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Abstract

Thermal conductivity of isolated single molecule DNA fragments is of importance for 

nanotechnology, but has not yet been measured experimentally. Theoretical estimates based on 

simplified (1D) models predict anomalously high thermal conductivity. To investigate thermal 

properties of single molecule DNA we have developed a 3D coarse-grained (CG) model that 

retains the realism of the full all-atom description, but is significantly more efficient. Within the 

proposed model each nucleotide is represented by 6 particles or grains; the grains interact via 

effective potentials inferred from classical molecular dynamics (MD) trajectories based on a well-

established all-atom potential function. Comparisons of 10 ns long MD trajectories between the 

CG and the corresponding all-atom model show similar root-mean-square deviations from the 

canonical B-form DNA, and similar structural fluctuations. At the same time, the CG model is 10 

to 100 times faster depending on the length of the DNA fragment in the simulation. Analysis of 

dispersion curves derived from the CG model yields longitudinal sound velocity and torsional 

stiffness in close agreement with existing experiments. The computational efficiency of the CG 

model makes it possible to calculate thermal conductivity of a single DNA molecule not yet 

available experimentally. For a uniform (polyG-polyC) DNA, the estimated conductivity 

coefficient is 0.3 W/mK which is half the value of thermal conductivity for water. This result is in 

stark contrast with estimates of thermal conductivity for simplified, effectively 1D chains (”beads 

on a spring”) that predict anomalous (infinite) thermal conductivity. Thus, full 3D character of 

DNA double-helix retained in the proposed model appears to be essential for describing its 

thermal properties at a single molecule level.

I. Introduction

Heat conductivity of nanostructures is of great importance both from fundamental and 

applied points of view. For example, superior thermal conductivity has been observed in 

graphene1,2 and carbon nanotubes3, which has raised an exciting prospect of using these 

materials in thermal devices4–8. Generally, one can not expect that bulk thermal properties 

of a material will remain unchanged at the nanoscale: in some nano materials such as silicon 

thermal conductivity is about two orders of magnitude smaller than that of bulk crystals9, 

with the reduction in conductivity attributed to strong inelastic surface scattering. 

Furthermore, some familiar physical laws such as Fourier's law of heat transfer that work in 

bulk materials are no longer valid on the nanoscale10–13.
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Deoxyribonucleic acid (DNA) is one of the most promising nanowire materials due to the 

relative ease of modifications combined with the self-assembly capability which make it 

possible to construct a great variety of DNA-based nanostructures14,15. While electrical 

conductivity of single DNA molecules has been extensively studied, the corresponding 

thermal properties remain largely unexplored. The first, and to the best of our knowledge the 

only published work so far that attempted to measure thermal conductivity of single 

molecule DNA – DNA-gold composite16 – gave an estimate of 150 W/mK for the 

coefficient of thermal conductivity, which was conspicuously close to that of pure gold. The 

study concluded that molecular vibrations play a key role in thermal conduction process in 

DNA molecule, but thermal conductivity of single molecule DNA remained unknown.

At the same time, theoretical approaches to the problem have met with their own difficulties. 

Numerical modeling of heat transfer along carbon nanotubes and nanoribbons showed that 

thermal conductivity increases steadily with the length of the specimen10–13. If one makes 

an analogy with 1D anharmonic chains that always have infinite thermal conductivity17,18, 

one might interpret these results as suggesting anomalously high thermal conductivity for 

quasi one-dimensional nanosystems. Since at some level the DNA double helix may also be 

considered as a quasi 1D system, one wonders if the corresponding thermal conductivity is 

also anomalously high, increasing with the length of the DNA molecule? It is possible that 

over-simplified “beads-on-spring” models of DNA are inappropriate in this context, and 

thermal properties of the real double helix do not exhibit the low dimensional anomaly in 

heat conductivity.

The goal of this work is to investigate heat conductivity of single molecule DNA by direct 

modeling of heat transfer along the double helix via classical molecular dynamics of the 

DNA. To accomplish this goal we will have to choose a level of detail that is 

computationally feasible but at the same time retains key properties of the fully atomistic 

picture of the molecule.

Classical molecular dynamics (MD) simulations based on fully atomistic (all-atom) 

representations19–21 (see Fig. 1) are among the most widely used tools currently employed 

to study dynamics of the DNA double helix22. In these simulations the dynamics of the 

atoms is governed by semi-empirical potentials, or force-fields; CHARMM2720,21 or 

AMBER23 are the most common force-fields that accurately reproduce a variety of 

structural and dynamical properties of small fragments of canonical and non-canonical 

nucleic acids in water, at least on time-scales of up to one microsecond22,24–32. Importantly, 

classical force-fields such as AMBER33 can reproduce high-level quantum mechanical 

calculations for hydrogen bonding and base stacking interactions34,35. However, accuracy of 

these all-atom models in which every atom of the DNA fragment and all of the surrounding 

solvent molecules are represented explicitly comes at a price of substantial computational 

expense that limits the range of applicability of the models.

The so-called implicit solvent approach36–40 reduces the computational expense by 

replacing the discrete water environment with a continuum with dielectric and 

“hydrophobic” properties of water. The solvent degrees of freedom are “integrated out” and 

the corresponding free energy term is added to the Hamiltonian of the system. However, 
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even in this case all-atom simulations may be computationally expensive. For example, a 

single 5 ns long simulation of a 147 base pair DNA fragment reported in Ref.41 took 115 

hours on 128 processors. This example suggests that all-atom models may not be suitable for 

the program set out in this work, in which heat transfer along long fragments of DNA will 

have to be examined. We therefore resort to yet another level of approximation – coarse-

graining (CG), where sets of original atoms are grouped into single “united atoms” particles 

or grains.

The remainder of this work is organized as follows. We begin with an outline of the coarse-

graining procedure leading to the proposed model, followed by a description of the potential 

function. Details are provided in the Appendix. We validate the model by comparing its 

dynamics with that of the corresponding all-atom model. Small amplitude vibrations and 

dispersion curves are analyzed next, leading to an addition verification of the model by 

comparison of several predicted characteristics (speed of sound, torsional rigidity) with the 

experiment. Then, we describe in detail the formalism used to model the heat transfer along 

a single DNA molecule. In “Conclusion” we provide a summary of the results and a brief 

discussion.

II. The Coarse-Grained Model of Double Helical DNA

Naturally, there is no unique prescription for subdividing a macromolecule into grains. The 

grouping of individual atoms into grains aims to achieve a balance between faithful 

representation of the underlying dynamics and the associated computational expense which 

is directly related to the number of grains retained in the CG description. A fairly large 

number of coarse-grain DNA models has been developed42–61. Many of these models are 

phenomenological – each nucleotide is represented by 1 to 3 grains interacting via relatively 

simple pair potentials designed to reproduce either certain set of experimental properties or 

the results of numerical simulations based on the corresponding all-atom models. However, 

the oversimplified description of the nitrogen bases carries the risk of losing some key 

details of the base-base interactions, particularly their stacking part, that affects 

intramolecular rearrangements. The latter plays a very important role in heat transfer along 

the DNA molecule62. To make sure the nitrogen bases are treated as accurately as possible 

within the CG description, we follow a strategy in which each base is modeled by three 

grains; the interaction between the bases is modeled at the all-atom level via a 

computationally effective strategy described below.

Within the coarse-grain model each nucleotide is represented by 6 coarse-grained particles, 

or grains: 1 for the phosphate group, 2 for the sugar ring, and 3 for the nitrogen base. The 

mass of each coarse grain equals the net mass of the original atoms that make up that grain; 

for the 3 base grains the original mass is distributed between them as described in the 

Appendix. The fine-level to coarse-grain reduction employed by our model is shown in Fig. 

2. Following Bruant et al.42, where all-atom molecular simulations were used to identify a 

set of relatively rigid groups of atoms in the DNA, all of the original atoms of the phosphate 

and C5′ groups [atoms P, O1P, O2P, O3′, O5′, C5′, H5′1, H5′2, see Fig. 2] are combined 

into a single [P] grain which is placed at the position of the original P atom.

Savin et al. Page 3

Phys Rev B Condens Matter Mater Phys. Author manuscript; available in PMC 2015 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The sugar groups are described by two grains which are placed on the original C3′ and C1′ 

atoms; they will be denoted as [C3] and [C1]. The grain [C3] includes C3′, H3′, C4′ and H4′ 

original atoms, the grain [C1] includes original C1′, H1′, C2′, H2′1, H2′2 and O4′ atoms. 

Thus, within our coarse-grain model the backbone of the double helix is represented by a 

chain of 3 particles (grains) [P], [C3] and [C1] (see Fig. 2).

Nitrogen bases (A, T, G and C) are rather rigid, planar structures; spatial position and 

orientation of each base can be uniquely determined from positions of any three atoms that 

belong to that base. Therefore, bases A, T, G, C will be described in terms of three grains. 

For the A base, we identify the three grains with the original C8, N6, C2 atoms; for the T 

base, the three atoms are C7, O4, O2; for the G they are C8, O6, N2 atoms; and for the C 

base, they are C6, N4, and O2 original atoms. Thus within the suggested model one base-

pair (bp) of the DNA double helix consists of 12 grains – we call the model “12CG” [see 

Fig. 1 (b)]. For N base-pair double helix, our system will consist of 12N particles. Note that 

within our terminology the simplest possible “beads-on-spring” model would be called 

“1CG” (one grain per base pair), and the all-atom representation would be “40CG”, although 

in this case the exact number would depend slightly on the base sequence e.

Interactions between neighboring base pairs are obviously very important for heat transfer 

along the DNA molecule. So within the framework of our coarse-grained model the stacking 

of neighboring base pairs should be taken into account as accurately as possible. We take 

advantage of the planar structure of the bases to bring the accuracy of the stacking 

interactions close to the all-atom level, but with little additional computational expense: 

from the known grain coordinates of each coarse-grain base, one can trivially restore 

coordinates of all of the original atoms in the base with virtually no additional computational 

expense. We then uses these coordinates to calculate the stacking energy using accurate all-

atom potentials, see Appendix for details.

III. The Potential Function

To describe interactions between the grains, we employ a potential function that contains all 

of the “standard” terms used in classical molecular dynamics simulations63,64. These terms 

include internal energy contributions such as bond stretching and angle bending, short-range 

van der Waals (vdW) interactions, and long-range electrostatic interactions in the presence 

of water and ions. The latter are modeled implicitly, at the continuum dielectric, linear 

response level. The detailed term by term description of the potential is given in the 

Appendix.

The total energy of the system consists of nine terms:

(1)

The first term Ek stands for kinetic energy of the system, the terms Ev, Ea, Et describe 

respectively bond, angle and torsion deformation energy of the backbone. The term Eb 

stands for base deformation energy and was introduced to hold four points – C1′ and three 

points on a nitrogen base – near one plane. Last two terms Eel, EvdW describe electrostatic 
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and van der Waals interactions between grains on the backbone. Interaction between 

nitrogen bases, including interactions along the same chain (stacking) as well as interactions 

across the complementary chains (including hydrogen bonds between complementary 

bases), are described by two terms Est and Ehb. These two potentials depend on coordinates 

of all of the original atoms of the base. These coordinates are uniquely calculated from 

positions of the three grains that form each base; the reader is referred to Appendix for 

details. A fortran implementation of the model is freely available at http://people.cs.vt.edu/

onufriev/software

IV. Validation of the Model

We begin validating the proposed coarse-grain model by comparing the resulting DNA 

dynamics with that produced by the corresponding well-established all-atom model. Later in 

this work we will also discuss direct comparisons with the experiment (estimated sound 

velocities).

In what follows we use following notation for convenience: xn,j, j = 1,⋯, 12 are coordinates 

of 12 grains on the n-th base-pair of the double helix (see Fig. 3). Therefore, the 

configuration of n-th base-pair is given by a 36-dimensional coordinate vector 

. The constant temperature dynamics of the double helix is obtained by 

integrating numerically the following system of Langevin's equations:

(2)

where n = 1,2,…, N, Γ = 1/tr is the Langevin collision frequency with tr = 1 ps being the 

corresponding particle relaxation time, Mn is a diagonal matrix of grain masses of n-th base-

pair, and  is a 36-dimensional vector of Gaussian distributed stochastic forces 

describing the interaction of n-th base-pair grains with the thermostat with correlation 

functions

where the mass M = Mk, if i = 3(k−1) + l, k = 1,…, 12, l = 1, 2, 3.

To bring the temperature of the molecule to the desired value T = 300K, we integrate the 

system (2) over time t = 20tr starting from the following initial conditions

(3)

that correspond to the equilibrium state of the double helix . Once the system is 

thermalized, the temperature is maintained at T = 300K and the trajectory continues for 10 

ns.
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The first step in the validation procedure is to estimate root-mean-square deviation (RMSd) 

of the end point (t=10 ns) of the trajectory from a reference DNA structure, and compare the 

RMSd values between the CG and the reference all-atom trajectory (AMBER). Given two 

structures, the RMSd can be computed as:

where ri,i = 1,…, 12N is the reference (e.g., initial), and  is the final set of coordinates of 

the structure. The expression is minimized over a translation (vector l) and a rotation around 

a fixed point (operator S). The details of the algorithm are described in the Ref.80. Analysis 

of RMS deviations from reference structures as a function of simulation time is commonly 

used as initial check of stability of the system and quality of the underlying models66,68.

As is common in the field, the following sequence of 12 base pairs d(CGCGAATTGCGC)2 

(Dickerson's dodecamer) was used for this test; experimental X-ray structure of this B-DNA 

fragment is available. A constant temperature (T = 300K) simulation was performed for 10 

ns. As one can see from the Fig. 4 the various RMSd metrics fluctuate around their 

equilibrium values, which suggests that the system remains stable in dynamics, on the time 

scale of the simulation. A comparison with the corresponding all-atom simulation is shown 

in Fig. 4 (b). This all-atom simulation uses the same 12 base-pair fragment, and is based on 

the latest nucleic acid force-field (parmbsc023) from AMBER. The solvent was represented 

via the generalized Born implicit solvent approximation; all other parameters such as 

Langevin collision frequency, ambient salt concentration, etc. were the same as in the CG 

simulation shown in Fig. 4 (a). Comparing Figs. 4 (a) and (b) we can see that the all-atom 

RMSd is slightly larger than that of the 12CG models. We can conclude that the 12CG 

model is somewhat more rigid as compared with all-atom one. Finally, we note that the 

equilibrium RMS deviation from the experimental (X-ray) B-form DNA is about 2.5Å, Fig. 

4 (c), which is similar to what was observed earlier in all-atom implicit solvent 

simulations68.

Another common set of structural parameters used in validation of DNA models is helical 

parameters. These parameters determine the interaction between neighboring base pairs, 

hence they are significant for heat transfer processes. Let's choose, for simplicity, two of 

them which are the most relevant ones for describing the overall structure of the double 

helix. The first of these parameters is the angle ϕ, called twist, through which each 

successive base pair is rotated around the helical axis relative to its (nearest neighbor) 

predecessor. The second one, rise, is the distance between such two neighboring base pairs. 

Given the structure of a single nucleotide and the values of the twist and rise, one can re-

construct the whole molecule assuming that it is a “one-dimensional” uniform crystal. Exact 

algorithm of calculating these parameters is described in82. We used X3DNA82 package and 

in-house software for computing these parameters in our all-atom and CG models. With 

regards to twist and rise, the validation of our 12CG model was performed in the same 

manner as previously described in the context of an all-atom model66. The results are 
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presented in Fig. 5, where the averages of the 10ns simulation trajectories and the standard 

deviations (indicated by error bars) for each base pair step are shown. One can see that the 

twist and rise values for 12CG model are rather close to those of the all-atom model. A 

small difference is comparable with that seen between DNA simulations in explicit vs. 

implicit solvent66.

V. The Dispersion Curves and Small-Amplitude Oscillations

The proposed 12CG model enables one to compute dynamical evolution of a DNA molecule 

with any base sequence. However, for homogeneous molecules, that is if all base pairs are 

identical, the molecule can be considered as quasi-one-dimensional crystal with the 

elementary cell being one nucleotide pair of the double helix. This is a very useful 

simplification that will be employed here; it is also a very reasonable one as long as the 

focus is on the over-all physics of the structure, not on sequence dependent effects. The 

main advantage of the homogeneity assumption is that linear oscillations can be analyzed by 

standard techniques of solid state physics. To be specific, let's consider a poly-G double 

helical chain, assumed to extend along the z-axis. In the ground state of the double helix, 

each successive nucleotide pair is obtained from its predecessor by translation along the z-

axis by step Δz and by rotation around the same axis through helical step Δϕ These are the 

rise and twist parameters introduced in the previous section.

(4)

Thus, the energy of the ground state is a function of 38 variables: , Δϕ, Δz, where 

x1,j = (x1,j,1,x1,j,2,x1,j,3) is the vector position of j-th grain of the first nucleotide pair.

Finding the ground state amounts to the following minimization problem:

(5)

where the sum extends over one nucleotide pair n = 1, and the relation (4) holds for 

calculation of the energies Ev,…,EvdW.

Numerical solution of the problem (5) has shown that the ground state of poly-G DNA 

corresponds to the twist value of Δϕ0 = 38.30°, and the rise value (z-step) of Δz0 = 3.339Å. 

It should be noticed that if all of the long-range interaction were omitted, i.e., without two 

last terms Eq and EvdW in the Hamiltonian (B1), the helical step values would change only 

slightly, by about 1 per cent: Δϕ0 = 38.03°, Δz0 = 3.309Å. Thus, long-range electrostatic 

interactions between the charged group result in the relative elongation of the chain by only 

about 1 per cent. Parameters of the double helix computed within our model differ only 

slightly from the “canonical” parameters of the B-conformation of a (heterogeneous) DNA 

double helix in the crystal form83, for which the average twist angle is Δϕ = 34° ÷ 36°, and 

average rise per base pair is Δz = 3.4Å.
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To find the ground state of the homogeneous double helix under tension, it is necessary to 

minimize (5) under the fixed value of longitudinal step Δz. As a result, one can obtain the 

dependence of the homogeneous state energy on the longitudinal step. This function E0(Δz) 

has a minimum when Δz = Δz0, which corresponds to the B-conformation of the double 

helix. Longitudinal stiffness of the helix Kz = d2E0/dΔz2|Δz0
. Specifically, within our model 

we estimate Kz = 16 N/m. Since the energy E0 which is being derived is normalized to one 

nucleotide pair one can calculate the stretching modulus S = KzΔz0 = 16 N/m × 3.4 Å= 

5440pN. This estimate is somewhat higher than the corresponding estimates of 1530 ⋯ 

3760 pN obtained from fluctuations of distances between base pairs observed in MD 

simulations42. The relatively larger value of Kz from our CG model is consistent with the 

model's over-all larger stiffness relative to the all-atom description, see a discussion above. 

Some of the difference between the two estimates may also be due to methodological 

differences in estimating longitudinal stiffness. Values of the stretching modulus derived 

from experiments are of the order 1000 pN84–86, i.e., about 5 times smaller than our estimate 

based on the CG model. One should keep in mind, however, that we have obtained only an 

upper estimate for the stretching modulus: temperature was assumed to be zero, the 

calculations were based on a homogeneous poly-G–poly-C sequence that was reported to be 

more rigid than inhomogeneous and poly-A–poly-T sequences used in experiments87,88, and 

the entropy component was not considered in our calculations.

To obtain E0(Δϕ), that is the dependence of the helix energy on the helical step Δϕ, we set 

Δz = Δz0 in (5) and perform the minimization with respect to the remaining 36 parameters. 

Then, torsion stiffness of the double helix Kϕ = Δz0d2E0/dΔϕ2|Δφ0
. Our estimate, Kϕ = 5.8 × 

10−28 J·m, is in good agreement with the experimental value of Kϕ = 4.1 ± 0.3 × 10−28 J·m, 

obtained for DNA macromolecule in B-conformation89.

For analysis of small-amplitude oscillations of the double helix it is convenient to use local 

cylindrical coordinates vn, j = (vn,j,1,vn,j,2,vn,j,3), given by the following expressions:

(6)

with , (n = 0, ±1, ±2,…; j = 1,2,…,12) being coordinates of the grains in the ground state 

of the double helix, and ϕn,j being angular coordinate of the grain (n,j). Within these new 

coordinates the molecule's Hamiltonian (B1) has the following form:

(7)

where vn = (un,1, un,2,…, un,12) is a 36-dimensional vector, M is 36-dimensional diagonal 

mass matrix. Note that the last two terms Eq and EvdW, responsible for long-range 

interaction, have been omitted. This simplification is critical from the methodological point 

of view, but has very little impact on the accuracy of the estimates of DNA thermal 

conductivity. The point will be discussed below.
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Hamiltonian (7) corresponds to the following system of equations of motion:

(8)

where Pi(v1, v2, v3) = ∂P/∂vi, i = 1,2,3. Within the linear approximation, the system (8) has 

the form

(9)

where matrix elements are given by

and partial derivative matrix is given by

Solution of the system of linear equations (9) can be found in the standard form

(10)

where A is linear mode amplitude, e is unit vector (|e| = 1), q ∈ [0,π] is dimensionless wave 

number. Substituting the expression (10) into the system (9), we arrive at the following 36-

dimensional eigenvalue problem:

(11)

Thus, to obtain dispersion relations which characterize eigenmodes of the DNA double 

helix, one has to find all eigenvalues of the problem (11) for each value of wave number 0 ≤ 

q ≤ π. The calculated dispersion curve includes 36 branches  and is shown on the 

Fig. 6.

It can be seen from Fig. 6 that frequency spectrum consists of low-frequency 0 ≤ ω ≤ 

175cm−1 and high-frequency ω ∈ [267,749]cm−1 domains. The high-frequency domain 

describes internal oscillations of the bases. As shown in Fig. 6 (a), corresponding dispersion 

curves have very small slope, meaning that the high-frequency oscillations have a small 

dispersion. The low-frequency oscillations have larger dispersion – see Fig. 6 (b). There are 

two acoustic dispersion curves which include zero point (q = 0, ω = 0). The first curve ω1(q) 

describes torsional acoustic oscillations, the second one ω2(q) describes longitudinal 

acoustic oscillations of the double helix. Thus we can obtain the two sound velocities
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with Δz being z-step of a double helix. The value of the torsional sound velocity is vt = 850 

m/s, and the value of the longitudinal sound velocity is vl = 1790 m/s. One of these 

dispersion curves includes the special point (q = Δϕ,ω = 0) (Δϕ is the angular helix step). 

This curve describes bending oscillations of the double helix which we do not analyze in 

detail because we have so far neglected the long-range interactions that are known to have 

strong effect on bending rigidity of the DNA.

The estimated longitudinal sound velocity is in agreement with experimental value of the 

sound velocity in DNA fibers90: vl = 1900 m/s. Another experimental estimate91 of the same 

quantity is higher, vl = 2840 m/s, and was obtained from inelastic X-ray scattering. The 

same work reports torsional sound velocity vt = 600 m/s; the 20 % discrepancy with our 

estimate of vt = 850 m/s appears acceptable given similar margin of error seen between 

different experimental estimates for the longitudinal velocity.

VI. Frequency Spectrum of the Thermal Oscillations

Let's again consider a homogenous poly-G DNA chain consisting of N = 200 base pairs and 

calculate its frequency spectrum density. We begin by simulating dynamics of the helix 

without taking into account long-range interactions. Later, we will turn them on to analyze 

the effect of making this approximation.

To obtain thermalized state of the double helix, the system of Langevin's equations (2) 

should be numerically integrated. For thermalization of the double helix let's consider initial 

conditions corresponding to the ground state (3), and integrate the system (2) over time t = 

20tr. After the equilibration period, the coupling with the thermostat is switched off, and the 

frequency density p(ω) of the kinetic energy distribution is obtained. To increase precision, 

distribution density was calculated as an average over all grains of the helix.

The computed frequency spectrum density at T = 300K is shown in the Fig. 7. The spectrum 

is clearly divided into a low-frequency 0 ≤ ω ≤ 175 cm–1 and a high-frequency 267 < ω < 

749 cm−1 domain, consistent with the dispersion curves of Fig. 6.

Simulating the double helix dynamics with account for all interactions, including long-range 

ones, (results not shown) yields almost the same frequency spectrum. Only the density of 

oscillations in the interval 0 ≤ ω < 10 cm−1 increases somewhat.

VII. Heat Conductivity of the Double Helix

For numerical modeling of the heat transfer along the DNA double helix, we consider a 

chain of a fixed length with the ends placed in two separate thermostats each with its own 

temperature. To calculate the coefficient of thermal conductivity, we have to calculate 

numerically the heat flux through any cross section of the double helix. Therefore, first we 

need to obtain a formula for the longitudinal local heat flux.
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Let us consider the homogeneous double helix poly-G DNA. (The method below is also 

applicable to any sequences of bases).

If long-range interactions (electrostatic and van der Waals) are not taken into account we 

can present the Hamiltonian of the helix (B1) in the form

(12)

where the first term describes the kinetic energy of atoms in a given cell and the second term 

describes the energy of interaction between the atoms within the cell and with the atoms of 

neighboring cells. The corresponding equations of motion can be written in the form

(13)

where the function Pj is defined as

To determine the energy flux through the double helix cross section, we re-write formula 

(12) in a compact form, H = Σn hn, where hn is the energy density,

(14)

Local longitudinal heat flux jn is defined through local energy density hn by the discrete 

version of the continuity equation,

(15)

Using the energy density (14) and the equations of motion (13), we can derive the following 

relations:

Where
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From this and (15) it follows that the energy flux through the n-th cross section has the 

following simple form:

(16)

Let us note that taking into account long-range interactions would complicate this formula 

considerably, making the calculations virtually intractable. This is why the approximation 

we have made is critical.

For a direct numerical modeling of the heat transfer along the double helix, we consider a 

finite structure of the length NΔz with fixed ends. We assume that the first N+ = 20 segments 

are placed in the thermostat at temperature T+ = 310 K and the last N− = 20 segments are 

placed in the other thermostat at T− = 290 K. The helix dynamics is described by the 

following equations of motion:

(17)

where Fn =∂H/∂un, Γ = 1/tr, is the damping coefficient (relaxation time tr = 1 ps, and 

 is a 36-dimensional vector of normally distributed random forces 

normalized by the condition

where the mass M = Mk, if i = 3(k − 1) + l, k = 1,…, 12, l = 1,2, 3.

We take the initial conditions (3) corresponding to the equilibrium state of the helix. With 

these initial conditions, we integrate the equations of motion (17) numerically, by employing 

the velocity Verlet method with step Δt = 0.0005 ps. After integration time t0 [this value 

depends on the helix length between the thermostats, ΔL = (N − N+ − N−)Δz], we observe the 

formation of a temperature gradient and a constant heat energy flux in the central part of the 

helix. It is important to notice that the time t0 can be reduced by modifying the initial 

distribution of the energy, e.g., by taking the initial condition for the system (17) as 

homogeneously thermalized state with the mean temperature T = (T+ + T−)/2 = 300 K.

After the stationary heat flux is established, the temperature distribution can be found using 

the formula

and the averaged value of the energy flux along the helix
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Distributions of the local energy flux and temperature along the helix are shown in Figs. 8 

(a) and (b). In the steady-state regime, the heat flux through each of the cross section at the 

central part of the helix should remain the same, i.e. Jn ≡ J, N+ < n ≤ N − N−. This property 

can be employed as a criterion for the accuracy of numerical modeling and can also be used 

to determine the characteristic time for achieving the steady-state regime and calculation of 

Jn and Tn. Figure 8 (a) suggests that the flux is constant along the central part of the helix 

indicating that we have reached the required regime.

At the central part of the helix, we observe a linear gradient of the temperature distribution, 

so that we can define the coefficient of thermal conductivity as

(18)

where S = πR2 is the area of the cross section of the double helix (R = 8 Å is the radius of 

helix on phosphorus atoms). In this way, the calculation of thermal conductivity is reduced 

to the calculation of the limiting value,

In order to determine the coefficient of thermal conductivity, we need to know only the 

dependence of the temperature from base-pair number in the central part of the helix. 

However, a change of the temperature distribution at the edges of the helix can also provide 

some useful information. If the helix is placed into a Langevin thermostat at temperature T, 

each segment of the helix should have the temperature Tn = T due to the energy balance of 

the input energy from random forces and the energy lost to dissipation. Then, an averaged 

energy flow from the n-th segment of the helix can be presented as

If only the edges of the helix are placed into thermostat, there appears an additional energy 

exchange with its central part, so the energy from the right edge will flow to the left one. As 

a result, the temperature of the left edge is reduced (Tn ≤ T+, n = 1, 2,…, N+), whereas the 

temperature at the right edge increases (Tn ≥ T−, n = N − N− + 1, …, N) – see Fig. 8 (b). This 

information allows us to find the energy flux in the central part of the double helix using 

only the energy imbalance at the edges,
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(19)

If the lengths of the edges placed into thermostat coincide, i.e., N+ = N− = N±, we can 

rewrite this formula in the following simplified form:

(20)

Equation (19) gives an alternative way to calculate thermal energy flux J; the equation can 

be employed to verify results obtained via Eq. (16). Let us note that although (16) is 

obtained under the assumption of no long-range interactions, formula (20) remains valid also 

if these interactions are taken into account.

Numerical modeling of the heat transfer shows that both formulas lead to the same value of 

the heat-conductivity coefficient if long-range interactions are absent. When N=80 (the 

number of internal links Ni = N − N+ − N− = 20), the heat-conductivity coefficient κ = 0.26 

W/mK. When N = 80 (Ni = 40) − conductivity κ = 0.29 W/mK, when N = 120 (Ni = 80) − κ 

= 0.27 W/mK, and when N = 200 (Ni = 160) − κ = 0.28 W/mK. The same values are 

obtained also if the long-range interactions are taken into account (and the heat flow is 

calculated by formula (20) only). These considerations help us reach the conclusion that the 

contribution of the long-range interactions to the heat transfer along the double helix is very 

minor.

It is worth noting that the use of formula (20) for calculating the value of heat transfer 

requires more time-consuming calculations. Therefore, it is preferable to use formula (16). 

Also, equation (16) allows one to estimate relative contributions of various interactions into 

the process of heat transfer. We find that interaction between neighboring base pairs 

contributes 32% to the net energy flow, with the rest of the heat transfer occurring along the 

two sugar-phosphate chains.

As one can see from the results, the value of heat conductivity κ in the DNA macromolecule 

does not depend on the length of the molecule. This is normal thermal conductivity for 

which Fourier's law is valid at nano-level as well, at least as far as the DNA is concerned. 

This is in contrast to earlier models of heat conduction along carbon nanotubes and 

nanoribbons that predicted anomalous thermal conductivity – divergence of the coefficient 

of thermal conductivity with sample length10–13. Compared to nanotubes, the DNA double 

helix is much which leads to strongly nonlinear behavior at T = 300 K (in contrast, a 

nanotube is a rigid quasi-one-dimensional structure, with only weak nonlinear dynamics). 

Contribution of nonlinearity to the DNA dynamics will be explored in more detail in the 

following section.
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VIII. Dependence of the Thermal Conductivity On Temperature

At T = 300 K the DNA double helix exhibits high- amplitude vibrations (the amplitudes can 

be estimated from Fig. 4 and 5). The contribution of nonlinearity to the DNA dynamics can 

be estimated from the temperature dependence of dimensionless heat capacity

(21)

where E(T) = 〈H〉 is average double helix energy at temperature T. For a harmonic system, 

dimensionless heat capacity c(T) ≡ 1; for a system with strong anharmonism c(T) < 1, and 

c(T) > 1 for weakly anharmonic systems. As seen from Fig. 9, heat capacity of the double 

helix equals to 1 for low temperatures (T < 10 K) and increases monotonously when the 

temperature grows. The heat capacity c = 1.05 at T = 300 K, implying weak anharmonism.

The role of nonlinearity decreases monotonously as the temperature decreases. In the 

limiting case T → 0 the double helix becomes harmonic. Therefore, classical thermal 

conductivity has to increase monotonously as the temperature decreases, and diverge when T 

→ 0. The results of our numerical modeling confirm this conclusion – see Fig. 9 (b), curve 

3. At T ↘ 0 the heat conductivity κ ↗∞.

We should mention that the temperature dependence of the DNA thermal conductivity found 

above is obtained with the framework of classical molecular-dynamics model, which does 

not take into account quantum effects of “frozen” high-frequency oscillations (to take those 

into account requires substantial modifications to the model92,93). In crystals at low 

temperatures, thermal conductivity decays monotonically when T → 0. This is explained by 

the fact that at low temperatures the temperature dependence of thermal conductivity is 

defined mainly by the temperature dependence of heat capacity.

In classical mechanics, heat capacity of phonons does not depend on temperature, whereas 

in quantum mechanics such a dependence is defined by the formula c(ω,T) = kBFE(ω,T), 

where the Einstein function

where ω is the phonon frequency (0 ≤ FE ≤ 1, function FE ↘ 0 for T ↘ 0 and FE ↗ 1 for T 

↗ ∞).

As seen from the DNA dispersion curves , the main contribution in the heat 

conductivity is determined by the 20 low-frequencies phonons (16 high-frequencies phonons 

have very small group velocities, and therefore can not be efficient energy carriers). The 

temperature dependence of dimensionless heat capacity of low frequencies phonons can be 

found using formula
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(22)

One can see from Fig. 9 that the heat capacity cq does not noticeably depend on temperature 

if T > 150 K, and tends monotonously to zero as the temperatures decrease below T < 150 K.

Thus, thermal vibrations of the double helix can be described classically for T > 150 K only. 

For lower temperatures, quantum effect caused by “freezing out” of high-frequency 

vibrations must be taken into account. Due to these effects the DNA heat capacity (22) tends 

monotonously to zero as the temperature decreases. The double helix thermal conductivity 

κq(T) ≈ cq(T)κ(T), (where the temperature dependence κ(T) is calculated classically) 

because the phonon energy is proportional to heat capacity. As it seen form Fig. 9 (b) at T > 

30 K the thermal conductivity κq grows monotonously as the temperature decreases, 

reaching its maximum at T ≈ 30 K, and then decreases monotonously as T → 0.

These calculations show that heat transfer in the DNA occurs mainly due to propagation of 

low-frequency phonons (frequencies ω < 175 cm−1), i.e., by “soft” low-frequencies waves. 

Such oscillations are strongly coupled to deformation of orientation angles. This fact clearly 

distinguishes the DNA double helix from the essentially rigid carbon nanotubes and 

nanoribbons. The simplest model of a one-dimensional system with orientational interaction 

is one-dimensional chain of interacting rotators. This chain has a finite thermal 

conductivity94,95. On the other hand, nanotubes and nanoribbons are commonly described in 

the one-dimensional approximation as anharmonic Fermi Pasta Ulam (FPU) chains that lead 

to infinite heat conductivity17,18.

Thus, the double helix of a homogeneous poly-G DNA has a finite thermal conductivity κ = 

0.3 W/mK. The double helix with a nonhomogeneous (arbitrary) base sequence may be 

expected to have a smaller value of the heat conductivity coefficient since the presence of 

inhomogeneities leads to additional phonon scattering. Therefore, thermal conductivity of a 

generic DNA double helix, κ ≤ 0.3 W/mK, may be expected to be less than half of that of 

water heat conductivity which is 0.6 W/mK. This means that DNA macromolecule is a 

thermal insulator relative to its surrounding solution. It should be noted that experimentally 

measured thermal conductivity of the DNA-gold composite structure (DNA is a matrix for 

gold nano-particles)16 gives the coefficient of thermal conductivity 150 W/mK, which is 500 

times higher than the predicted thermal conductivity of pure DNA. Thus, we conclude that 

the measured thermal conductivity of the DNA-gold composite is completely determined by 

the metal component, not the DNA.

IX. Conclusions

A coarse-grain (12CG) model of DNA double helix is proposed in which each nucleotide is 

represented by 6 “grains”. The corresponding effective pair potentials are inferred from 

correlation functions obtained from classical all-atom molecular dynamics (MD) trajectories 

and potentials (AMBER). The computed structural characteristics and fluctuations of the 

double helix at T = 300 K are in reasonable agreement with available experimental data and 

earlier computations based on all-atom models. An analysis of dispersion curves derived 

Savin et al. Page 16

Phys Rev B Condens Matter Mater Phys. Author manuscript; available in PMC 2015 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the coarsegrained model yields longitudinal and torsional sound velocities in close 

agreement with experiment.

The numerical modeling of heat conductivity along a single DNA molecule shows that 

double DNA helix has a finite (normal) thermal conductivity. This means that Fourier's law 

is valid at nano-level for the DNA, i.e., coefficient of thermal conductivity does not depend 

on the length of the DNA fragment. Single molecule DNA thermal conductivity does not 

exceed 0.3 W/mK, which is two times smaller than thermal conductivity of water. Thus, 

DNA double helix is a poor heat conductor. At the same time, it is known from modeling of 

heat transfer along carbon nanotubes and nanoribbons that the coefficient of thermal 

conductivity in these systems diverges as the specimen length grows10–13. The anomalous 

behavior of thermal conductivity in long nano-objects is caused by their rigid structure as 

well as by their weakly nonlinear quasi one-dimensional dynamics, mostly due to rigid 

covalent interactions. In contrast, the DNA double-helix is a soft 3D structure with strongly 

nonlinear dynamics. Based on the results of our coarse-grained simulations we conjecture 

that heat conduction along the double helix is due predominantly to weak non-valent 

orientational interactions.
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Appendix A: Masses of the Coarse Grains

The mass of each of the backbone grains [P],[C3] and [C1] is calculated as a sum of the 

masses of the original atoms included in the grain, Fig. 2. So m[P] = 109 a.e., m[C3] = 26 a.e., 

m[C1] = 43 a.e. The distribution of the total mass of base X (X = A, T, G, C) between its 

three defining grains, m1, m2, m3, can be found from the condition of preserving the total 

mass and preserving the position of the center of mass of the base. Values of the grain 

masses are shown in table I.

Appendix B: The Potential Function

For convenience let's re-write the Hamiltonian of the system:

(B1)

The first term is the kinetic energy of the systems:

(B2)

where the summation is over all 12N coarse-grain particles (grains) in the system.
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The second term Ev in the Hamiltonian (B1) stands for deformation energy of “valence” 

(pair) bonds. pair potentials have the standard form

(B3)

where αβ denotes types of bonded particles (for example, P and C3), parameter Rαβ is the 

equilibrium length, parameter Kαβ is the bond stiffness. values of these parameters were 

obtained by analysis of all-atomic MD trajectories. These potentials are calculated for the 

following pairs: P and C3, C3 and C1, C3 and P,P and C1, C1 and P, P and P (from 

neighbouring sites). Order in a pair corresponds to direction from 3′-end to 5′-end (see Fig. 

10). The parameter values are given in the table II.

The third term Eb in the Hamiltonian (B1) describes base deformation energy. This term was 

introduced to keep all four points near one plane and serves to mimic valent interaction in 

nitrogen bases. Let's denote the position of C1 particle by x1 and positions of the three 

particles on a base by x2, x3, x4. The deformation energy includes harmonic constraints on 

pair distances and a constraint on the bending angle of the rectangle {x1 x2,x3,x4} around its 

diagonal. Thus base γ(γ=A, T, G, C) deformation energy is give by the following formula:

(B4)

where θ is the angle between the two planes x1x2x4 and x2x3x4 (equilibrium corresponds to 

all four points lying on one plane and θ = π). The values of potential parameters can be 

found in table III. Parameters Rγ14,…,Rγ34 were defined as equilibrium distances between 

corresponding points on bases, values of parameters Kγ and εγ were determined from 

analysis of frequency spectrum of base oscillations in all atomic DNA molecular 

dynamics19.

The fourth term Ea in the Hamiltonian B1 describes the energy of angle deformation and has 

following form:

This energy is calculated for following angles: C3-P-C3, C3-C1-N, N-C1-P. Here N denotes 

a specific nitrogen atom atom on the base: atom N9 for bases A and G, and atom N1 for 

bases T and C. Equilibrium angle and deformation energy are summarized in the table IV.

The fifth term Et in the Hamiltonian (B1) describes torsional deformation energy. It has the 

form:
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The first type of potential is for the torsion C3-C1-N9-C8 (C3-C1-N1-C6) – i.e., rotations of 

base A, G (T, C) around the bond C1—N9 (C1–N1). The second type of potential is for the 

torsion C3-P-C3-C1, the third one for the torsion C1-C3-P-C3. Parameters of these 

potentials are summarized in table V.

The sixth term Ehb in the Hamiltonian (B1) describes the energy of interaction between 

complementary bases. Since each nitrogen base is a rigid planar structure, one can restore 

positions of all of its original atoms from positions of the three coarse-grain atoms, as 

outlined in the previous section. Let's denote the set of coordinates of three coarse-grain 

atoms by Xn with n being a number of the base-pair. One can calculate coordinates of all of 

the original atoms on the base: r1(Xn), r2(Xn),…,. Hence we can use the proven all-atom 

AMBER (van der Waals and electrostatics) potentials19 for hydrogen bonds and stacking 

interactions. Thus

where VXY (Xn, Yn) is a potential of interaction between X (X=A,T,G,C) base and 

complementary Y (Y=A,T,G,C) base.

The main part of the hydrogen bond energy is interactions between atoms near the hydrogen 

bond – see Fig. 11 (a) and (b). Hence the number of interacting atoms can be reduced. Let's 

denote this “reduced” potential by . Then

The interaction energy between neighboring bases is given by

Atoms whose interactions are taken into account in calculation of the interaction energy 

between neighbor bases are shown in Fig. 11 (c).

The eighth term Eel of the Hamiltonian (B1) describes the charge-charge interactions within 

the double helix. Within our model, only the phosphate groups interact via long-range 

electrostatic forces. We assume that each [P] grain carries charge equal to the electron 

charge qP = −1e, while all other particles are neutral. The total electrostatic energy of the 

DNA in aqueous environment (including ions) is written as Eel = Evac +ΔGsolv, where Evac 

represents the Coulomb interaction energy in vacuum, and ΔGsolv is defined as the free 
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energy of transferring the molecule from vacuum into solvent, i.e., solvation free energy. 

The above decomposition is an approximation made by most classical (non-polarizable) 

potential. Within our model we further assume that ΔGsolv contains only the electrostatic 

part; this is a reasonable assumption as long as the shape of the DNA double-helix does not 

change drastically during dynamics (e.g., the strands do not separate), and thus changes in 

the “hydrophobic” part of ΔGsolv can be neglected. While computation of the Coulomb part 

of the interaction is trivial, estimation of ΔGsolv is not, due to non-trivial shape of the 

biomolecule. Within the framework of the continuum dielectric, linear response theory the 

principle way of estimating ΔGsolv is by solving the Poisson-Boltzmann (PB) equation with 

the boundary conditions determined by the molecular surface that separates the high 

dielectric solvent from the low dielectric interior of the molecule. However, the 

corresponding procedures are expensive, and currently of limited practical use in dynamical 

simulations. We therefore resort to the so-called generalized Born model65–67 (GB), which 

is the most widely used alternative to the PB treatment when speed of computation is a 

concern, particularly in molecular dynamics36, including simulations of nucleic 

acids41,68–77.

The GB model approximates ΔGsolv by the following formula proposed by Still et al.65

(B5)

where εout is the dielectric constant of water, rij is the distance between atoms i and j, qi is 

the partial charge of atom i, Ri is the so-called effective Born radius of atom i, and 

. The empirical function is designed to interpolate 

between the limits of large  where the Coulomb law applies, and the opposite 

limit where the two atomic spheres fuse into one, restoring the famous Born formula for 

solvation energy of a single ion. The effective Born radius of an atom represents its degree 

of burial within the low dielectric interior of the molecule: the further away is the atom from 

the solvent, the larger is its effective radius. In our model, we assume constant effective 

Born radii which we calculate once from the first principles78. The screening effects of 

monovalent salt are introduced approximately, at the Debye-Huckel level by substitution

The 0.73 pre-factor was found empirically to give the best agreement with the numerical PB 

treatment79. Here κ is the Debye-Huckel screening parameter 

.

Further simplifications come from the fact that we have only one non-zero charge species in 

our model, the [P] grain. Then, the total electrostatics energy is given by
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where the summation is performed over all different [P]-grains pairs where

(B6)

Here r denotes the distance between coarse-grain [P] particles, Ri = Rj = RP = 2.104 Å is the 

effective Born radius of phosphate particle. The coefficient C1 = 14.400611ÅeV, εout = 78, 

κ = 0.1 what corresponds to physiological conditions. Parameter

describes self-energy (solvation energy) of phosphate groups.

The resulting total electrostatic potential due to a single [P] particle as a function of distance 

is shown in Fig. 12. One can see that for small distances r < 80Å potential decreases with 

increasing distance r as r−3. For long distances the fall-off is exponential. Thus we can 

introduce a cut-off distance RQ = 100Å for the electrostatics interactions. For r > RQ 

interaction between particles is set to zero: Vq = 0.

The last term EvdW in the Hamiltonian (B1) describes van der Waals interaction between 

different side chain [P] and [C3] grains. The potential depends on the distance r between 

two grains and is given by

where , energy parameters are εP = 0.01eV, εC3 = 

0.005eV, diameters are dP = 2.4Å, dC3 = 2Å, parameter σP = 1.6Å, σC3 = 1.9Å.

In practical applications of the 12CG model one should keep in mind that the model was 

designed to describe only the double helical form of DNA, so it may not be appropriate to 

situation when melting or base openings are expected. This limitation is the price one pays 

for computational efficiency: within our model van der Waals interactions are calculated 

only for backbone grains that belong to separate DNA strands, and only nearest neighbor 

base pairs interact.
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Fig. 1. 
View of a DNA fragment (CGTTTAAAGC) for (a) standard all-atom representation of the 

double helix and (b) the proposed coarse-grained model (12CG) based on 12 united atom 

particles (grains) per base pair.
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Fig. 2. 
Combining original atoms into coarse grains on the DNA backbone. Dashed lines indicate 

atoms that are included in the corresponding grain, solid circles mark the atoms on which 

the grain is centered.
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Fig. 3. 
Fragment of the DNA double helix in the coarsegrained representation. Base-pairs n and n + 

1 are shown.
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Fig. 4. 
Comparison of time dependence of RMS deviation relative to various reference structures in 

coarse-grained and all-atom molecular dynamics simulations of a 12 base-pair DNA 

fragment at T=300K. (a) 12CG model simulation. RMSd is relative to the first frame. (b) 

All-atom model simulation. RMSd is relative to the first frame, (c) 12CG model simulation. 

RMSd is relative to B-DNA X-ray structure81. For all-atom structures the RMSd is 

computed only for the subset of atoms that define grain centers in the corresponding CG 

model.
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Fig. 5. 
Comparison of two common helical parameters (a) Δz (rise) and (b) Δϕ (twist) between the 

CG model (curves 1, 3) and the corresponding all-atom model (curves 2, 4) (n – number of 

base pair step). Shown are averages over the corresponding 10ns molecular dynamics 

trajectories at T=300K.
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Fig. 6. 
36 branches of the dispersion curve of homogeneous poly-G DNA: (a) high-frequency and 

(b) low-frequency branches.
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Fig. 7. 
Frequency spectrum density of the DNA double helix thermal fluctuations at T = 300K.
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Fig. 8. 
Distributions of (a) local heat flux Jn and (b) local temperature Tn in the double helix with 

length NΔz. The input parameters are N = 60, temperatures T+ = 310 K and T− = 290 K, and 

the number of cells in the thermostats, N± = 20.
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Fig. 9. 
(a) Temperature dependence of dimensionless specific heat c(T) and cq(T) (curves 1 and 2, 

respectively); b) heat conductivity κ(T) and κq(T) (curves 3 and 4, respectively) of the DNA 

double helix. The dependencies c(T) and κ(T) are obtained in the framework of classical 

molecular dynamics model, while cq(T) and κq(T) are computed within the quantum 

framework.
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Fig. 10. 
Grains involved in valent interactions. Blue lines denote valent (harmonic) bonds, red arcs 

mark valent angles, bold blue lines are axes of rotation in the torsion potentials. The circles 

marked as N stand for original atoms N9 on A,G bases and N1 on T,C bases (no coarse 

grains are centered on these atoms, their coordinates are calculated from the positions of the 

three grains that define the base plane).
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Fig. 11. 
View of (a) AT base pair, (b) GC base pair (highlighted are atoms which contribute most to 

base-base interaction energy) and (c) two neighboring base-pairs (AT and GC). Arrows 

indicate parts of nitrogen bases whose interaction is taken into account: for bases on the 

complementary strands only those atoms that face another contribute to the interaction, 

while for neighboring bases on the same strand all of the atoms contribute.
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Fig. 12. 
Electrostatics potential Vq(r), equation (B6).
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Table I

Masses of the three coarse grains (m1,m2,m3) for each of the base X=A, T, G, C. In units of proton mass mp

X m1 m2 m3

A 52.230 28.139 53.632

T 51.822 16.204 56.974

G 61.731 34.357 53.912

C 39.254 35.492 35.254

Phys Rev B Condens Matter Mater Phys. Author manuscript; available in PMC 2015 July 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Savin et al. Page 38

T
ab

le
 II

V
al

ue
s 

of
 th

e 
st

if
fn

es
s 

co
ef

fi
ci

en
ts

 K
α

β 
le

ng
th

s 
R

α
β 

fo
r 

pa
ir

 in
te

ra
ct

io
n 

po
te

nt
ia

ls
 U

α
β(

X
1,

X
2)

.

α
β

P
C

3
C

3C
1

C
3P

P
C

1
C

1P
P

P

K
α

β 
(e

V
 / 

Å
2 )

9.
11

8.
33

0.
69

4
0.

66
0.

78
1

0.
20

R
α

β(
Å

)
2.

60
92

2.
36

57
4.

07
35

3.
67

45
4.

89
38

6.
46

12

Phys Rev B Condens Matter Mater Phys. Author manuscript; available in PMC 2015 July 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Savin et al. Page 39

Table III

Values of parameters for potential UX describing deformation of the base X=A, T, G, C.

γ A T G C

Rγ12 (Å) 2.6326 5.0291 2.5932 2.4826

Rγ14 (Å) 4.3195 2.7007 5.2651 2.6896

Rγ23 (Å) 4.2794 2.8651 4.2912 3.5882

Rγ24 (Å) 4.3111 5.5150 5.6654 3.5014

Rγ34 (Å) 3.5187 4.5399 4.5807 4.5523

Kγ (eV/Å2) 30 30 30 20

εγ (eV) 100 100 150 70
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Table IV

Values of deformation energy εX and equilibrium angle θX for angle potentials.

type C3-P-C3 C3-C1-N N-C1-P

εa (eV) 0.5 3. 0.3

θa 130.15° 141.63° 87.17°
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Table V

Deformation energy εt and equilibrium values ϕ0 for the torsional potentials.

Potential C3-C1-N-C C3-P-C3-C1 C1-C3-P-C3

εt (eV) 0.5 0.5 0.5

ϕ0 0 −26.21° 48.58°
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