistance caused by overuse.

An exciting potential for novel therapeutics is emerging as a result of our growing 

understanding of the role viral and cellular recombination/repair proteins play in HSV-1 

replication. Since many viral and cellular proteins associated with HSV-1 recombination/
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repair are essential for viral growth, they can be considered as potential targets for new 

therapies, for example, Yan et al. recently demonstrated that the HIV integrase inhibitor, 

XZ45, was capable of blocking α, β and γ herpesvirus replication [111]. In the presence of 

XZ45, recombination between two mutant HSV-1 viruses was significantly inhibited 

perhaps by targeting ICP8 [111]. Cellular DDR proteins are also possible candidates for 

treatment of acute HSV-1 infection. For example, the ATM inhibitor, KU-55933 has 

recently been shown to suppress HSV-1 replication and cytopathic effects in herpes keratitis 

[112]. The observation that several DDR proteins are important antiviral modulators may 

also be exploited in the future for novel antiviral strategies. In addition, the finding that the 

viral recombinase is important in pathway choice needed for productive infection suggests 

that UL12 or ICP8 may also be exploited for antiviral therapy.

Conclusion & future perspective

In this review, we have described several examples of DDR pathways that are manipulated 

by HSV infection. DNA sensors such as DNA-PKcs and IFI16 appear to play overlapping 

roles in intrinsic and innate antiviral responses; however, it is likely that researchers have 

only scratched the surface regarding the identification of cellular proteins that can trigger 

antiviral responses. We predict that additional cellular factors that exert antiviral effects by 

sensing foreign DNA will be identified in the future.

We have also explored how HSV has evolved an unusual mechanism by which to replicate 

its genome. If filling in nicks and gaps and circularization are antiviral as we have 

suggested, it is possible that recombination-dependent replication pathways using SSA and 

SDSA provide a mechanism that evades these antiviral mechanisms and produces DNA 

concatemers that can be packaged into infectious virus. It is our hope that, within the next 5–

10 years, we will gain a better understanding of the mechanism of HSV-1 replication and 

how it has evolved to evade cellular antiviral strategies. We are struck by the possibility that 

linear DNA viruses from bacteria, protozoa, yeast, mammals and insects that replicate 

through concatemeric DNA may all encode two subunit recombinases similar to UL12 and 

ICP8 [113,114]. The evolutionary conservation between the recombinases from these 

different DNA viruses suggests that they have evolved replication strategies that are distinct 

from cellular replication mechanisms and utilize an unusual form of recombination-

dependent DNA replication. In the case of HSV, which has coevolved with its mammalian 

host, there has also been evolutionary pressure to evade intrinsic and innate antiviral 

mechanisms.
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Executive Summary

• HSV-1 DNA replication is closely associated with recombination.

• Mismatch repair proteins are required for efficient HSV-1 replication.

• HSV-1 influences pathway choice for double-strand break repair:

–HSV-1 inhibits classic nonhomologous end joining;

–Homologous recombination components play positive and negative roles in 

HSV-1 infection;

–ATR-Chk1 signaling is disrupted in HSV-infected cells;

–The Fanconi anemia pathway plays a positive role in HSV infection;

–Single-strand annealing is stimulated in HSV-1 infected cells;

–HSV-1 may utilize microhomology-mediated end joining/synthesis-

dependent strand annealing during replication;

–PARP/PARG may play positive and negative roles during HSV-1 infection;

• Some DDR proteins function as DNA sensors in intrinsic and innate immune 

responses.

• Future outlook: viral recombination may be a potential target for the 

development of second-line antiviral drugs.
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Figure 1. DNA double-strand break repair pathways
In response to double-strand breaks, DNA can be repaired by one of four major pathways: 

C-NHEJ, MMEJ, SSA and HR. HR, SSA and MMEJ are homology-directed forms of repair; 

whereas, C-NHEJ does not require homology. Double-strand breaks arising at replication 

forks can also be repaired by synthesis-dependent strand annealing and break-induced repair 

mechanisms via ATR-CHK1 signaling (not shown in figure).

C-NHEJ: Classic nonhomologous end joining; HR: Homologous recombination;

MMEJ: Microhomology-mediated end joining; SSA: Single strand annealing.
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Figure 2. HSV-1 manipulates components of the cellular DNA damage response
During infection, HSV-1 inhibits phosphorylation of RPA32 S4/S8 by degrading or 

inhibiting DNA-PKcs in an ICP0-dependent fashion [2,40,48]. Although ATM, NBS1 and 

CHK2 are phosphorylated during infection, the HR pathway is inhibited due to ICP0-

dependent degradation of RNF8 and RNF168 [37,38,40,59]. ATR/ATRIP phosphorylation 

of CHK1 S345 and RPA32 S33 is inhibited; however, FANCD2 is activated by 

ubiquitination during HSV-1 infection [44,62,94]. Asterisk (*) indicates proteins that are 

degraded by ICP0.

DNA-PKcs: DNA-dependent protein kinase catalytic subunit; HR: Homologous 

recombination.
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Figure 3. Possible synthesis-dependent strand annealing strategies for HSV-1 recombination-
dependent replication
(A) Step-wise model for strand annealing. One entire strand of a dsDNA molecule is 

resected by exonuclease and the remaining strand is coated with SSAP prior to incorporation 

at the lagging strand of a replication fork. (B) Concerted model for strand annealing. 

Resection of one strand of a long dsDNA molecule occurs concomitantly with strand 

annealing, resulting in incorporation of the entire strand into the lagging strand at a 

replication fork. This model was originally suggested by Kuzminov [88].

Adapted with permission from [29].
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