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Abstract The biogeochemical cycling in oxygen-minimum zones (OMZs) is dominated by the interactions of
microbial nitrogen transformations and, as recently observed in the Chilean upwelling system, also through the
energetically less favorable remineralization of sulfate reduction. The latter process is masked, however, by rapid
sulfide oxidation, most likely through nitrate reduction. Thus, the cryptic sulfur cycle links with the nitrogen cycle in
OMZ settings. Here, we model the physical-chemical water column structure and the observed process rates as
driven by formation and sinking of organic detritus, to quantify the nitrogen and sulfur cycles in the Chilean OMZ.
A new biogeochemical submodule was developed and coupled to the Regional OceanModel System (ROMS). The
model results generally agree with the observed distribution of reactive species and the measured process rates.
Modeled heterotrophic nitrate reduction and sulfate reduction are responsible for 47% and 36%, respectively, of
organic remineralization in a 150 m deep zone below mixed layer. Anammox contributes to 61% of the fixed
nitrogen lost to N2 gas, while the rest of the loss is through canonical denitrification as a combination of organic
matter oxidation by nitrite reduction and sulfide-driven denitrification. Mineralization coupled to heterotrophic
nitrate reduction supplies ~48% of the ammonium required by anammox. Due to active sulfate reduction, model
results suggest that sulfide-driven denitrification contributes to 36% of the nitrogen loss as N2 gas. Our model
results highlight the importance of considering the coupled nitrogen and sulfur cycle in examining open-ocean
anoxic processes under present, past, and future conditions.

1. Introduction

The surface waters of coastal upwelling systems receive an abundant nutrient supply from deeper waters
driven by alongshore winds and offshore water mass transport [Csanady, 1990]. The intense biological activity in the
photic zone of such systems results in a high export of organic carbon to the deepwaters [Barber and Smith, 1981]. In
combination with large-scale ocean circulation, decomposition of this exported organic matter intensifies the
depletion of oxygen at midwater depths, producing the so-called oxygen minimum zone (OMZ). OMZs with
negligible oxygen are located in the upwelling areas of Chile-Peru, California, Benguela, and in the Arabian Sea
[Kamykowski and Zentara, 1990; Paulmier and Ruiz-Pino, 2009].

Classically, both geochemical observations andmodels of OMZ chemistry have focused on the nitrogen cycle, and
in particular, nitrogen loss through heterotrophic denitrification during organic matter remineralization under
low-oxygen conditions at midwater depths [Codispoti and Richards, 1976; Chapman and Shannon, 1985; Gruber
and Sarmiento, 1997; Canfield, 2006]. This picture changed with the recognition of the anammox process
(anaerobic oxidation of ammonium) as a significant, if not dominant, pathway of N2 formation in OMZs [Dalsgaard
et al., 2003; Thamdrup et al., 2006; Lam et al., 2009]. However, even with these advances, it was not suspected that
there would be a role for organic carbon remineralization in OMZs by sulfate reduction. A recent study by Canfield
et al. [2010] in the northern Chilean upwelling system revealed that sulfate reduction contributed to a surprisingly
large proportion of the organic matter remineralization. Sulfate reduction leads to a cryptic sulfur cycle, where
sulfate is actively reduced and rapidly re-oxidized again, in the nitrate and nitrite-rich oxygen-free waters. The
recognition of this cryptic sulfur cycle in the Chilean upwelling system makes this OMZ a compelling model
system for quantitatively exploring the coupling between the sulfur, nitrogen, and organic carbon cycles.

To further this goal, modeling can also reveal the relative balance between nitrate reduction to nitrite, and
nitrite reduction to N2, including denitrification and anammox. Thus, through modeling, we can put
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quantitative constraints on the processes of organic matter oxidation as well as the pathways of nitrogen
transformation including the sources of ammonium for anammox, issues which have been the source of
great uncertainty [Thamdrup et al., 2006;Ward et al., 2007; Lam et al., 2009]. A well-calibrated model platform
can also be used to broadly assess the role of the sulfur and nitrogen cycles in present-day OMZs, as well as
those in geological past and those which will develop in projected ocean warming scenarios.

Here, we employ a coupled physical and biogeochemical regional ocean model to investigate the dynamics of
element cycling in OMZ waters of the Chilean coastal upwelling system. We use the Regional Ocean Modeling
System (ROMS) in a three-dimensional idealized physical configuration with a high resolution where mesoscale
eddy features are adequately captured [www.myroms.org; Shchepetkin and McWilliams, 2005; Haidvogel et al.,
2008]. We used an idealized coastal setup and boundary conditions to assess themodel robustness in simulating
present-day first-order biogeochemical cycling in the OMZ. We develop and describe a new ROMS submodule
for kinetic modeling of the nitrogen, phosphate, oxygen, and sulfur cycles, building on the work by Soetaert et al.
[1996], Fennel et al. [2006, 2002], Konovalov et al. [2006], and Jensen et al. [2009]. Together with horizontal and
vertical advection, and mixing, the biogeochemical model captures important processes in the low-oxygen
ocean by resolving rates of oxic remineralization, heterotrophic nitrate reduction to nitrite, heterotrophic
denitrification (i.e., organic matter oxidation by nitrite), sulfate reduction, nitrification of ammonium and nitrite,
anammox, and sulfide oxidation by oxygen, nitrate, and nitrite. The schematic of the biogeochemical model is
presented in Figure 1.

2. Model Descriptions

The OMZ of the Chile upwelling system is modeled with the three-dimensional ROMS ocean circulation and
coupled to our novel modification and expansion of the nitrogen-based biogeochemical submodule which
previously was developed by Fennel et al. [2006] and Fennel et al. [2013].

2.1. Physical Model

The ROMS model solves the free surface hydrostatic primitive equations with a third-order upstream and
fourth-order centered scheme for horizontal and vertical advection, respectively. Here, the K-profile
parameterization is used for surface and bottom boundary layer mixing [Large et al., 1994].

An idealized configuration is used to test the general robustness of themodel in capturing the present-day first-
order aspect of the biogeochemistry of coastal upwelling systems exemplified by the northern Chilean system.
The model is set with a straight coastline as the eastern boundary and flat and uniform bottom topography of
1000 m. The rectangular domain consists of 1200 km zonal width and 1600 km meridional extension so
possiblemodel artifacts of the open boundaries do not reach themodel interior. The horizontal resolution is 1/8
degree in order to capture the mesoscale dynamics of upwelling systems such as eddies and filaments
(Figure 2). The layer thickness varies from 2.5 m at the surface to 100 m at the bottom in the 30 levels of vertical
sigma-coordinate system.

Monthly forcing of wind stress and heat fluxes from the COADS climatology are set to be spatially uniform
based on average values for the region between 15°S and 25°S of the northern Chilean coast. This monthly
forcing reproduces the differences in upwelling strength that are necessary to capture seasonal variations in
biological activity [cf. Carr and Kearns, 2003]. Open lateral boundary conditions of sea surface height, velocity,
temperature, and salinity are imposed at the northern, southern, and western boundaries. The baroclinic
velocity is generated from a geostrophic current approximation [Jin et al., 2009]. Radiation conditions for
depth-averaged velocity [Flather, 1976] and sea surface height [Chapman, 1985] are applied to radiate out
gravity waves generated within the model domain. A sponge layer, where harmonic horizontal viscosity and
diffusivity increase as a function of half cosine function, is used to dampen propagation of artificial inertial
waves into the model domain [Marchesiello et al., 2001]. The values are set to vary linearly from 100 m2 s�1 at
the open boundary to zero at approximately 130 km from the boundary. These values are added to the
harmonic horizontal viscosity and diffusivity background values of 10 and 5 m2 s�1, respectively, which are
used in the entire domain.

Initial and open boundary values of temperature and salinity were derived using an analytical formulation fit
to RV AGOR-60 Vidal Gormaz cruise data from the northern Chilean coast (off Iquique ~ 20°S) in August 2009
and January 2010. These initial values are set to be spatially uniform, except for an approximately 0.3°C
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decrease in temperature from north to south in the upper 200 m depth and an upward thermocline that tilts
toward the coast to generate the geostrophic poleward undercurrents [Jin et al., 2009]. Cross-shore sections
of the initial and boundary values are given in the supporting information. The model was run for eight
model years, and it took six model years to reach a dynamic steady state. Capturing peak upwelling season
and the period where most observed data were obtained, the monthly averaged results of January from the
last two years of the simulation are analyzed and discussed.

2.2. Biogeochemical Model

An ecosystem and simple nitrogen-based biogeochemical model has previously been coupled to the physical
model used here [Fennel et al., 2006]. To this, we added new explicit kinetic formulations approximated by
Michaelis-Menten terms with a given half-saturation constants for water-column heterotrophic nitrate
reduction to nitrite, denitrification coupled to oxidation of organicmatter by nitrite (heterotrophic denitrification)

Figure 1. Flow diagram of the ecosystem-biogeochemical model. Themodel consists of 14 state variables (see Appendixes
for detail). Anaerobic processes of remineralization and oxidation are highlighted by dashed lines. Processes which pro-
duce (consume) oxygen are indicated by up (down) gray thick arrows. It is worth to note that canonical denitrification is the
sum of heterotrophic denitrification and sulfide-driven denitrification. Organic matter that reaches the seafloor is assumed
to be remineralized instantaneously by oxic and/or anoxic remineralizations.
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and sulfide oxidation by nitrite (sulfide-
driven denitrification), sulfate reduction,
sulfide oxidation by nitrate
(chemolithoautotrophic nitrate reduction)
and oxygen, anammox, nitrogen fixation by
nitrogen-fixing phytoplankton, and nutrient
phosphate, as well as a modified
formulation of bottom boundary
conditions for oxic-anoxic remineralization
reactions. We also modified the
approximation of nitrification by resolving
aerobic ammonium oxidation to nitrite and
aerobic nitrite oxidation to nitrate. Here, we
refer to the sum of the heterotrophic
denitrification and sulfide-driven
denitrification as canonical denitrification to
distinguish the N2 gas loss pathways from
anammox. The kinetic formulations for the
associated processes mentioned above are
presented in Appendix A (i.e., equations
(A5) to (A8), (A13) to (A15), (A18), and (A19)),
while the half-saturation constants used in
this study are listed in Table B1. The
biogeochemical model consists of 14 state

variables: nitrate (NO3), nitrite (NO2), ammonium (NH4), phosphate (PO4), oxygen (Oxy), hydrogen sulfide (H2S), two
classes of phytoplankton (phytoplankton (Phy) and nitrogen-fixing diazotrophs (Diaz)), zooplankton (Zoo), small and
large detritus with variable nitrogen and phosphorus contents (SDetN, LDetN, SDetP, and LDetP, respectively), and
chlorophyll (Chl). The model schematic is presented in Figure 1. In the text below, the new aspects of the
biogeochemical model are briefly introduced, while Appendix A and B present all reaction equations, model
parameters, and source-minus-sink terms of the state variables.

Organic matter in the water column is remineralized by different respiration processes which use various electron
acceptors such as oxygen, nitrate, nitrite, and sulfate [c.f. Canfield et al., 2005; Morel and Hering, 1993]. The
availability of these electron acceptors for utilization is often considered to be based on free energy gain, so that
oxicmineralization is first, followed by nitrate reduction to nitrite, then denitrification, and last by sulfate reduction
(equations (A1) to (A4)). However, this sequence of events is challenged by the measured occurrence of nitrate
reduction and recent recognition of sulfate reduction within the zone of nitrate reduction in the eastern tropical
South Pacific OMZ [Lipschultz et al., 1990; Kalvelage et al., 2011; Canfield et al., 2010], and is only an approximate
description of the progress of these processes as seen in sediments [Canfield, 1993]. Therefore, in the model, the
reaction rates of the remineralization pathways are regulated via Michaelis-Menten kinetic terms with a given
half-saturation constant (Table B1). The constants are obtained based on direct measurements or other model
values available from the literature. In this formulation, a hyperbolic function of the species concentration limits
the maximum reaction rate, while one minus of the hyperbolic function inhibits other pathways. Such
formulations have previously been used in sediment diagenetic models [Van Cappellen et al., 1993; Soetaert
et al., 1996]. The oxic organic matter remineralization rate is limited by the oxygen concentration in the water
column (equations ((A1) and (A5)). The rates of heterotrophic nitrate reduction to nitrite (equations (A2) and
(A6)) and of heterotrophic denitrification (equations (A3) and (A7)) are both inhibited by oxygen and are limited
by nitrate and nitrite, respectively. The sulfate reduction rate is inhibited by oxygen and nitrate (equations (A4)
and A8) as has previously been done in sediment diagenetic modeling [Soetaert et al., 1996].

In the model, a small amount of nitrite is also produced by the nitrification of ammonium in the dark and oxic
environment (equation (A16)), which is further oxidized to nitrate (equation (A17)), as suggested from
photoinhibition measurements for marine nitrifying bacteria by Olson [1981]. Ammonium is also oxidized by
nitrite under anoxic condition through the anammox process to produce N2 gas as suggested by Kuypers et al.
[2005] and Thamdrup et al. [2006]. Sulfide is produced during anaerobic carbon remineralization by sulfate-

Figure 2. Model snapshot (5 days average) of simulated sea surface tem-
perature (°C) in January shows mesoscale eddy activities of the Chilean
upwelling system. As in the model, data from hydrographic stations, satellite
observation, and other model studies show a relatively uniform inner coast-
parallel zone of ~50 km wide with 15 – 19°C upwelled waters and ~100 km
radius of mesoscale activities [Blanco et al., 2001; Thomas et al., 2001;
Chaigneau et al., 2009; Colas et al., 2011].
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reducing bacteria. As a fast reaction, sulfide is re-oxidized back to sulfate based on the presence of oxygen,
nitrate, or nitrite [Konovalov et al., 2006; Jensen et al., 2009]. We apply a two-step nitrogen-dependent sulfide
oxidation path by employing oxidation by nitrate to produce some nitrite (chemolithoautotrophic nitrate
reduction; equation (A10)) and oxidation by nitrite as a source for N2 gas production (sulfide-driven
denitrification; equation (A11)) [Lam and Kuypers, 2011]. We assume that sulfide oxidation is dominated by
nitrate reduction, and not nitrite reduction, by choosing a higher half-saturation constant together with a lower
first-order rate constant of nitrite reduction to N2 relative to the chemolithoautotrophic reduction of nitrate to
nitrite as described by Jensen et al. [2009] in the chemocline of a Danish fjord. In order to accurately simulate the
observed rate of total N2 production by Canfield et al. [2010], we find that it is important for the model to
distinguish and quantify the relative contributions of heterotrophic nitrite reduction to N2 and sulfide-driven
nitrite reduction in the production of N2 through canonical denitrification in the OMZ.

Explicit nitrogen-fixing diazotrophs are introduced in the model to regulate nitrogen fixation, where the growth
rate depends on temperature, light, and phosphate concentration [Fennel et al., 2002; Schmittner et al., 2008].
Inclusion of this process is important for reproducing the observed primary production rates and subsequent
nitrate removal in the deeper anoxic waters [cf. Canfield, 2006]. Liebig’s law of the minimum is used to switch
between the Michaelis-Menten limitation terms of nitrogen-based nutrients and phosphate, determining the
growth rate of nondiazotrophic phytoplankton as implemented by Fennel et al. [2002] and Schmittner et al. [2008].

Spatially uniform vertical profiles of nitrate, phosphate, and oxygen are imposed as initial and open boundary
conditions. These profiles were obtained by fitting an analytical equation to the horizontal average of the
NODCWorld Ocean Atlas 2005 depth profiles off the northern Chilean coast (17°S to 22°S) [Garcia et al., 2006].
Small and homogeneous initial values of 0.1 mmol m�3 N, P, and H2S were set for all other biological variables
[Fennel et al., 2006]. A small initial value of 10�3 mmol m�3 N was set for nitrogen-fixing diazotrophs biomass in
order to avoid an overestimate of the nitrogen fixation rate at the beginning of the model run. Our model
constant-parameter values (Table B1) are obtained with minor tuning to the published values from observations
and other model calculations [Soetaert et al., 1996; Yakushev et al., 2007; Jensen et al., 2009].

Two classes of organic matter (small and large detritus) are remineralized as they sink in the water column
based on their rate constant of remineralization (d�1) and concentrations (mmol m�3). At the bottom
boundary, for conservation of mass and simplicity, we assume that the fraction of sinking organic matter that is
not fully remineralized in the water column is instantaneously remineralized back into the overlying water,
without burial, once it reaches the seafloor. The bottom boundary calculation is less important for the present
model simulation because a vertical wall is used in the eastern coastal boundary without any shallow
continental shelf. However, for completeness, we present results from a biogeochemical bottom boundary
condition with an extended shelf-width profile comparable to the Chile margin OMZ. The simulated ratio of
organic carbon oxidation by nitrate and oxygen in the bottom water as a function of bottom water oxygen
concentration is compared to the observed ratio in the sediment by Canfield [1993] (Appendix C, Figure C1).

3. Results

In what follows below, we first compare the simulated flow structure, averaged alongshore, with typical coastal
upwelling features. Then, we verify that the simulation gives comparable model results to the available
observations of the biochemical process rates and their depth distributions, as well as the depth distribution of
chemical species. We focus on the monthly averaged results of January which correspond to the period where
most observed data were obtained by Canfield et al. [2010].

3.1. Mean Circulation Structure

Due to offshore Ekman transport, upwelled water at the coast results in the typical inclined upward
thermocline as seen in the alongshore-mean temperature profile of the model (Figure 3a). The upwelled
water originates from the 15°C isotherm located at ~60m depth offshore and results in a surface temperature
difference of approximately 5°C from the coast to 150 km offshore. These features are consistent with the
observations in the Peru-Chile upwelling system [Blanco et al., 2001; Carr and Kearns, 2003]. Mesoscale eddies
and filaments arising from instabilities of the alongshore currents are generated within ~200 km from the
coast as depicted from the sea surface temperature of the model (Figure 1, 3a). These mesoscale dynamics
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agree well with the observed data and
with other model simulations of Peru-
Chile upwelling [Chaigneau et al., 2011;
Colas et al., 2011].

The equatorward wind forcing drives
relatively constant magnitude shallow
offshore Ekman transport from surface to
approximately 22 m depth with an
onshore compensating transport below it
(Figure 3b). The common surface coastal
jet reaches an equatorward velocity of 0.2
m s�1 due to the cross-shore pressure
gradient (Figure 3c). The corresponding
poleward undercurrent driven by the
alongshore pressure gradient extends
from above 100 m to 300 m depth. The
poleward undercurrent has a maximum
of 0.2 cm s�1 at 150 m depth, in
agreement with observations in the
northern Chilean upwelling system
[Wooster and Gilmartin, 1961; Blanco
et al., 2001].

3.2. Mean Biogeochemical Fields

The model simulation yields a good fit to
the observed vertical biogeochemical

concentration profiles and the measured anoxic process rate distributions by Canfield et al. [2010] and the
2009 cruise (Figure 4 and Table 1).

In the model, oxygen concentration reaches 212 mmol O2 m
�3 in the surface waters and decreases rapidly

from 10 m to 80 m depth. Oxygen is consumed nearly completely (≤ 0.1 mmol O2 m
�3) between 100 m

and 200 m (Figure 4a). Below 300 m, the oxygen concentration slightly rises again to ~5 mmol O2 m
�3 as

in observations.

The modeled vertical nitrate profile is in good agreement with observations (Figure 4b). The uptake of nitrate
during phytoplankton growth results in the low surface nitrate concentration of 2 mmol N m�3. The
concentration increases to 18 mmol N m�3 at 65 m depth because uptake is diminished as light levels decrease
but also because nitrate is produced from the nitrification of ammonium liberated during organic matter
mineralization (Figure 4b). Nitrate then decreases to aminimum concentration of 10mmol Nm�3 at 130mdepth.

This minimum subsurface nitrate concentration represents the typical nitrate minimum as observed in
oxygen-depleted OMZs (Figure 4b) and is driven by nitrate and nitrite loss to N2 gas as explored in more
detail below. The nitrate concentration increases again below 160m to approximately 19 mmol Nm�3 at 300
mwhich corresponds to the depth of increasing oxygen concentration. Nitrate concentration plotted in cross
section perpendicular to the coastline shows that the high nitrate concentration at 60 m depth is upwelled to
the surface near the coast with a continuous subsurface tongue of low nitrate concentration from 50 km and
further offshore (Figure 5c). The minimum nitrate concentration dips to 150 m depth by 125 km offshore, where
rates of organic remineralization by nitrate reduction are significantly higher than the production rates of nitrate
by aerobic nitrite oxidation (Figure 5c). This result is comparable with the cruise data in 2009 which observed
minimum nitrate concentration located ~120 km from the northern Chile shore at ~150 m depth. The resultant
location of minimum nitrate concentration corresponds to the higher particle export between 100 and 150 km
offshore (Figure 5a).

Low nitrite concentrations of less than 0.7 mmol N m�3 are found from the surface to 64 m depth due to high
rates of nitrite oxidation by the high available oxygen concentrations (Figure 4c). A typical subsurface nitrite
maximum results from high rates of ammonium oxidation from aerobic organic matter decomposition and is

Figure 3. Model (a) temperature, (b) cross-shore velocity (negative velo-
cities are westward), and (c) alongshore velocity field (negative velocities
are southward). The results are averaged alongshore and over January in
the last two years of the simulation. Note the important presence of the
poleward undercurrent along the coast between 30 m and 300 m as
observed by Wooster and Gilmartin [1961] and Blanco et al. [2001].
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captured by themodel at 30m depth with a nitrite concentration of 0.6mmol Nm�3. Deeper, from 65m to 160
m, the nitrite concentration increases up to a maximum of 6.5 mmol N m�3 as a product of nitrate reduction to
nitrite during organic matter remineralization in the upper portion of the low-oxygen zone. Deeper still, nitrite
decreases from the depth of its maximum to a low concentration of 2.0 mmol N m�3 at 300 m. A band of high
nitrite concentration is uniformly developed at 120 m to 200 m depth from 50 km near the coast to offshore
with a maximum concentration in 125 km offshore (Figure 5d). The highest ammonium concentration of 0.78
mmol N m�3 is situated ~240 km offshore at 30 m water depth, whereas maximum concentrations of 0.10 to
0.65 mmol N m�3 are located between the coast and 150 km offshore at the same depth. Lower ammonium
concentrations of 0.01 to 0.03 mmol N m�3 are produced at the oxygen-depleted depths between 100 and
300 m. This vertical distribution is in good agreement with observations [Thamdrup et al., 2006; Dalsgaard et al.,
2012]. The modeled ammonium distributions perpendicular to the coast are presented in supporting
information.

Finally, the vertical distribution of phosphate also agrees well with the observed data by Canfield et al. [2010]
(Figure 4d). Phosphate levels of 0.5 mmol P m�3 in the surface rapidly increase to 2.7 mmol P m�3 at 100 m.

Figure 4. Modeled and observed (a) oxygen, (b) nitrate, (c) nitrite, and (d) phosphate concentration offshore Chile (~ 20°S).
The solid black lines are the modeled results. The grey circles represent station data from 2009 and 2010 cruises. The results
are averaged over January in the last two years of the simulation, alongshore, and from the coast to 80 km offshore. Note the
reduced nitrate concentration and presence of the nitrite maximum in the oxygen-minimum depth of 100 to 200 m.
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Deeper than 110 m, phosphate has a constant concentration of 2.7 mmol P m�3 in agreement with the mean
observed profile. Nutrient chemistry of the model shows a nitrogen deficit in the Chile OMZ as indicated by a
deviation from the Redfield N/P ratio into a ratio lower than 16, in agreement with the observed N/P ratio
(Figure B1). Additionally, the modeled N-deficit calculated as [NO3] + [NO2]� 16 × [PO4] extends from �25 to
�28 mmol m�3 in 100 to 170 m water depth of the OMZ. This modeled N-deficit is comparable with
measurement by Altabet et al. [2012] in the southern Peru OMZ at the same depth range (Figure B2). Thus,
nitrogen is limiting in the Chile OMZ system.

3.3. Anoxic Process Rates

The dynamic coupling between the nitrogen and sulfur cycles is modeled here for the first time in a three-
dimensional ocean model of a coastal upwelling system. Depth-integrated rates of heterotrophic nitrate reduction
to nitrite, sulfate reduction, heterotrophic denitrification, chemolithoautotrophic nitrate reduction, sulfide-driven
denitrification, anammox, and corresponding rates of nitrogen fixation and primary productivity for the
conducted simulation are compared with the observed rates, where available, in Table 1. In the model,
the depth-integrated rate of heterotrophic nitrate reduction is the most dominant pathway of organic carbon
remineralized under anoxic conditions. An important role for this process in carbon mineralization was suggested
earlier in these waters by Thamdrup et al. [2006] and documented in more recent experimental work off the
Peruvian coast by Lam et al. [2009]. Our model also shows that rates of carbon mineralization by sulfate reduction
exceed rates of carbon mineralization through nitrite reduction to N2, again in agreement with observations
(Table 1). It is noteworthy that our results were obtained by tuning of various model and measured parameter
constants (Table B1).

The anoxic process rates are reproduced in the simulation where we assume that chemolithoautotrophic nitrate
reduction (sulfide oxidation by nitrate) dominates over sulfide-driven denitrification (sulfide oxidation by nitrite)
[Jensen et al., 2009] (Table B1). This assumptionmay be subject to revision in future studies as we have only limited
understanding on how this nitrogen-dependent sulfide oxidation is regulated in OMZs, other than the fact that
the observed rate of heterotrophic nitrate reduction (to nitrite) is higher than the heterotrophic denitrification rate.

Table 1. Depth Integrated Process Rates of the Model With its Standard Deviation Compared to the Observed Rates

Depth Integrated Rates
Equation and
Stoichiometry Model Observed Rate

Sulfate reduction (mmol S m�2 d�1)a

(in ( ) as mmol C m�2 d�1)c
A4 0.36 ± 0.02

(0.75 ± 0.10)
0.28 – 1.00d

Heterotrophic denitrification (heterotrophic nitrite
reduction to N2) (mmol N m�2 d�1)b

(in ( ) as mmol C m�2 d�1)c

A3 0.23 ± 0.05
(0.27 ± 0.01)

n.d.

Sulfide-driven denitrification (sulfide oxidation coupled to
nitrite reduction) (mmol N m�2 d�1)b

A11 0.13 ± 0.02 n.d.

Canonical denitrification (heterotrophic denitrification
+ sulfide-driven denitrification) (mmol N m�2 d�1)

A3 +A11 0.36 ± 0.06b 0.10 – 0.22b;
1.20 – 3.80e

Heterotrophic nitrate reduction to nitrite (mmol N m�2 d�1)b

(in ( ) as mmol C m�2 d�1)c
A2 3.21 ± 0.54

(0.97 ± 0.05)
4.70 – 9.90f

Total organic C remineralization (mmol C m�2 d�1)c A1 to A4 2.08 ± 0.22 1.00 – 2.50g

Anammox (mmol N m�2 d�1) A20 0.53 ± 0.05b 0.70 – 1.21b,d;
0.14h

Primary productivity (g C m�2 d�1) 3.13 2.00 – 3.50i

Surface nitrogen fixation (μmol N m�2 d�1) 16.19 7.5 – 190 j

aIntegrated from 85 to 150 m.
bFrom 73.5 to 173 m for comparison with Canfield et al. [2010].
cIntegrated from 100 to 170 m for internal model comparison.
dCanfield et al. [2010].
eEstimated from Dalsgaard et al. [2012] for observations at ~14°S (integrated from 75 to 150 m) and ~26°S (integrated

from 90 to 150 m) in February 2007.
fEstimated from Peruvian OMZ [Lam et al., 2009].
gEstimated from Escribano et al. [2004].
hEstimated from Dalsgaard et al. [2012] for observations at ~20°S (integrated from 50 to 100 m) in February 2007.
iCarr and Kearns [2003].
jFernandez et al. [2011].
n.d.: no data.
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The modeled rate of sulfate reduction is
within the wide observed range, while
the rate of canonical denitrification
(heterotrophic denitrification plus
sulfide-driven denitrification) exceeds
the range of observed rates at this
latitude (Table 1). The observed rates
represent snapshots from only two
stations located 22 and 68 km off shore,
respectively, and indicate a pronounced
yet poorly resolved zonal gradient
[Canfield et al., 2010; De Brabandere et al.,
2013], while the modeled rate
represents a 1month and spatial
average along shore and 0–80 km
offshore. We further note that higher
canonical denitrification rates have been
sporadically observed at different
depths along Peruvian and Chilean
coasts in February 2007, and it was
suggested that experimental
denitrification rates may be biased
towards underestimation due to
undersampling of activity hot spots
possibly associated with sinking
aggregates [Dalsgaard et al., 2012].
Furthermore, the higher rate as
suggested here may be indirectly
supported by the observation that
denitrifying bacteria are quite abundant
in OMZs, even when their activities are
low, perhaps because of their living
modes and dormancy [Ward et al., 2007;
Lam and Kuypers, 2011]. Hence, we
would argue that rate of canonical

denitrification as produced in the model may be comparable to the real world despite being higher than
some of the current observations.

The simulation result underestimates the anammox rate by 24% – 43% compared to the rates observed by
Canfield et al. [2010]. Similar to the canonical denitrification, thismay reflect the fundamental differences between
the top-down and bottom-up approaches of modeling and experiments, respectively. This underestimate may
also be due to our model generates nitrite concentrations at the lower end of the field observations (Figure 4).
However, themodeled rate is higher compared to observations at ~20°S off Chile’s coast byDalsgaard et al. [2012]
during a cruise in February 2007 (Table 1). Alternatively, an underestimation of anammox and overestimation of
denitrification by the model could potentially arise if dissimilatory nitrite reduction to ammonium (DNRA)
contributed to carbon oxidation and sulfide reoxidation, and the resulting production of ammoniumwas coupled
to anammox [Lam et al., 2009]. However, DNRA was not detected at 20°S in January 2010 [De Brabandere et al.,
2013], which argues against this explanation and justifies that DNRA was not included in the model.

Simulated rates of nitrogen fixation, integrated from the surface to 120 m, from growth of N2-fixing
phytoplankton, are within the observed rates by Fernandez et al. [2011] at the same depth range which
suggests some input of fixed-nitrogen source in the Chilean OMZ (Table 1). The model only resolves nitrogen
fixation in surface waters assuming that the growth of N2-fixer phytoplankton depends on the availability of
light in addition to the specifics of temperature and phosphate concentration (equation (B12)) [Fennel et al.,
2002; Schmittner et al., 2008]. A recent study has shown that substantial N2 fixation may also at times take

Figure 5. Model transects perpendicular to the coast. (a) Export of
particulate organic matter at 50 m depth and biogeochemical
fields of (b) oxygen, (c) nitrate, and (d) nitrite concentration. The
results are averaged alongshore and over January in the last two
years of the simulation. Importantly, extensive anaerobic reminerali-
zations implied by reduced nitrate and maximum nitrite concentra-
tion occurred in 100–150 km from the coast at the depth of 100–200
m. Those high remineralizations correspond to the higher organic
particle export at 50 to 150 km offshore.

Journal of Geophysical Research: Biogeosciences 10.1002/2012JG002271

AZHAR ET AL. ©2014. The Authors. Geophysical Research Letters published by Wiley on behalf of the American Geophysical Union. 272



place in the dark OMZ core [Fernandez et al., 2011]. While this challenges fundamental concepts about N
cycling in OMZs, the lacking understanding of the temporal and spatial variations of this fixed nitrogen
source precludes realistic modeling. The modeled rate of nitrogen fixation corresponds to approximately 2%
of nitrogen-loss rate through the combination of canonical denitrification and anammox (Table 1).

The time and alongshore-averaged process rates in the model are presented in Figure 6 to show the depth
distributions of the coupled sulfur and nitrogen processes. Sulfate reduction exhibits its maximum rate at
approximately 100 m depth, whereas the maximum rate of heterotrophic denitrification to N2 is somewhat
shallower and heterotrophic nitrate reduction to nitrite and anammox is slightly shallower again. The depth
profiles of the sulfide-driven nitrate and nitrite reduction correspond to the sulfate reduction rate profile,
while the nitrification of ammonium and nitrite have profiles correlating with the oxic respiration rate profile.
The rates of heterotrophic metabolism decrease considerably below 300 m water depth because most labile
organic matter has been remineralized. The alongshore-averaged vertical section of the sulfate reduction
rate shows that the maximum rate is located between 100 and 150 km from the coast and decreases
uniformly further offshore in this model configuration (Figure 7).

The depth-integrated (100 to 170m) summary of modeled nitrite and ammonium sources and sinks are listed
in Table 2, with rates integrated from near the coastal boundary to 200 km offshore. There is a net balance in
the ammonium sources and sinks. Anammox accounts for 97% of the ammonium sink, and the ammonium
driving anammox is supplied 48% from heterotrophic nitrate reduction to nitrite, 35% from sulfate reduction,
and 17% from heterotrophic denitrification. There is net production of nitrite in the OMZ depths, where the
greatest source is from heterotrophic nitrate reduction while the major sink is nitrite oxidation by oxygen at
the chemocline (Table 2). A nitrite maximum is a typical feature of OMZs, while anammox and nitrification
with oxygen will be important sinks for nitrite in the very low oxygen waters of the OMZs [Codispoti et al.,
1986;Ward et al., 1989; Thamdrup et al., 2006]. Processes controlling sulfide oxidation exhibit an essential role

Figure 6. Modeled vertical distribution of (a) sulfate reduction rate, (b) canonical denitrification rate, (c) heterotrophic NO3 reduction rate, (d) oxic remineralization
rate of organic matter, (e) anammox rate, (f ) heterotrophic (solid line) and sulfide-driven denitrification rates (dashed line; sulfide oxidation rate by NO2), (g) che-
molithoautotrophic NO3 reduction rate (sulfide oxidation rate by NO3), and (h) NH4 (solid line) and NO2 (dashed line) oxidation rate by O2. The model results are
averaged alongshore, over January in the last two years of the simulation, and from the coast to 80 km offshore. Grey areas indicate the range of the available
observed rates from Canfield et al. [2010]. Note the different scales used for the rates in these plots. Heterotrophic NO3 reduction is the most dominant pathway for
the anaerobic remineralizations in the model, followed by sulfate reduction and heterotrophic denitrification. The modeled anammox rate is more important than
the canonical denitrification rate (sum of heterotrophic and sulfide-driven denitrification rates) in releasing N2 gas.
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in the regulation of nitrite production
and loss. Approximately 28% of nitrite
production is contributed by
chemolithoautotrophic sulfide oxidation
coupled to nitrate reduction, while 15%
of nitrite loss into gaseous N2 is caused
by the sulfide oxidation coupled to
nitrite reduction (Table 2). Anammox
also plays an important role in nitrite
removal, contributing 23% of the total
nitrite loss, in agreement with
measurements (Thamdrup et al.
[2006]) (Table 2).

4. Discussion and Conclusions

A recently observed cryptic sulfur cycle in the oxygen-minimum zone (OMZ) of the Chilean upwelling system is
believed to be coupled to nitrogen cycling, potentially influencing other oceanic biogeochemical cycles
[Canfield et al., 2010]. Our approach here is to assess the dynamic coupling between the nitrogen, sulfur, and
oxygen cycles using a three-dimensional coupled circulation and biogeochemical ocean model in the Chile
OMZ. The coupled model has extensive modifications to the nitrogen-based ecosystem model by Fennel et al.
[2006] making it applicable to anoxic systems. The developed module includes heterotrophic nitrate reduction
to nitrite, heterotrophic nitrite reduction to N2 (heterotrophic denitrification), sulfate reduction, sulfide oxidation
by oxygen, nitrite and nitrate, aerobic nitrification of ammonium and nitrite, anammox, as well as an
implementation of nitrogen fixation by N2-fixing phytoplankton. The model reproduces well the distribution of
chemical species process rates within the Chilean OMZ system.

Our model indicates that sulfate reduction contributes a significant portion of total organic carbon
remineralization in the Chile OMZ. The modeled sulfate reduction provides 36% of the total organic carbon

remineralization below the mixed layer to
a depth of 150 m, whereas the highest
contribution of 47% comes from
heterotrophic nitrate reduction to nitrite
and only 13% by heterotrophic
denitrification (Table 1). These results
demonstrate that a very active cryptic
sulfur cycle in the OMZ of Chilean
upwelling systems as observed by
Canfield et al. [2010] can be simulated
with realistic parameters. A similar sulfur
cycle may also be present in other OMZs
waters but direct observations are
currently lacking. We believe, however,
that the model developed in this study
has potential applications to other
oxygen-depleted waters because model
parameters are changed little relative to
those diagnosed from chemostat
experiments and other related modeling
investigations [Soetaert et al., 1996;
Yakushev et al., 2007; Thamdrup et al.,
2012]. For example, the model
development and analysis here could
become an important transition point to
model and investigate free-sulfide

Figure 7. Vertical section of the modeled sulfate reduction rate. The plot
is averaged alongshore and over January in the last two years of the
simulation. Note that the higher sulfate reduction rate at 100 – 150 km
from the coast corresponds to the maximum export production at
approximately the same distance offshore (50–150 km). There is no sul-
fate reduction rate occurrence above ~100 m and below ~350 m depth
because of the presence of oxygen.

Table 2. Depth Integrated NO2 and NH4 Sources and Sinks From 100
to 170 m in the Unit of mmol N m�2 d�1 With its Standard Deviation

NO2 and NH4 Sources and Sinks Rate of the Model

NO2 sources
NH4 oxidation by O2 0.01 ± 0.01
Heterotrophic NO3 reduction 1.95 ± 0.09
Chemolithoautotrophic NO3 reduction

a 0.77 ± 0.02
Total 2.73 ± 0.12

NO2 sinks
NO2 oxidation by O2 0.43 ± 0.30
Heterotrophic denitrification 0.36 ± 0.02
Sulfide-driven denitrificationb 0.20 ± 0.01
Anammox 0.30 ± 0.02
Total 1.29 ± 0.35

NH4 sources
O2 respiration in organic remineralization 0.01 ± 0.01
Heterotrophic denitrification 0.04 ± 0.01
Heterotrophic NO3 reduction 0.15 ± 0.01
SO4 reduction 0.11 ± 0.01
Total 0.31 ± 0.04

NH4 sinks
NH4 oxidation by O2 0.01 ± 0.01
Anammox 0.30 ± 0.02
Total 0.31 ± 0.03

aH2S oxidation by nitrate.
bH2S oxidation by nitrite.
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occurrence as occasionally observed in the continental shelf bottom waters of the Namibian coastal upwelling
system [Bruchert et al., 2003 and Lavik et al., 2009].

Our model analysis suggests a strong coupling between the nitrogen and sulfur cycles in the Chilean OMZ, not
only because the depleted oxygen and low nitrate water column allow sulfate reduction, but also because the
sulfide oxidation removes a fixed amount of nitrogen. In our simulation, sulfide is oxidized mostly by nitrate,
whereas the oxidation by nitrite reduction contributes to a removal rate of fixed nitrogen to N2 gas, which is
approximately 36% of the canonical denitrification rate. To our knowledge, the uncoupling between
heterotrophic denitrification and sulfide-driven denitrification has not been addressed in any other models.
Thus, themodel presented here provides the first insight as to how those two processes contribute to N2 loss in
OMZ settings. The model substantiates that anammox is the dominant N2 production process, consistent with
observation by Thamdrup et al. [2006], and shows that both heterotrophic nitrate reduction to nitrite and sulfate
reduction are the most important sources of ammonium for anammox in OMZ depths.

Modeled nitrogen fixation by N2-fixing phytoplankton supplies additional nitrogen-based nutrients
(ammonium and nitrate) in surface layers, in agreement with the range of integrated nitrogen fixation rates
observed from surface to 120 m depth by Fernandez et al. [2011] in the Chile-Peru OMZ. Recent finding of high
nitrogen fixation activity in the subsurface oxygen depths measured by Fernandez et al. [2011] was unresolved
in this study due to the simple and robust approximation of the growth of N2-fixing phytoplankton used in the
model. Further development of the model based on spatially and temporarily more reliable observations and
better understanding of how and which N2-fixing plankton is present in the aphotic subsurface depths are
needed. The nitrogen fixation of the model, however, is not expected to fully satisfy the nitrogen deficit in OMZ
depths, as implied by the lower N (nitrate+nitrite) to P (phosphate) ratio compared to the Redfield ratio
(Figure B1). It has been suggested that a full compensation of the nitrogen deficit by nitrogen fixation would
totally deplete the nitrate concentration and create water column sulfidic condition because greater nitrogen
fixation generates higher production of sinking organic matter being remineralized by nitrate reduction and
followed by sulfate reduction [Shaffer, 1989; Canfield, 2006]. Therefore, in order to maintain the observed
persistence of nitrate, it is more realistic that the nitrogen fixation of the model only partially amends the
nitrate deficit.

Appendix A: Equation of the Water Column Remineralization and Anoxic Reaction
The nitrogen-based biogeochemical model of Fennel et al. [2006] is modified to handle oxic and anoxic
remineralization, ammonium and nitrite oxidation, sulfide oxidation, and anammox. In this section, we
describe the reactions and equation that were added andmodified. The complete source and sink terms of all
biogeochemical variables are presented in Appendix B.

Organic matter remineralization in the water column of the model is regulated by a sequence of oxidant
availability which is oxygen, nitrate, and nitrite. Depending on the oxidant concentrations, the
remineralization pathways are, in sequence, oxic remineralization, coupled heterotrophic nitrate reduction
and denitrification, and sulfate reduction. When oxygen is limiting, the organic matter is degraded by oxic
remineralization following Lipschultz et al. [1990]:

CH2Oð Þ106 NH3ð Þ16H3PO4 þ 106O2→106CO2 þ 16NH3

þH2PO4 þ 122H2O (A1)

Subsequently, when nitrate and nitrite are limiting and oxygen is inhibiting, we apply a coupled
heterotrophic nitrate reduction (equation (A2)) and denitrification (equation (A3)) based on Anderson et al.
[1982]. First, the remineralization consumes nitrate to produce nitrite (heterotrophic nitrate reduction):

1
2

CH2Oð Þ106 NH3ð Þ16H3PO4
� �þ 106NO3

�→

106NO2
� þ 53H2Oþ 53CO2 þ 8NH3 þ 1

2
H3PO4

(A2)

and then some part of the nitrite is utilized to produce N2 gas (heterotrophic denitrification):
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3
4

CH2Oð Þ106 NH3ð Þ16H3PO4
� �þ 106Hþ þ 106NO2

�→

53N2 þ 132:5H2Oþ 79:5CO2 þ 12NH3 þ 3
4
H3PO4

(A3)

Finally, sulfate is used to remineralize the organic matter when none of the other oxidants are limiting, but it
is inhibited by oxygen and nitrate. The sulfate reduction reaction follows Jørgensen [1996]:

CH2Oð Þ106 NH3ð Þ16H3PO4 þ 53H2SO4 þ 11Hþ→

106CO2 þ 53H2Sþ 16NH4 þ H2PO4 þ 106H2O
(A4)

In the model, we use a kinetic approximation to regulate the different remineralization pathways. The relative
contributions of the different pathways are approximated by the Michaelis-Menten type limitation and/or
inhibition formulation with a half-saturation constant. The contributions from oxic remineralization,
heterotrophic nitrate reduction, heterotrophic denitrification, and sulfate reduction are represented by oxr, nrr,
dfr, and srr, respectively:

oxr ¼ O2

kO2_ox þ O2
(A5)

nrr ¼ NO3

kNO3_an þ NO3
� kinhO2_df

kinhO2_df þ O2
(A6)

dfr ¼ NO2

kNO2_an þ NO2
� kinhO2_df

kinhO2_df þ O2
(A7)

srr ¼ kinhO2_an

kinhO2_an þ O2
� kinhNO3_an

kinhNO3_an þ NO3
(A8)

with sumlim= oxr+ nrr+ dfr+ srr as the total contributions term. Complete description of the parameters and
values is listed in Table B1. See equations (B2), (B3), (), and (B9) for the sink and source terms by the organic
matter remineralization.

Sulfide, the product of sulfate reduction, is oxidized rapidly by oxygen and nitrate [Canfield et al., 2005]. The
reaction of sulfide oxidation by oxygen follows Konovalov et al. [2006]:

H2Sþ 2O2→2Hþ þ SO4
2� (A9)

We decouple sulfide oxidation by nitrate to N2 gas in equation (A12) into sulfide oxidation by nitrate to nitrite
(chemolithoautotrophic nitrate reduction; equation (A10)) and sulfide oxidation by nitrite to N2 gas (sulfide-driven
denitrification; equation (A11)) following reactions described by Canfield et al. [2010] and Mahmood et al. [2007]:

2H2Sþ 8NO3
�→8NO2

� þ 2SO4
2� þ 4Hþ (A10)

3H2Sþ 8NO2
� þ 2Hþ→4N2 þ 3SO4

2� þ 4H2O (A11)

Sum (A10) and (A11):

5H2Sþ 8NO3
�→4N2 þ 5SO4

2� þ 4H2Oþ 2Hþ (A12)

The model uses a Michaelis-Menten kinetic for the sulfide oxidation rate by oxygen as follow:

SoxO2 ¼ KSO�H2S� O2

kO2_SO þ O2
(A13)

We modify a kinetic rate described by Jensen et al. [2009] by adding an inhibition term by oxygen for sulfide
oxidation rate by nitrate and nitrite as follow, respectively:

SoxNO3 ¼ KSN1�H2S� NO3

kNO3_SN þ NO3
� kinhO2_SN

kinhO2_SN þ O2
(A14)

SoxNO2 ¼ KSN2�H2S� NO2

kNO2_SN þ NO2
� kinhO2_SN

kinhO2_SN þ O2
(A15)

KSO, KSN1, and KSN2 are specific rate constants of sulfide oxidation by oxygen, nitrate, and nitrite, respectively.
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Table B1. List of Biochemical Parameters and Values Used in the Model

Symbol Parameter Value Unit Literature (range)

kO2 _ ox half-saturation concentration of O2 in oxic mineralization 0.3 mmol O m�3 0.1a – 15c

kNO3 _ an half-saturation concentration of NO3 in nitrate reduction 15 mmol N m�3 1c – 30b

kNO2 _ an half-saturation concentration of NO2 in denitrification 30 mmol N m�3 1c – 30b

kinhO2 _ df half-saturation concentration of O2 inhibition in nitrate reduction and denitrification 0.1 mmol O m�3 0.1a – 10b

kinhO2 _ an half-saturation concentration of O2 inhibition in sulfate reduction 0.1 mmol O m�3 0.1a – 5b

kinhNO3 _ an half-saturation concentration of NO3 inhibition in sulfate reduction 4 mmol N m�3 1 – 5b

KSN1 constant rate of sulfide oxidation by NO3 0.93 d�1 0.93d

KSN2 constant rate of sulfide oxidation by NO2 0.33 d�1 0.0 – 0.93d

KSO constant rate of sulfide oxidation by O2 0.93 d�1 0.93 – 1.90d

kO2 _ SO half-saturation concentration of O2 in sulfide oxidation 1 mmol O m�3 1c

kNO3 _ SN half-saturation concentration of NO3 in sulfide oxidation 2.9 mmol N m�3 2.9d

kNO2 _ SN half-saturation concentration of NO2 in sulfide oxidation 6 mmol N m�3 2.9 – 15d

kinhO2 _ SN half-saturation concentration of O2 inhibition in sulfide oxidation 0.1 mmol O m�3 0.1a

KMX constant rate of anammox rate 0.07 d�1 (mmol N m�3)�1 0.03 – 0.1c

n1max maximum rate of aerobic ammonium oxidation 0.1 d�1 0.02 – 2e

n2max maximum rate of aerobic nitrite oxidation 0.1 d�1 0.02 – 2e

kO2 _ nit half-saturation concentration of O2 in nitrification 1 mmol N m�3 1 – 3f

IthNH4 radiation inhibition threshold of ammonium 0.0095 W m�2 0.0095g

IthNO2 radiation inhibition threshold of nitrite 0.0364 W m�2 0.0364g

kINH4 light intensity at which inhibition is half-saturated for ammonium 0.036 W m�2 0.036g

kINO2 light intensity at which inhibition is half-saturated for nitrite 0.074 W m�2 0.074g

rSD remineralization rate of suspended detritus 0.03 d�1 0.03f

rLD remineralization rate of larger detritus 0.02 d�1 0.02f

μ0P phytoplankton growth rate at 0°C 0.69 d�1 0.69f

μ0D diazotroph growth rate at 0°C 0.085 d�1 0.006 – 0.88h

θmax chlorophyll to phytoplanktonic maximum ratio 0.053 mgChl mgC�1 0.053f

α initial slope of planktonic growth to light curve 0.025 (W m�2)�1 d�1 0.025f

kNO3 half-saturation concentration for uptake of NO3 by phytoplankton 0.5 mmol N m�3 0.5f

kNH4 half-saturation concentration for uptake of NH4 by phytoplankton 0.5 mmol N m�3 0.5f

R1P :N stoichiometry of P to N in phytoplankton and zooplankton 1/16 dimensionless 1/16i

R2P :N stoichiometry of P to N in diazotroph 1/45 dimensionless 1/45i

kPO4 _ Phy half-saturation concentration for uptake of PO4 by phytoplankton (kNO3 /16) 0.03125 mmol P m�3 0.03125j

kPO4 _Diaz half-saturation concentration for uptake of PO4 by diazotroph (kNO3 /16) 0.03125 mmol P m�3 0.03125j

lBM excretion rate due to basal metabolism 0.1 d�1 0.1f

lE excretion rate due to phytoplankton assimilation 0.1 d�1 0.1f

β assimilation efficiency 0.75 dimensionless 0.75f

gmax P maximum phytoplankton grazing rate 0.6 (mmol N m�3)�1 d�1 0.6f

gmaxD maximum diazotroph grazing rate 0.5 (mmol N m�3)�1 d�1 0.5k

mP phytoplankton mortality 0.15 d�1 0.15f

mD diazotroph mortality 0.05 d�1 0.025j – 0.5k

mZ zooplankton mortality 0.025 d�1 0.025f

kP half saturation of phytoplankton ingestion 2 (mmol N m�3)�2 2f

τ aggregation parameter 0.005 d�1 0.005f

wP sinking velocity of phytoplankton and diazotroph 0.1 m d�1 0.1f

wS sinking velocity of small detritus 1 m d�1 0.1f – 1l

wL sinking velocity of large detritus 8 m d�1 1f –10l

aThamdrup et al. [2012].
bSoetaert et al. [1996].
cYakushev et al. [2007].
dJensen et al. [2009].
eYool et al. [2007].
fFennel et al. [2006].
gOlson [1981].
hLaRoche and Breitbarth [2005].
iFennel et al. [2002].
jSchmittner et al. [2008].
kMonteiro and Follows [2009].
lGruber et al. [2006].
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The nitrification has been modified to
include ammoniumoxidation (referred as
nitrification1, equation (A16)) and nitrite
oxidation (nitrification2, equation (A17))
to produce nitrate as the end product.
The nitrification only occurs under low
light and aerobic condition [Olson, 1981].

NH4
þ þ 1:5O2→NO2

� þ H2O
þ 2Hþ (A16)

NO2
� þ 0:5O2 →NO3

� (A17)

Following Olson [1981] and Fennel et al.
[2006], the rate of nitrification1 (n1) and
nitrification2 (n2) is determined by:

n1 ¼ n1max� O2

KO2_nit þ O2

� 1� max 0;
I � IthNH4

kI_NH4 þ I � IthNH4

� �� �

(A18)

n2 ¼ n2max� O2

KO2_nit þ O2
� 1� max 0;

I � IthNO2

kI_NO2 þ I � IthNO2

� �� �
(A19)

where n1max and n2max are the maximum rate of ammonium and nitrite oxidation, respectively. I is the
photosynthetically available radiation, IthNH4 and IthNO2 are the radiation inhibition threshold of ammonium
and nitrite, and KO2 _ nit is the aerobic half-saturation for nitrification. kI_NH4 and kI_NO2 are the light intensity at
which inhibition is half-saturated for ammonium and nitrite, respectively.

Under anoxic condition, ammonium is oxidized by nitrite through anammox to produce N2 gas as described
by Thamdrup et al. [2006]:

16NH4
þ þ 16NO2

�→16N2 þ 32H2O (A20)

The kinetic of the anammox is determined by KMX �NH4 �NO2 as implemented by Yakushev et al. [2007] and

inhibited by kinhO2_df

kinhO2_dfþO2
as in denitrification. KMX is the specific constant rate of the anammox and kinhO2 _ df is

the half-saturation concentration for oxygen inhibition.

Appendix B: Source and Sink Terms of the Biogeochemical State Variables
The evolution of each biogeochemical
concentration (C) is described by the
tracer conservation equation as follow:

∂C
∂t

¼ �∇ uCð Þ þ diff Cð Þ þ sms Cð Þ (B1)

where the time rate of change of C
depends on water transport by three-
dimensional advection (u) and diffusion
(diff ), and source and sink terms (sms)
due to biological and chemical reaction.
Complete descriptions of u and diff
terms are given by [Shchepetkin and
McWilliams, 2005, Haidvogel et al., 2008]
and also can be found in www.myroms.
org. Each of the biogeochemical source

Figure B1. Ratio of nitrogen to phosphate for the model results (black
open circles) compared to the ratio of the observed data (grey filled cir-
cles). The Redfield ratio is shown by the solid line. The model results are
averaged over January in the last two years of the simulation, alongshore,
and from the coast to 80 km offshore. Note that total fixed nitrogen of the
model is not quite as reduced as in observations relative to the phos-
phate concentration. This shortcoming in drawdown of fixed nitrogen
most likely related to the model productivity being slightly less than the
observation.

Figure B2. Modeled N-deficit calculated as [NO3] + [NO2]
� 16× [PO4]. The model result is averaged over January in the last two
years of the simulation, alongshore, and from the coast to 80 km offshore.
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and sink terms is described in the equations below.

Nitrate source and sink terms:

sms NO3ð Þ ¼ �uptake by phytoplanktonþ nitrification2

�denitrification1

� chemolitoautotrophic nitrate reduction

sms NO3ð Þ ¼ �μmax�LL�LNO3 �Phy þ n2�NO2

� nrr
sumlim

� rSD�SDetN þ rLD�LDetNð Þ�RNO3 :NH4

� SoxNO3

(B2)

where RNO3:N ¼ 106=8 is the stoichiometry between NO3 and N in equation (A2). μmax =μ0P � 1.066T is the
growth rate of phytoplankton with T the temperature in °C [Eppley, 1972]. LL is the nondimensional light
limitation based on Evans and Parslow [1985]

LL ¼ αIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μmaxð Þ2 þ α2I2

q

where α represents the initial slope of the photosynthesis-light (P-I) curve. LNO3 is nutrient limitation term for
nitrate as described by Fennel et al. [2006]

LNO3 ¼
NO3

kNO3 þ NO3
� 1
1þ NH4=kNH4

Detailed descriptions and values for the model parameters are listed in Table B1.

Nitrite source and sink terms:

sms NO2ð Þ ¼ þnitrification1� nitrification2þ denitrification1

�denitrification2� anammox

þ chemolitoautotrophic nitrate reduction

�chemolitoautotrophic nitrite reduction

sms NO2ð Þ ¼ þn1�NH4 � n2�NO2 þ nrr
sumlim

� rSD�SDetN þ rLD�LDetNð Þ�R1NO2:NH4

� dfr
sumlim

� rSDSDet þ rLDLDetð Þ�R2NO2 :NH4

�KMX �NH4�NO2� kinhO2_df

kinhO2_df þ O2

þ SoxNO3 � SoxNO2

(B3)

where KMX is the anammox rate. R1NO2:N ¼ 106=8 and R2NO2 :N ¼ 106=12 are the stoichiometry of NO2 to
N in equations (A2) and (A3), respectively.

Ammonium source and sink terms:

sms NH4ð Þ ¼ �uptake by phytoplankton� nitrification1

�anammox

þ zooplankton excretion due to basal metabolism

and assimilation

þ detritus remineralization to NH4

sms NH4ð Þ ¼ �μmax�LL�LNH4 �Phy � n1�NH4

�KMX �NH4�NO2� kinhO2_df

kinhO2_df þ O2

þ lBM þ lE �β� Phy2

kP þ Phy2
þ Diaz2

kP þ Diaz2

� �� �

�Zooþ rSD�SDetN þ rLD�LDetN
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where lBM is the rate of zooplankton excretion due to basal metabolism. lE is the excretion rate which is
proportional to the assimilation of ingested phytoplankton and diazotroph.LNH4 is the nutrient limitation term
of ammonium as parameterized by Fennel et al. [2006]

LNH4 ¼
NH4

kNH4 þ NH4

Phosphate source and sink terms:

sms PO4ð Þ ¼ �uptake by phytoplankton� uptake by diazotrophs

þ detritus remineralization to PO4

sms PO4ð Þ ¼ �μmax�LL�min LPO4Phy ; LNO3 þ LNH4

� �
�Phy�R1P:N

� μmaxD�LL�LPO4Diaz �Diaz�R2P:N
þ rSD�SDetP þ rLD�LDetPð Þ

where μmaxD=μ0D � 1.066T is the growth rate of diazotrophs. LPO4_Phy and LPO4_Diaz are Michaelis-Menten type
nutrient limitation terms for phosphate uptake by phytoplankton and diazotroph, respectively:

LPO4_Phy ¼ PO4= kPO4_Phy þ PO4
	 


(B6)

LPO4_Diaz ¼ PO4= kPO4_Diaz þ PO4ð Þ (B7)

Oxygen source and sink terms:

sms O2ð Þ ¼ þphytoplanktonic growth� nitrification1

�nitrification2

� zooplankton basal metabolism and assimilation

�detritus oxic respiration

� sulfide oxidationþ O2 gas exchange

sms O2ð Þ ¼ þμmax�LL�min LPO4_Phy ; LNO3 þ LNH4ð Þ	 
�RO:N�Phy
þ μmax D�LL�LPO4_Diaz�RO:N�Diaz � R1O2 �n1�NH4

�R2O2 �n2�NO2

� lBM þ lE�β� Phy2

kP þ Phy2
þ Diaz2

kP þ Diaz2

� �� �
�RO:N�Zoo

� oxr
sumlim

� rSD�SDetN þ rLD�LDetNð Þ�RO:N
�SoxO2�RS:O þ rge O2sat � O2ð Þ

where RO :N= 106/16 is the stoichiometry of O2 to N in equation (A1). RS :O is the stoichiometry of O2 to H2S in
equation (A9). R1O2 ¼ 1:5 and R2O2 ¼ 0:5 are the mol O2 consumed in ammonium and nitrite oxidation,
respectively. rge is the oxygen gas exchange rate and is calculated by rge= fO2/Δztop where Δztop is the height
of the top layer. The gas exchange coefficient is approximated by fO2 ¼ 0:31�u10�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
660=Sc

p
where u10 is the

wind speed and Sc is the Schmidt number as given by Wanninkhof [1992].

Sulfide source and sink terms:

sms H2Sð Þ ¼ þsulfate reduction� sulfide oxidation by oxygen

�sulfide oxidation by nitrate

� sulfide oxidation by nitrite

sms H2Sð Þ ¼ þ srr
sumlim

� rSD�SDetN þ rLD�LDetNð Þ�RS:NH4

�SoxO2 � SoxNO3�RS:NO3

� SoxNO2�RS:NO2

(B9)
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where RS :N= 53/16 is stoichiometry of H2S to N in sulfate reduction of equation (A4). RS:NO3 is the
stoichiometry of H2S to NO3 in equation (A10). RS:NO2 is the stoichiometry of H2S to NO2 in equation (A11).

Phytoplankton source and sink terms:

sms Phyð Þ ¼ þphytoplankton growth� grazing

�phytoplankton mortality

� aggregation with small detritus to large detritus

�vertical sinking

sms Phyð Þ ¼ þμmax�LL�min LPO4_Phy; LNO3 þ LNH4

	 
�Phy � gP�Zoo

�mP�Phy � τ� SDetN þ Phyð Þ�Phy � wP�∂Phy∂z
(B10)

where gP is the rate of phytoplankton grazing by zooplankton represented by

gP ¼ gmax P�
Phy2

kP þ Phy2
(B11)

with gmax P as maximum rate of the grazing. mP is the mortality rate of phytoplankton. The constant sinking
velocity of phytoplankton is represented by wP.

Nitrogen-fixing diazotrophs source and sink terms:

sms(Diaz) = + diazotroph growth� grazing�diazotroph
mortality

� vertical sinking\

sms Diazð Þ ¼ þμmax D�LL�LPO4_Diaz�Diaz � gD�Zoo�mD�Diaz � wP� ∂Diaz∂z
(B12)

where the rate of diazotroph grazing by zooplankton, gD, is determined by

gD ¼ gmax D�
Diaz2

kP þ Diaz2
(B13)

with the maximum grazing rate of gmaxD. Diazotroph mortality rate is represented by mD.

Chlorophyll source and sink terms:

sms Chlð Þ ¼ þchlorophyll production� grazing

�phytoplankton mortality

� aggregation with small detritus to large detritus

�vertical sinking

sms Chlð Þ ¼ þρChl�μP�Chl � gP �
Chl
Phy

þ gD �
Chl
Diaz

� �
�Zoo

�mP�Phy �mD�Diaz
� τ� SDetN þ Phyð Þ�Chl � wP�∂Chl∂z

The fraction of phytoplankton growth to chlorophyll synthesis, ρChl, is modified from Geider et al. [1997] to
include the contribution from diazotrophs. Therefore, the fraction is expressed by

ρChl ¼
θmax μPPhy þ μDDiazð Þ

αIChl
(B15)

where θmax is the chlorophyll to phytoplanktonic maximum ratio. μP ¼ μmax�LL�min LPO4_Phy ; LNO3 þ LNH4

	 

and μD ¼ μmaxD�LL�LPO4_Diaz are the growth rate of phytoplankton and diazotroph, respectively.
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Zooplankton source and sink terms:

sms Zooð Þ ¼ þfraction of ingested planktonic assimilation

� basal metabolism and assimilation-dependent

excretion

�mortality

sms Zooð Þ ¼ þ gP þ gDð Þ� β�Zoo

� lBM þ lE �β � Phy2

kP þ Phy2
þ Diaz2

kP þ Diaz2

� �� �
�Zoo

�mZ �Zoo2
where mZ is the zooplankton mortality rate.

Small detritus nitrogen source and sink terms:

sms SDetNð Þ ¼ þfraction of phytoplanktonic egestion

þ phytoplankton;diazotroph; and zooplankton
mortality

� aggregration with phytoplankton to large detritus N

� remineralization� vertical sinking

sms SDetNð Þ ¼ þ gP þ gDð Þ � 1� βð Þ�Zoo
þmP �Phy þmD �Diaz þmZ �Zoo2
�τ� SDetN þ Phyð Þ � SDetN � rSD � SDetN

�wS � ∂SDetN∂z (B17)

where τ is the aggregation factor of phytoplankton and small detritus to large detritus. wS is the constant
sinking velocity of small detritus.

Small detritus phosphorus source and sink terms:

sms SDetPð Þ ¼ þfraction of phytoplanktonic egestion

þ phytoplankton;diazotroph;

and zooplankton mortality

� aggregration with phytoplankton to large detritus P

� remineralization� vertical sinking

sms SDetPð Þ ¼ þ gP�R1P:N þ gD�R2P:Nð Þ� 1� βð Þ�Zoo
þmP�Phy�R1P:N
þmD�Diaz�R2P:N þmZ �Zoo2�R1P:N
� τ� SDetP þ Phy�R1P:Nð Þ�SDetP � rSD�SDetP

�wS�∂SDetP∂z

Large detritus nitrogen source and sink terms:

sms LDetNð Þ ¼ þaggregration of phytoplankton

and small detritus N

� remineralization� vertical sinking

sms LDetNð Þ ¼ þτ� SDetN þ Phyð Þ2 � rLD�LDetN � wL� ∂LDetN∂z
(B19)

where wL is the constant vertical velocity of large detritus.
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Large detritus phosphorus source and
sink terms:

sms LDetPð Þ ¼ þaggregration of

phytoplankton

and small detritus P

� remineralization

�vertical sinking

sms LDetPð Þ ¼ þτ� SDetP þ Phy�R1P:Nð Þ2
� rLD�LDetP

� wL� ∂LDetP∂z
(B20)

Appendix C: Biochemical
Bottom Boundary Condition
The model assumes that all sinking
organic matter is instantaneously
remineralized once it touches the bottom
boundary. The fractions of organic matter

being remineralized by oxic remineralization, denitrification, or sulfate reduction are controlled by the fraction
parameter equations (A5) to (A8). The flux of organic nitrogen and phosphorus at the bottom, FOM_ BottomN and
FOM_ BottomP, respectively, is:

FOM_BottomN ¼ þwP �∂Phy∂z

����
z¼bottom

þ wP �∂Diaz∂z

����
z¼bottom

þ wS �∂SDetN∂z

����
z¼bottom

þ wL �∂LDetN∂z

����
z¼bottom

(C1)

FOM_BottomP ¼ þwP �∂Phy∂z

����
z¼bottom

�R1P:N þ wP �∂Diaz∂z

����
z¼bottom

�R2P:N

þ wS �∂SDetP∂z

����
z¼bottom

þ wL �∂LDetP∂z

����
z¼bottom

(C2)

Therefore,

∂NH4

∂t

����
Z¼bottom

¼ þFOM_BottomN (C3)

∂PO4

∂t

����
Z¼bottom

¼ þFOM_BottomP
(C4)

∂O2

∂t

����
Z¼bottom

¼ �FOM_BottomN� oxr
sumlim

�RO:N (C5)

∂NO2

∂t

����
Z¼bottom

¼ þFOM_BottomN� nrr
sumlim

�R1NO2 :NH4 �
dfr

sumlim
�R2NO2:NH4

� �
(C6)

∂NO3

∂t

����
Z¼bottom

¼ �FOM_BottomN� nrr
sumlim

�RNO3 :NH4 (C7)

Figure C1. Comparison between the ratio of organic carbon oxidation by
nitrate and oxygen as a function of bottom water oxygen concentration as
observed by Canfield [1993] (blue dot) and as simulated by the imple-
mentation of bottom boundary condition in the model (magenta square).
Only for this comparison, the narrow shelf width in the Chilean upwelling is
extended and used as bottom boundary (~ 70 km shelf width with a steep
slope from 100 m shelf break depth to 1000 m). The model results are
taken from the shallowest depth (30 m) at the coast to ~500 m depth off-
shore. The model results show a stronger inhibition of the oxygen for the
carbon oxidation by nitrate compared to the observed data. This is
because the model uses a low half-saturation constant for oxygen limita-
tion and inhibition term in oxic respiration and heterotrophic nitrate
reduction, respectively, based on a recent study by Thamdrup et al. [2012]
in the Chile OMZ (Table 2).
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∂H2S
∂t

����
Z¼bottom

¼ �FOM_BottomN� srr
sumlim

�RS:NH4 (C8)
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