
REDOX IMAGING OF THE p53-DEPENDENT MITOCHONDRIAL 
REDOX STATE IN COLON CANCER EX VIVO

HE N. XU*,†, MIN FENG*,†, LILY MOON*,†, NATHAN DOLLOFF‡, WAFIK EL-DEIRY§, and LIN 
Z. LI*,†,§,¶,||,**

*Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA

†Britton Chance Laboratory of Redox Imaging, Johnson Research Foundation, Department of 
Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA, USA

‡Department of Medicine, Penn State Hershey Medical Center and Penn State College of 
Medicine, Hershey, PA, USA

§Hematology/Oncology, Penn State Hershey Medical Center, Hershey, PA, USA

¶Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA

||Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, 
PA, USA

Abstract

The mitochondrial redox state and its heterogeneity of colon cancer at tissue level have not been 

previously reported. Nor has how p53 regulates mitochondrial respiration been measured at (deep) 

tissue level, presumably due to the unavailability of the technology that has sufficient spatial 

resolution and tissue penetration depth. Our prior work demonstrated that the mitochondrial redox 

state and its intratumor heterogeneity is associated with cancer aggressiveness in human 

melanoma and breast cancer in mouse models, with the more metastatic tumors exhibiting 

localized regions of more oxidized redox state. Using the Chance redox scanner with an in-plane 

spatial resolution of 200 μm, we imaged the mitochondrial redox state of the wild-type p53 colon 

tumors (HCT116 p53 wt) and the p53-deleted colon tumors (HCT116 p53−/−) by collecting the 

fluorescence signals of nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins 

[Fp, including flavin adenine dinucleotide (FAD)] from the mouse xenografts snap-frozen at low 

temperature. Our results show that: (1) both tumor lines have significant degree of intratumor 

heterogeneity of the redox state, typically exhibiting a distinct bi-modal distribution that either 

correlates with the spatial core–rim pattern or the “hot/cold” oxidation-reduction patches; (2) the 

p53−/− group is significantly more heterogeneous in the mitochondrial redox state and has a more 

oxidized tumor core compared to the p53 wt group when the tumor sizes of the two groups are 

matched; (3) the tumor size dependence of the redox indices (such as Fp and Fp redox ratio) is 
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significant in the p53−/− group with the larger ones being more oxidized and more heterogeneous 

in their redox state, particularly more oxidized in the tumor central regions; (4) the H&E staining 

images of tumor sections grossly correlate with the redox images. The present work is the first to 

reveal at the submillimeter scale the intratumor heterogeneity pattern of the mitochondrial redox 

state in colon cancer and the first to indicate that at tissue level the mitochondrial redox state is 

p53 dependent. The findings should assist in our understanding on colon cancer pathology and 

developing new imaging biomarkers for clinical applications.
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1. Introduction

Cancer metabolism has received increasing research interest in recent years. Metabolic 

alteration, a hallmark of cancer, allows cancer cells to adapt to their needs for rapid 

bioenergetics, increased biogenesis of macromolecules and maintenance of the redox 

balance.1 p53, as a tumor suppressor gene, regulates many metabolic pathways including 

glycolysis and mitochondrial respiration in tumors.2 p53 plays a central role in 

mitochondrial oxygen utilization, reactive oxygen species generation, and disposition.3,4

Previously we demonstrated that tumor meta-static potential was associated with the 

mitochondrial redox state and its intratumor heterogeneity in both melanoma and breast 

cancer mouse xenografts models.5–7 We showed that the more metastatic tumors have more 

oxidized mitochondrial redox state in the localized regions and the quantitative redox 

indices can grade tumor aggressiveness. We also discovered that mitochondrial redox state 

alteration was linked to the activation of the PI3K/ Akt pathway due to PTEN deletion and 

cancer transformation.8 As p53 influences the PI3K/Akt pathway through activating PTEN, 

it promotes mitochondrial bioenergetics by activating the expression of synthesis of 

cytochrome c oxidase 2 (SCO2), and inhibits the glycolysis pathway,3,4,9 we hypothesize 

that p53 status may also affect the mitochondrial redox state. To test this hypothesis, we 

employed the Chance redox scanner to image the fluorescence of nicotinamide adenine 

dinucleotide (NADH) and flavoprotein (Fp) with 3D sub-millimeter resolution in two colon 

cancer lines xenografted in mice, one being p53 wt and the other p53−/−. Our findings 

indicate that the tumor mitochondrial redox state is dependent on p53 status.

2. Materials and Methods

2.1. Tumor growth

Human colon cancer lines HCT116 p53 wt and HCT116 p53−/− were cultured and 

propagated in McCoy’s 5A medium supplemented with 10% fetal bovine serum and 100 

unit/ml penicillin and 100 μg/ ml streptomycin. Equal amount (1–2.5 millions) of each line 

in Matrigel (50/50%) was inoculated subcutaneously to the left and right upper thighs of the 

same athymic nude mouse (US National Cancer Institute, NCr-nu/nu), respectively. Tumor 

volume was measured weekly using a vernier caliper. In about 3–4 weeks, the mice under 

anesthesia were sacrificed using the snap-freezing protocol with liquid nitrogen. The snap-
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freezing protocol maintains the tissue redox state the same as the in vivo condition. The 

tumors were then harvested and embedded for redox scanning in a liquid nitrogen chamber 

in the same way as described previously6,10 with NADH and flavin adenine dinucleotide 

(FAD) reference standards of known concentrations (100 μM and 525 μM, respectively in 

pH 7 Tris-HCL buffer) placed adjacent to the tumor samples.

2.2. Redox scanning and data analysis

The Chance redox scanner11,12 was employed to scan the tumors section by section spacing 

400 μm. The starting section is immediately beneath the skin. 3–5 sections were scanned for 

each tumor. The optical filters are 365BP26 (Ex) and 455DF70 (Em) for the NADH channel 

and 440DF20 (Ex) and 515DF30 (Em) for the Fp channel. The NADH and Fp signals from 

both the tissue and the reference standards were collected by the photomultiplier tube for 

each pixel of a scanning matrix 128 × 128 or 128 × 64 with the pixel size 200 μm. The fiber-

optic probe (P/N:BF0060, Spectraconn Inc, Rock-away, New Jersey, USA) for raster 

scanning has six pieces of hexagonally close-packed UV-transparent quartz fibers 

transmitting excitation light, centered by one piece of quartz fiber transmitting emission 

light. All fibers have an inner diameter of 100 μm. The distance between adjacent fiber rims 

is 40 μm.

The raw imaging data of the NADH and Fp signals were further processed using a 

customized MATLAB® program. A region of interest was carefully drawn along the tissue 

boundary to exclude the skin for each section. The nominal concentrations of both analytes 

were calculated by comparing the fluorescence intensity of the tissue to that of the reference 

standards of known concentrations. The concentration-based redox indices (NADH, Fp, Fp 

redox ratio, i.e. Fp/(NADH + Fp), and NADH/Fp) were used for the statistical analyses. 

Although NADH/Fp redox ratio and the Fp redox ratio are just two different formulas for 

the same redox state, their images are good for showing different features of tumor 

metabolic heterogeneity.

The mean value and the standard deviation (SD) of the redox indices of each tissue section 

were first computed. For global average analysis, these data were further averaged across 

sections for each individual tumor to obtain the tumor mean and SD, which were further 

averaged across tumors to get the mean values and the SDs of the tumor line. This analysis 

ignores the variations of the redox indices at different tissue depth. Student’s t-test was 

employed to investigate the statistical significance of each redox index and its SD between 

different groups.

To include the variations of the redox indices along tissue depth, the section-average-based 

univariate analysis model (General Linear Model, IBM SPSS statistics 20) was also used 

and is referred to as the section univariate analysis in this paper. The redox indices and their 

SDs were averaged for each image section and were then processed by the univariate 

analysis, where each redox index and its SD were set as the dependent variable, and either 

p53 status (for between groups) or tumor size group (for within p53 deletion group) as the 

independent or fixed factor, and tissue depth as a covariate. The section univariate analysis 

can detect the effect of the independent factor on tissue redox indices while controlling 

tissue depth of each section.
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To quantitatively describe the heterogeneity pattern of the bimodal distribution of the redox 

state, two Gaussian functions were fitted to the histograms of the Fp redox ratio to obtain the 

mean values of the more oxidized state (higher Fp redox ratio, the corresponding region 

being defined as the core) and more reduced state (lower Fp redox ratio, the corresponding 

region being defined as the rim). The univariate analysis model was then applied similarly as 

aforementioned to either the core or rim averages. This method is referred to as the core–rim 

univariate analysis in this paper.

Only the redox indices with statistical significance (p < 0.05) were reported in all tables.

2.3. Histology

To understand the histological basis of the redox images, we investigated the H&E staining 

on the tumor tissue section (~5 μm thick) adjacent to the last section optically scanned for a 

couple of tumors from each group. H&E staining was carried out by the Histology Core 

Facility of the Abramson Cancer Center at the Perelman School of Medicine, University of 

Pennsylvania. We took multiple photos (4X) of the H&E staining using a camera-equipped 

microscope (Olympus) and photo-stitched them using the photomerge function in Adobe® 

Photoshop CS6 to show the image of the whole tissue section. No photo alteration was done 

except that the tissue sections were selected for presentation using the lasso tool in the 

Photoshop CS6. The H&E images were grossly compared to the redox images to identify the 

correlation of image features.

3. Results

As a tumor suppressor gene, p53 inhibits the growth rate of HCT116 tumors, which we 

confirmed. After inoculation, about 60% mice grew p53 wt tumors and all mice grew p53−/− 

tumors. Figure 1 is the growth curve of a batch of mouse xenografts. For the same batch, the 

p53−/− tumors reached an average size 1260 × 550 mm3 (N = 7), over three times the 

average size of p53 wt group (364 ± 330 mm3, N = 3) 32 days after inoculation (p = 0.02). 

That the p53−/− group grows significantly faster than the p53 wt group is consistent with the 

literature.13 Because the p53 deletion group grew faster than the p53 wt group, we divided 

the p53−/− group into two subgroups: p53−/− small (N = 3, vol = 760 ± 284 mm3) and p53−/− 

large (N = 4, vol = 1634 ± 339 mm3). The tumor size of p53−/− small is significantly smaller 

than that of the p53−/− large as confirmed by the t-test (p = 0.015). The tumor size of the 

p53 wt group was matched up with the p53−/− small group (p = 0.19).

3.1. Redox imaging identifies significant degree of redox state heterogeneity in all groups

In general, high degree of intratumor heterogeneity was observed for all tumors under 

investigation, regardless of their p53 status. Almost all tumors have an obvious bi-modal 

distribution of their redox state as represented by the Fp redox ratio. Some tumors have 

more oxidized central regions, some have more reduced central regions, while the others 

have “hot/cold” (oxidation/reduction) patchy redox state distribution patterns.

Figure 2 displays the typical redox images of a tumor from the p53 wt group. The deep 

section of this tumor has reduced central region with oxidized hot patches. It is unusual to 

see a more reduced central region based on our previous tumor xenograft studies. Another 
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tumor in the same group has just the opposite: oxidized central region and reduced 

periphery. Figure 3 shows the typical images of a tumor in the p53−/−small group. The 

central region is more oxidized. Figure 4 displays the typical images of a tumor in the 

p53−/−large group. The redox state distribution does not have any obvious oxidized central 

region but rather appears as a pattern of “hot” (more oxidized and higher Fp redox ratio) 

patches. Other tumors in the p53−/− group exhibited either the core–rim pattern as in Fig. 3 

or the “hot” oxidized patches as in Fig. 4.

3.2. The p53 null tumors are more oxidized and heterogeneous than the p53 wt ones

We compared the p53 wt group with the size matched p53−/−small group to evaluate their 

differences in the redox indices. With the global average analysis approach, we did not find 

significant difference in any of the redox indices. However, the redox ratio distribution was 

more heterogeneous in the p53−/− group as the SD of the Fp redox ratio is larger than that of 

the wild type (p = 0.05), indicating the p53 null tumors have significantly higher degree of 

heterogeneity of the Fp redox state than the wild type (see Table 1).

On the basis of the section univariate analysis (see Sec. 2), Table 2 shows that the p53-

deleted tumors had significantly less NADH (p = 0.004) and were more heterogeneous in the 

redox ratios (p = 2.6E-4 and 0.04 for the SD of the Fp redox ratio and NADH/Fp, 

respectively).

The difference between the p53−/− and p53 wt groups is more distinctly recognized by 

performing the core–rim univariate analysis (see Sec. 2). All of the redox images of p53 null 

tumors show distinct patterns of intratumor heterogeneity and have a bimodal (core–rim) 

distribution in the histogram of the Fp redox ratio. To quantify the intratumor heterogeneity, 

we used two Gaussian functions to fit the Fp redox ratio histograms and obtained the mean 

values of the Fp redox ratio in the core and the rim. As shown in Table 3, we found that the 

p53−/− small group is significantly more oxidized in the core (Fp redox ratio = 0.90 ± 0.03) 

than the p53 wt group in the core (Fp redox ratio = 0.82 ± 0.14) with a p value of 0.026, 

whereas we did not see significant difference in the Fp redox ratio of the rim between the 

two groups. The difference of the Fp redox ratio between the core and rim is significantly 

different (p = 0.001) between the two groups, indicating an increased polarization of the 

tissue redox state in p53 null tumors.

3.3. The size dependence of the tumor redox state is significant in the p53−/− group

We further analyzed the data of the p53−/− small and p53−/− large subgroups. Table 4 

summarizes the results of the section univariate analysis. We see that the p53−/− large 

tumors have more Fp (p = 0.003) and are more oxidized (p = 0.034). In addition, we also see 

that they are significantly more heterogeneous in Fp measured by their larger SDs in Fp.

The core–rim univariate analysis shows that the p53−/− large tumors are more oxidized in 

the core than the p53−/− small tumors. Table 5 shows that the core of the p53−/− large 

tumors is significantly more oxidized (Fp redox ratio = 0.92 ± 0.03) than that of the p53−/− 

small ones (Fp redox ratio = 0.91 ± 0.03).
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3.4. H&E staining images approximately correlate with the redox scanning images

Figures 5–7 are the H&E staining results corresponding to Figs. 2–4, respectively. 

Comparing the redox images with the H&E staining images, we can see that their patterns 

approximately correlate with each other. The NADH images positively correlate with the 

hematoxylin-stained viable cells and the Fp images correlate more with eosin-staining 

dominate patterns. The tumor shown in Figs. 2 and 5 only had a few necrotic cells in the 

central region evidenced in Fig. 5 (bottom right) with most portions being viable. This tumor 

had stronger NADH signals in the central region resulting in a reduced core. Although the 

H&E staining of the other two tumors shown in Figs. 3, 4, 6 and 7 showed apparent necrotic 

centers (reddish), islands of viable cells do exist within these areas and provided redox 

signals that have been detected.

4. Discussion

Intratumor heterogeneity has long been recognized as one of the characteristics of many 

forms of cancer, including colon cancer. For example, it was reported that two different 

subpopulations of colon carcinoma cells were originated from a single primary colon 

carcinoma.14,15 Also, colon carcinoma heterogeneity at cellular level has been characterized 

for developing more effective treatment.16 The high spatial resolution of the redox scanning 

technique clearly revealed the intratumor metabolic heterogeneity of the colon tumors that 

can be observed visually. HCT116 cells are known to be metastatic in vivo,17 and the typical 

oxidization-reduction pattern observed in these mouse xenografts is consistent with our 

previous observations on the mouse xenografts of metastatic melanoma and breast 

cancer.5–7

However, to quantitatively characterize the intratumor heterogeneity, proper statistical 

method should be used. The global average method minimized the degree of heterogeneity 

and failed to identify the significant differences in the redox indices between the p53 null 

and wt groups. Only the SD of the Fp redox ratio has a borderline significance between the 

two groups (see Table 1). The section univariate analysis addressed the heterogeneity with 

more details compared to the global average method. However, the heterogeneity within 

each tissue section is not fully taken into consideration by this method. The difference of 

NADH and SD of the Fp redox ratio were found to be highly significant between the two 

groups (see Table 2), while other indices were still not significantly different. The core–rim 

univariate analysis characterized the heterogeneity within each tissue section via the 

differentiation between the oxidized core and the reduced rim, which quantitatively shows 

the significant difference of the Fp redox ratio between the p53−/− and p53 wt groups (see 

Table 3). In comparison, no statistical significance was found between the two groups when 

using core–rim global average analysis (data not shown). These results indicate that it is the 

tumor heterogeneity observed by the sufficient spatial resolution imaging that enables us to 

detect the possible connection between the redox state and the p53 status. The metabolic 

imaging approach as achieved by the Chance redox scanner facilitated us to uncover the 

dependence of the mitochondrial redox state on p53 status which might have been 

undetectable if using the conventional approaches sampling the whole tumor volume. It was 

reported that no significant difference was detected in glucose uptake between p53 wt and 
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p53-null tumors using 18F fluoro-2-deoxyglucose positron emission tomography.18 

Averaging over the whole tumor volume was used for this comparison. Likewise, when 

using the global averaging, we did not detect significant difference in any of the redox 

indices between the two groups, either. However, when the tumor core–rim heterogeneity 

was taken into account, statistically significant difference was identified in the present study. 

Our previous studies on mouse models of melanoma,7 breast cancer6 and pancreatic 

premalignancy19 demonstrated the successes of the same approach. It was the redox indices 

characterizing tumor metabolic heterogeneity rather than the tumor global averages that 

identified the difference among tumors of different aggressiveness. Thus, it appears that 

imaging tumor metabolism at sub-millimeter resolution is the key, since it allows us to 

characterize the heterogeneity features of metabolism. In future, we may investigate glucose 

uptake of these tumors using the Chance redox scanner to simultaneously image the redox 

indices and Pyro-2DG (a 2-deoxyglucose analog with near infrared fluorescence) at 

submillimeter resolution.20

The p53 dependence of the redox state in these colon cancer xenografts suggests that 

alteration in p53 tumor suppressor gene leads to profound metabolic changes in tumor, such 

as the mitochondrial redox state, and p53 may play a critical role in regulating the 

mitochondrial metabolism. These findings also support the previous reports showing that 

p53 regulates metabolic activity through induction of TIGAR (T P53-induced inhibitor of 

glycolysis and apoptosis regulator) and SCO2.3,21 It is known that p53 mutation suppresses 

mitochondrial respiration and enhances glycolysis, which could result in more oxidized 

mitochondrial redox state as we observed.

Considering the complexity and heterogeneity of tumors in vivo compared to the cells 

cultured in vitro, more characterization of the signaling and metabolic pathways using 

appropriate imaging methods should aid our understanding the mechanisms of p53 

dependence of the redox state. For example, it would be interesting to probe whether the p53 

status is the same between the oxidized core and reduced rim, and use multi-modality 

imaging with sufficient spatial resolution to detect some other aspects of tumor metabolism 

such as glycolysis, oxygen consumption and adenosine triphosphate (ATP) generation and 

how they may interplay with the p53 pathways. Tumor size is another factor that should be 

considered which may well be related to the tumor blood supply, metabolism, and micro 

environment. We do not have data about the tumor size dependence of the redox state in the 

p53 wt group, which can be studied in the future.

The underlying histological basis for the oxidized/ reduced redox state is still unclear. The 

core–rim (oxidation-reduction) patterns revealed by the redox images, usually with the 

oxidized core located in the central region and the reduced rim located in the peripherals 

have been demonstrated in our prior studies in mouse xenografts of metastatic cell lines of 

human melanoma and breast cancer.6,7 The oxidized cores were observed even when the 

tumor size was as small as 4–6 mm with no apparent sign of necrosis, and some non-

invasive NMR imaging results on the tumors also showed that the oxidized cores cannot be 

explained just by necrotic centers.22 Viable cells with intact nuclei were observed in the 

cores of the melanoma xenografts.23 The simultaneous imaging of the glucose uptake and 

the mitochondrial redox state and the histological studies on the large mouse xenografts of 

XU et al. Page 7

J Innov Opt Health Sci. Author manuscript; available in PMC 2015 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



breast cancer indicated that there were also viable cells existing in the oxidized areas which 

are commonly regarded as necrotic centers.24 Together, our redox scanning studies on 

melanoma, breast cancer, and colon cancer xenografts demonstrate that the oxidized cores 

may provide important clues to tumor metastatic potential. It would be interesting to study in 

more detail the biological difference between the cells in the core and rim in these colon 

cancer xenografts.

5. Conclusions

We reported the 3D redox imaging data of the colon tumor lines with p53 null and p53 wt 

status in mouse models. To the best of our knowledge, the present work is the first to reveal 

the intratumor metabolic heterogeneity pattern of the redox state in colon cancer and the first 

to show the possible p53-dependence of the mitochondrial redox state at tissue level with 

submillimeter spatial resolution. The findings should assist in our understanding on colon 

cancer pathology and developing new imaging biomarkers for clinical applications.
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Fig. 1. 
Tumor growth curve.
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Fig. 2. 
Typical redox images and corresponding histograms of the p53 wt group. The x and y axes 

represent the scanning matrix and the color bar is a reference to the colors in the 

corresponding image. Both Fp and NADH are in the unit of μM in reference to the 

corresponding solution standard of the analytes. The spatial resolution is 200 μm and the 

section depth is 1300 μm.
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Fig. 3. 
Typical images and corresponding histograms of the smallest tumor in the p53−/− group. The 

spatial resolution is 200 μm and the section depth is 2700 μm.
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Fig. 4. 
Typical redox images and corresponding histograms of the largest tumor in the p53−/− 

group. The spatial resolution is 200 μm and the section depth is 1400 μm. The tumor size 

looks similar as the tumor in Fig. 3 because of the difference of section depth (The image 

size gets larger at deeper section depth).
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Fig. 5. 
H&E staining for the p53 wt tumor in Fig. 2. Photo-stitched whole tissue section (L), typical 

tumor rim (top right, 10X) and typical tumor center (bottom right, 40X).
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Fig. 6. 
H&E staining for the p53−/− tumor in Fig. 3. Photo-stitched whole tissue section (L), typical 

tumor rim (top right, 40X) and typical tumor center (bottom right, 20X).
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Fig. 7. 
H&E staining for the p53−/− tumor in Fig. 4. Photo-stitched whole tissue section (L), typical 

tumor rim (top right, 20X) and typical tumor center (bottom right, 20X).
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Table 1

Global average analysis results of size matched p53−/− and p53 wt tumors.

p53 status Vol (mm3) SD_Fp redox ratio

p53wt (N = 3) 364 ± 330 0.07 ± 0.01

p53−/−small (N = 3) 760 ± 284 0.11 ± 0.02

p 0.19 0.05
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Table 2

Section univariate analysis results of size matched p53−/− and p53 wt tumors.

p53 status NADH (μM) SD–Fp redox ratio SD_NADH/Fp

p53 wt (N = 3, S = 12) 100 ± 22 0.07 ± 0.01 0.14 ± 0.03

p53−/− small (N = 3, S = 15) 78 ± 31 0.11 ± 0.02 0.18 ± 0.05

p 0.004 2.6E-04 0.04
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Table 3

The differences between the p53 wt and p53−/− small groups via the core–rim univariate analysis.

p53 status Fp Redox ratio_core ΔFp Redox ratio (core–rim)

p53 wt (N = 3, S = 11)a 0.82 ± 0.14 0.12 ± 0.04

p53−/− small (N = 3, S = 15) 0.90 ± 0.03 0.19 ± 0.04

p 0.026 0.001

a
A top section was excluded due to its homogeneity.
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Table 4

Section univariate analysis results on the size dependence of the redox indices within the p53−/−group.

p53 deletion Vol (mm3) Fp (μM) Fp Redox ratio SD–Fp (uM)

p53−/− large (N = 4, S = 14) 1634 ± 339 411 ± 83 0.82 ± 0.06 192 ± 35

p53−/− small (N = 3, S = 15) 760 ± 284 343 ± 119 0.79 ± 0.03 166 ± 55

p 0.015 (t-test) 0.003 0.034 0.008
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Table 5

Core–rim univariate analysis on the size dependence of redox indices within the p53−/− group.

p53 deletion Fp Redox ratio core

Large (N = 4, S = 14) 0.92 ±0.03

Small (N = 3, S = 15) 0.91 ±0.03

p 0.047
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