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Abstract: Variant microRNA (miRNA) expression is a character of many cancer types. The combined analysis of 
miRNA and messenger RNA (mRNA) expression profiles is crucial to identifying links between deregulated miRNAs 
and oncogenic pathways. The aim of this study was to screen several novel genes associated with renal cell carci-
noma (RCC), and analyze the gene functions and signal pathways which were critical to RCCs with DNA microarray. 
The gene expression profile of GSE6344 was downloaded from Gene Expression Omnibus database, including 10 
RCC samples and 10 healthy controls. Compared with the control samples, differentially expressed genes (DEGs) 
of RCC was identified. The selected DEGs were further analyzed using bioinformatics methods. Gene ontology (GO) 
enrichment analysis was performed using Gene Set Analysis Toolkit and protein-protein interaction (PPI) network 
was constructed with prePPI. Then, pathway enrichment analysis to PPI network was performed using WebGestalt 
software. We found that a total of 521 DEGs were down-regulated and 473 DEGs were up-regulated in RCC samples 
compared to healthy controls. A total of 15 remarkable enhanced functions and 17 suppressed functions were 
identified. PPI nodes of high degrees, such as RHCG, RALYL, SLC4A1, UMOD and CA9, were obtained. The DEGs 
were classified and significantly enriched in cytokine and cytokine receptor pathway. The hub genes we find from 
RCC samples are not only biomarkers, but also may provide the groundwork for a combination therapy approach 
for RCCs.
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Introduction

Renal cell carcinoma (RCC), is a kidney cancer 
that originates in the lining of the proximal con-
voluted tubule, and known to be the most lethal 
of all the genitourinary tumors [1, 2]. It is also 
the most common type of kidney cancer in 
adults, responsible for approximately 80% of 
cases [3]. RCC is relatively resistant to radia-
tion therapy and chemotherapy, although some 
cases respond to immunotherapy [4]. So it is 
clear that early diagnosis and medical interven-
tion seems vital in decreasing mortality and 
promoting total quality of life, novel molecular 
markers about kidney cancer that can help indi-
vidually evaluate risk of patient outcome and 
predict the prognosis are urgently required, as 
well as the prediction of therapy effect and 
advocating personalized treatment [5, 6]. The 
major difficulty in RCC is the constitution that 

this disease is not one entity but rather a collec-
tion of different types of tumors, each possess-
ing distinct genetic characteristics, histological 
features, and, to some extent, clinical pheno-
types [7].

MicroRNAs (miRNAs) are a class of small non-
coding RNAs that can repress gene expression 
through translational repression or messenger 
RNA deadenylation and decay by base pairing 
to partially complementary sites [8, 9]. miRNAs 
were shown to negatively regulate gene expres-
sion at the post-transcriptional level by binding 
to the 3’-untranslated region (3’-UTR) of target 
mRNAs. miRNAs have been shown to be 
involved in tumour progression and metastasis 
in kidney and other carcinomas [10]. Next-
generation small RNA-Sequencing (sRNA-Seq) 
allows for unbiased quantitative and qualitative 
sncRNA profiling [11]. When compared to 
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miRNA array platforms, sRNA-Seq additionally 
enables the discovery of novel miRNAs as well 
as the detection of other differentially ex- 
pressed sncRNAs like small nucleolar RNAs 
(snoRNAs) and transfer RNA (tRNA)-derived 
fragments that can mimic miRNA function [12].

Several microarray based studies have demon-
strated 21 to 34 differentially expressed miR-
NAs between ccRCC and normal kidney tissue 
[13]. SRNA-Seq studies reported more than 
100 differentially regulated miRNAs, some of 
which might serve as diagnostic and prognostic 
markers [14]. Nevertheless, these studies lack 
detailed information about miRNA targets and 
bioinformatical analysis is often only focused 
on miRNAs currently known to miRbase [15].

Here we used omiRas to analyze a publicly 
available dataset (GEO: GSE6344) published by 
Gumz M et al., comprising twenty sRNA-Seq 
libraries of ten ccRCCs and ten adjacent control 
tissues from the same patient in order to iden-
tify sncRNAs with deregualted expression 
across all cases [16]. After outlier detection 
with principle component analysis samples of 
nine patients were used for downstream 
analysis.

We detected 104 sncRNAs as differentially 
expressed between the groups. Among these 
were several miRNAs without previous implica-
tion in kidney cancer development, like miR-
147a. Additionally, we detected seven snoRNAs 
and two tRNA derived fragments as differen-
tially expressed between ccRCC and control tis-
sues. We connected the deregulated miRNAs 
to biological pathways composed of differen-
tially expressed genes under potential post-
transcriptional control of these miRNAs. To do 
so, we utilized another publicly available mRNA-
Sequencing (RNA-Seq) dataset. The “interac-
tion network tool” of omiRas allows for the con-
struction of interaction networks of miRNAs 
and mRNAs, interrogating the information from 
several miRNA-mRNA interaction databases. 
Therefore, we in silico assigned functions to 
significantly deregulated miRNAs and defined 
miRNAs implicated in the carcinogenesis of 
ccRCC [17, 18].

However, the paramount regulator and distinct 
molecular mechanism of RCC has yet to be 
evaluated as the complexity of its pathogene-
sis. In this present paper, we aimed to screen 

several novel tumor suppressor genes and 
explore the molecular mechanism of RCC with 
a computational analysis. The most significant 
DEGs which served as potential biomarkers 
may provide a new sight on RCC clinical 
therapy.

Materials and methods

Dataset collection and Affymetrix microarray

The gene profile of GSE6344 was downloaded 
from Gene Expression Omnibus (http://www.
ncbi.nlm. nih.gov/geo), which was based on the 
platform of Affymetrix Human Genome U133B 
Array condensed [19]. This expression dataset 
was deposited by Gumz ML. A total of 20 sam-
ples were derived from 10 ccRCC patients and 
10 age- and gender- matched healthy control 
subjects.

Data preprocessing and differential expression 
analysis

Then we converted the probe-level data in CEL 
files into expression measures. For each sam-
ple, the expression values of all probes for a 
given gene were reduced to a single value by 
taking the average expression value [20]. After 
that, we imputed missing data and performed 
quartile data normalization. The multtest pack-
age in R was used to identify differentially 
expressed genes (DEGs) in patients with RCC 
compared to healthy controls. To circumvent 
the multi-test problem which might induce too 
much false positive results, the Benjamini & 
Hochberg (BH) method was used to adjust the 
raw P-values into false discovery rate (FDR) 
[21]. The FDR less than 0.05 and the absolute 
logFC larger than 1 were chosen as cut-off 
criteria.

Gene ontology enrichment analysis

To produce a dynamic, controlled vocabulary 
that can be applied to all eukaryotes, Gene 
Ontology (GO) analysis has been used frequent-
ly in functional study large scale genomic and 
transcriptional data [22]. DEGs were separated 
into two sets based on different expression 
behavior, and then the GO analysis was per-
formed using Gene Set Analysis Toolkit suit 
[23]. A P-value less than 0.05 was considered 
statistically significant.
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Figure 1. Normalization of gene expressions in the ccRCC sample and control samples. The midcourt line in the box was the median value. After normalization, the 
median values were approximated with an average value of 7, which represents that the gene expression values in different samples are at the same levels and 
comparable.

Figure 2. Interaction networks of DEGs constructed with prePPI. The line represents that the two genes may have an interaction based on their expression, evolu-
tion or structures. A. Hierarchical clustering of miRNA in kidney tissue samples. Kidney tissue samples were clustered according to the expression miRNAs between 
tumor tissue and normal tissue. Data from each miRNA were median centered. Samples are in columns and miRNAs in rows. N normal, T tumor. The P vales for 
these miRNAs were less than 0.05 in tumor tissue compared with normal tissue. B. PPI network based on SLC family.
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Construction and analysis of the protein-pro-
tein interaction (PPI) network

Protein-protein interaction network is a data-
base of predicted and experimentally deter-
mined protein-protein interactions (PPI) using a 
Bayesian framework that combines structural, 
functional, evolutionary and expression infor-
mation for yeast and human [24]. In this analy-
sis, the most significant up- or down-regulated 
DEGs were screened, and a PPI network was 
constructed by collecting interactions from 
prePPI database.

Pathway enrichment analysis

For functional annotation the DEGs, the over-
represented KEGG categories in pathways was 
identified using KAAS [25]. The P-value less 
than 0.05 was chosen as cut-off criterion. Up 
and downregulated genes in ccRCC were 
mapped to functional Gene Ontology (GO) cat-
egories using DAVID Bioinformatics Resources 
6.7. Genes within enriched (FDR < 0.05) cate-
gories were committed to the STRING database 
to determine protein-protein interactions of 
their gene products. Additionally, miRNAs that 
might be causative for the deregulation of 
genes within the category were detected as 
described above. PCA and hierarchical cluster-
ing of the differentially expressed miRNAs were 
performed and visualized with R 3.0.2. 
Networks of genes from the same GO category 
were visualized with Cytoscape. Visualizations 
of annotation statistics for each library were 
taken from omiRas.

Results

Differential gene expression in RCC samples

After normalization, the data was performed 
differential expression analysis. The genes with 
P-value less than 0.05 and logFC absolute 
value over than 1, were considered as DEGs. A 
total of 521 DEGs were down-regulated and 
473 DEGs were up-regulated in RCC samples 
compared to healthy controls. Among these 
984 DEGs, nuclear factor kappa (NF-κB) was 
the most significantly up-regulated gene and 
Mitogen-activated protein kinase (MAPK)  
was down-regulated the most (P=3.1E-04, 
logFC=7.56; P=3.2E-06, logFC=-9.47, respec-
tively). In addition, cytokine receptors, such as 

interleukin 17 receptor alpha (IL17RA) and col-
ony stimulating factor 1 receptor (CSF1R), were 
also up-regulated (P=3.2E-06, logFC=3.17; 
P=4.6E-04, logFC=2.18, respectively) (Figure 
1).

mRNA-protein interaction network and poten-
tial miRNA upstream regulators by IPA

Interaction networks of DEGs were constructed 
as shown in Figure 2. According to the results, 
interaction relationship of 250 DEGs was 
obtained. A high level of connectivity was shown 
in the network constructed based on Mitogen-
activated protein kinase (Figure 2). PPI nodes 
extracellular signal-regulated kinase (ERK), 
interleukin 6 (IL6), bone morphogenetic protein 
receptor, type II (BMPR2), P38 MAPK and natu-
ral cytotoxicity triggering receptor 1 (NCR1) 
were of high degrees in the network, all of which 
were obtained from RCC samples. In addition, 
the PPI network based on MAPK was also con-
structed, with imperfect connections due to the 
absence of several key hubs, as is shown in 
Figure 2.

Potential biomarkers and critical pathways in 
RCCs

We performed a functional enrichment analysis 
using Gene Set Analysis Toolkit and identified 
11 remarkable enhanced functions and 13 
suppressed functions (Figure 3, FDR < 0.05). 
The DEGs was classified with GO analysis 
according to their functions. Among these 
enhanced functions, the most remarkable up-
regulation was immune response based on 
cytokine and cytokine receptor enrichment 
(GO: 0006657, FDR = 5.6E-27). The other sig-
nificant functions included defense response 
(GO: 0006948, FDR = 6.1E-12), response to 
wounding (Go: 0009623, FDR = 1.7E-13), leu-
kocyte activation (GO: 0057324, FDR = 1.4E-
06), positive regulation of immune system pro-
cess (GO: 0003214, FDR = 2.6E-12), 
inflammatory response (GO: 0005658, FDR = 
1.4E-07) and so on. Genes, such as toll-like 
receptor (TLR) family, IL super-family, chemo-
kine (C-X-C motif) ligand 12 (CXCL12), TAP bind-
ing protein (TAPBP), C-type lectin domain family 
4 member A (CLEC4A), major histocompatibility 
complex class I (HLA), complement component 
3a receptor 1 (C3AR1) and integrin alpha L 
(ITGAL), were involved in GO analysis.
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Figure 3. HGF network in renal can-
cer samples. Functional enrichment 
of DEGs between RCC sample and 
healthy samples (P < 0.05). Among 
these enhanced functions, the most 
remarkable up-regulation was im-
mune response based on cytokine 
and cytokine receptor enrichment 
(GO: 0006955, FDR = 5.8E-29) and 
the most evidently downward modula-
tion function in RCC was oxidation re-
duction which regulated by hormones 
(GO: 0055114, FDR = 3.9E-36), re-
spectively.
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The most evidently downward modulation func-
tion in RCC was oxidation reduction which regu-
lated by hormones (GO: 0057216, FDR = 3.7E-
24). The other significantly suppressed function 
included ion transport (GO: 0005421, FDR = 
9.7E-05), response to organic substance (GO: 
0013021, FDR = 3.0E-05) and generation of 
precursor metabolites and energy (GO: 
0005986, FDR = 7.7E-11). The response to hor-
mone stimulus was also suppressed (GO: 
0008627, FDR = 5.4E-01), which in turn weak-
en the chemical homeostasis.

Cytokine and cytokine receptor pathway en-
richment in RCCs

Pathway enrichment analysis of all genes 
involved in PPI was performed with NF-κB. Only 
cytokine and cytokine receptor pathway was 
enriched with a remarkable FDR less than 
0.001 in PPI network of MAPK. Genes associ-
ated with cytokine and cytokine receptor path-
way were chemokine, hematopoietin, WNT, TNF 
family and TGF-β family proteins genes. Five 
chemokines genes participated in this path-
way, including IL6, NOB1, ERK1/2, JNK, P38 
MAPK and Sclcl4. The primary hematopoietins 
were cytokine receptors, such as SOS, CRK and 
SLC4A1. TGF-β family proteins, such as PROC, 
ALB, VEGFRA, E-cadherin, β-catenin and their 
receptor TGF-β, were also involved in these 
pathways (Figure 4).

Discussion

Our study links coding- and non-coding tran-
scriptome data of normal and ccRCC tissue 
from two distinct studies. By the use of several 
miRNA-mRNA interaction databases available 
in omiRas we are able to provide new insights 
into the influence of aberrant miRNA expres-
sion on hundreds of deregulated genes [26]. 
Small non-coding RNA has drawn more atten-
tion in the recent years due to their role in the 
gene transcriptional and posttranscriptional 
regulation [27]. Nearly, 30% of gene expression 
in the human body is regulated by miRNAs. 
Recently, targeted therapies were developed to 
interfere with the transduction of key signaling 
pathways or to inhibit the function of tumour-
specific molecules in malignant ccRCC [28].

In the present paper, we identified 984 DEGs in 
RCC patient samples compared to the control 
samples. DEGs in RCCs were highly associated 

with immune response, hormone response and 
defense response, which may play important 
roles in tumor initialization and migration. 
Pathway enrichment demonstrates that only 
cytokine and cytokine receptor pathway was 
enhanced in RCC patients compared to healthy 
controls. Genes obtained from the results of 
pathway enrichment analysis are the subject of 
our investigation. Among these DEGs, MAPK 
and NOB1 were the most significantly down-
regulated and up-regulated genes, respective-
ly. In addition, cytokine receptors, such as 
ERK1/2 and P38 MAPK, were also up- 
regulated.

MAPK signaling pathways can induce either cell 
proliferation or cell survival depending on the 
cell type and stimulus, the activation of the 
MAPK pathway has been associated with renal 
cancer proliferation [29]. The three main mem-
bers that integrate the MAPK family in mamma-
lian cells are ERK1/2, JNK and p38 MAPK, 
which are important in the control of cell differ-
entiation, proliferation and apoptosis [30]. 
NOB1 protein is a key factor linking the protea-
some and cellular growth, and therefore inves-
tigation of the NOB1 function will shed some 
light on the mechanism of growth control by the 
ubiquitin-proteasome pathway [31]. Perhaps 
the inhibition of the proteasome leads to stabi-
lization of proteins that increase phosphoryla-
tion of the three key components in the MAPK 
pathway [27].

Others reported that TGF-β1 can also influence 
signal transduction pathways, such as nuclear 
factor kappa-B (NF-κB) and PI3K/Akt signal 
pathway [32, 33]. Although the precise function 
of TGF-β1 in carcinogenesis is unknown, previ-
ous studies showed that TGF-β1 may regulate a 
set of genes in cell growth and proliferation, 
which may be important in cancer development 
and cancer cell proliferation Due to these func-
tions of E-cadherin, it plays a key tumor sup-
pressor role in suppressing the invasiveness of 
cancer cells [34, 35]. Cadherin switch is a key 
change during EMT, during which the normal 
expression of E-cadherin is replaced by the 
abnormal expression of N- or P-cadherin [36]. 
This downregulation of Ecadherin is associated 
with the release of β-catenin, which then 
migrates to the nucleus and activates WNT sig-
naling resulting in the EMT and metastasis [37, 
38]. Based on the analysis above, E-cadherin 
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and β-catenin have often been used to monitor 
the progress of EMT during embryonic develop-
ment and cancer progression [39, 40].

In conclusion, though the DEGs and relevant 
genes may provide a new way into the therapy 
approach for ccRCCs, however, the expression 
of these genes was not confirmed by real-time 
PCR and the function in RCCs was not evaluat-
ed. The potential biomarkers and hub genes, 
such as ERK1/2, P38 MAPK, VEGFRA, SCLC4A1 
and TGF-β, only provided potential targets for 
RCC therapy, and further effort to confirm the 
hypothesis was still in great needed.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Chang Sheng, 
Department of Urology, Pudong New Area People’s 
Hospital, 490 South Chuan Huan Road, Shanghai 
201200, China. E-mail: shengchang1014@163.com

References

[1]	 Prince J, Bultman E, Hinshaw L, Drewry A, 
Blute M, Best S, Lee FT Jr, Ziemlewicz T, Lubner 
M, Shi F, Nakada SY and Abel EJ. Patient and 
Tumor Characteristics can Predict Non-Diag-
nostic Renal Mass Biopsy Findings. J Urol 
2015; 193: 1899-904.

[2]	 Leslie S, Gill IS, de Castro Abreu AL, Rahman-
uddin S, Gill KS, Nguyen M, Berger AK, Goh AC, 
Cai J, Duddalwar VA, Aron M and Desai MM. 
Renal tumor contact surface area: a novel pa-
rameter for predicting complexity and out-
comes of partial nephrectomy. Eur Urol 2014; 
66: 884-893.

[3]	 Forauer AR, Dewey BJ and Seigne JD. Cancer-
free survival and local tumor control after im-
pendence-based radiofrequency ablation of 
biopsy-proven renal cell carcinomas with a 
minimum of 1-year follow-up. Urol Oncol 2014; 
32: 869-876.

[4]	 Crisan N, Ivan C, Gherman V, Neiculescu C and 
Coman I. Tumor enucleation with zero isch-
emia for renal cell carcinoma by robotic retro-
peritoneal approach. Urol J 2014; 11: 1721-
1723.

[5]	 Yang FQ, Yang FP, Li W, Liu M, Wang GC, Che 
JP, Huang JH and Zheng JH. Foxl1 inhibits tu-
mor invasion and predicts outcome in human 

renal cancer. Int J Clin Exp Pathol 2014; 7: 
110-122.

[6]	 Zeng L, Bai M, Mittal AK, El-Jouni W, Zhou J, 
Cohen DM, Zhou MI and Cohen HT. Candidate 
tumor suppressor and pVHL partner Jade-1 
binds and inhibits AKT in renal cell carcinoma. 
Cancer Res 2013; 73: 5371-5380.

[7]	 Khella HW, Bakhet M, Allo G, Jewett MA, Girgis 
AH, Latif A, Girgis H, Von Both I, Bjarnason GA 
and Yousef GM. miR-192, miR-194 and miR-
215: a convergent microRNA network sup-
pressing tumor progression in renal cell carci-
noma. Carcinogenesis 2013; 34: 2231-2239.

[8]	 Ishihara T, Seki N, Inoguchi S, Yoshino H, Tata-
rano S, Yamada Y, Itesako T, Goto Y, Nishikawa 
R, Nakagawa M and Enokida H. Expression of 
the tumor suppressive miRNA-23b/27b clus-
ter is a good prognostic marker in clear cell 
renal cell carcinoma. J Urol 2014; 192: 1822-
1830.

[9]	 Chen Z, Tang ZY, He Y, Liu LF, Li DJ and Chen X. 
miRNA-205 is a candidate tumor suppressor 
that targets ZEB2 in renal cell carcinoma. On-
col Res Treat 2014; 37: 658-664.

[10]	 Sanders I, Holdenrieder S, Walgenbach-Bruna-
gel G, Von Ruecker A, Kristiansen G, Muller SC 
and Ellinger J. Evaluation of reference genes 
for the analysis of serum miRNA in patients 
with prostate cancer, bladder cancer and renal 
cell carcinoma. Int J Urol 2012; 19: 1017-
1025.

[11]	 Hinton A, Hunter SE, Afrikanova I, Jones GA, 
Lopez AD, Fogel GB, Hayek A and King CC. sR-
NA-seq analysis of human embryonic stem 
cells and definitive endoderm reveals differen-
tially expressed microRNAs and novel IsomiRs 
with distinct targets. Stem Cells 2014; 32: 
2360-2372.

[12]	 Vidal EA, Moyano TC, Krouk G, Katari MS, 
Tanurdzic M, McCombie WR, Coruzzi GM and 
Gutierrez RA. Integrated RNA-seq and sRNA-
seq analysis identifies novel nitrate-responsive 
genes in Arabidopsis thaliana roots. BMC Ge-
nomics 2013; 14: 701.

[13]	 Wotschofsky Z, Busch J, Jung M, Kempkenstef-
fen C, Weikert S, Schaser KD, Melcher I, Kilic 
E, Miller K, Kristiansen G, Erbersdobler A and 
Jung K. Diagnostic and prognostic potential of 
differentially expressed miRNAs between met-
astatic and non-metastatic renal cell carcino-
ma at the time of nephrectomy. Clin Chim Acta 
2013; 416: 5-10.

[14]	 Ramankulov A, Lein M, Johannsen M, Schrad-
er M, Miller K, Loening SA and Jung K. Serum 
amyloid A as indicator of distant metastases 

Figure 4. PI3K/AKT network in renal cancer samples. Genes associated with cytokine and cytokine receptor path-
way were chemokine, hematopoietin, VEGF family, TNF family and TGF-β family proteins genes.

mailto:shengchang1014@163.com


Regulatory network in clear cell renal cell carcinomas

7218	 Int J Clin Exp Med 2015;8(5):7209-7219

but not as early tumor marker in patients with 
renal cell carcinoma. Cancer Lett 2008; 269: 
85-92.

[15]	 Zigeuner R, Ratschek M, Rehak P, Schips L 
and Langner C. Value of p53 as a prognostic 
marker in histologic subtypes of renal cell car-
cinoma: a systematic analysis of primary and 
metastatic tumor tissue. Urology 2004; 63: 
651-655.

[16]	 Gumz ML, Zou H, Kreinest PA, Childs AC et al. 
Secreted frizzled-related protein 1 loss contrib-
utes to tumor phenotype of clear cell renal cell 
carcinoma. Clin Cancer Res 2007; 13: 4740-
4749.

[17]	 Pal SK, He M, Tong T, Wu H, Liu X, Lau C, Wang 
JH, Warden C, Wu X, Signoretti S, Choueiri TK, 
Karam JA and Jones JO. RNA-seq reveals au-
rora kinase-driven mtor pathway activation in 
patients with sarcomatoid metastatic renal 
cell carcinoma. Mol Cancer Res 2015; 13: 
130-137.

[18]	 Li P, Conley A, Zhang H and Kim HL. Whole-
Transcriptome profiling of formalin-fixed, paraf-
fin-embedded renal cell carcinoma by RNA-
seq. BMC Genomics 2014; 15: 1087.

[19]	 Davis S and Meltzer PS. GEOquery: a bridge 
between the Gene Expression Omnibus (GEO) 
and BioConductor. Bioinformatics 2007; 23: 
1846-1847.

[20]	 Zhu Y, Davis S, Stephens R, Meltzer PS and 
Chen Y. GEOmetadb: powerful alternative 
search engine for the Gene Expression Omni-
bus. Bioinformatics 2008; 24: 2798-2800.

[21]	 Boyle J. Gene-Expression Omnibus integration 
and clustering tools in SeqExpress. Bioinfor-
matics 2005; 21: 2550-1.

[22]	 Baker BA, Pine PS, Chatterjee K, Kumar G, Lin 
NJ, McDaniel JH, Salit ML and Simon CG, Jr. 
Ontology analysis of global gene expression 
differences of human bone marrow stromal 
cells cultured on 3D scaffolds or 2D films. Bio-
materials 2014; 35: 6716-6726.

[23]	 Caniza H, Romero AE, Heron S, Yang H, Devoto 
A, Frasca M, Mesiti M, Valentini G and Pacca-
naro A. GOssTo: a stand-alone application and 
a web tool for calculating semantic similarities 
on the Gene Ontology. Bioinformatics 2014; 
30: 2235-2236.

[24]	 Veres DV, Gyurko DM, Thaler B, Szalay KZ, 
Fazekas D, Korcsmaros T and Csermely P. 
ComPPI: a cellular compartment-specific data-
base for protein-protein interaction network 
analysis. Nucleic Acids Res 2015; 43: D485-
93.

[25]	 Espinosa-Soto C, Immink RG, Angenent GC, Al-
varez-Buylla ER and de Folter S. Tetramer for-
mation in Arabidopsis MADS domain proteins: 
analysis of a protein-protein interaction net-
work. BMC Syst Biol 2014; 8: 9.

[26]	 Ye S, Yang L, Zhao X, Song W, Wang W and 
Zheng S. Bioinformatics method to predict two 
regulation mechanism: TF-miRNA-mRNA and 
lncRNA-miRNA-mRNA in pancreatic cancer. 
Cell Biochem Biophys 2014; 70: 1849-1858.

[27]	 Li W, Liu M, Feng Y, Xu YF, Huang YF, Che JP, 
Wang GC, Yao XD and Zheng JH. Downregulat-
ed miR-646 in clear cell renal carcinoma cor-
related with tumour metastasis by targeting 
the nin one binding protein (NOB1). Br J Can-
cer 2014; 111: 1188-1200.

[28]	 Li XY, Luo QF, Wei CK, Li DF, Li J and Fang L. 
MiRNA-107 inhibits proliferation and migration 
by targeting CDK8 in breast cancer. Int J Clin 
Exp Med 2014; 7: 32-40.

[29]	 Mizuno R, Oya M, Hara S, Matsumoto M, Hori-
guchi A, Ohigashi T, Marumo K and Murai M. 
Modulation of bcl-2 family proteins in MAPK 
independent apoptosis induced by a cdc25 
phosphatase inhibitor Cpd 5 in renal cancer 
cells. Oncol Rep 2005; 14: 639-644.

[30]	 Dygai AM, Zhdanov VV, Miroshnichenko LA, 
Udut EV, Zyuz’kov GN, Simanina EV, Shersto-
boev EY, Chaikovskii AV, Stavrova LA, Burmina 
YV, Khrichkova TY, Reichart DV and Goldberg 
VE. Role of PI3K, MAPK/ERK1/2, and p38 in 
Implementation of the Proliferative and Differ-
entiation Potential of Erythroid Progenitors af-
ter Blood Loss. Bull Exp Biol Med 2015; 158: 
417-20.

[31]	 Che JP, Li W, Yan Y, Liu M, Wang GC, Li QY, Yang 
B, Yao XD and Zheng JH. Expression and clini-
cal significance of the nin one binding protein 
and p38 MAPK in prostate carcinoma. Int J Clin 
Exp Pathol 2013; 6: 2300-2311.

[32]	 Baer C, Oakes CC, Ruppert AS, Claus R, Kim-
Wanner SZ, Mertens D, Zenz T, Stilgenbauer S, 
Byrd JC and Plass C. Epigenetic silencing of 
miR-708 enhances NF-kappaB signaling in 
chronic lymphocytic leukemia. Int J Cancer 
2015; [Epub ahead of print].

[33]	 Suman S, Kallakury BV, Fornace AJ, Jr. and 
Datta K. Protracted Upregulation of Leptin and 
IGF1 is Associated with Activation of PI3K/Akt 
and JAK2 Pathway in Mouse Intestine after 
Ionizing Radiation Exposure. Int J Biol Sci 
2015; 11: 274-283.

[34]	 Kang H, Lee M and Jang SW. Celastrol inhibits 
TGF-beta1-induced epithelial-mesenchymal tr- 
ansition by inhibiting Snail and regulating E-
cadherin expression. Biochem Biophys Res 
Commun 2013; 437: 550-556.

[35]	 Li W, Kidiyoor A, Hu Y, Guo C, Liu M, Yao X, 
Zhang Y, Peng B and Zheng J. Evaluation of 
transforming growth factor-beta1 suppress 
Pokemon/epithelial-mesenchymal transition 
expression in human bladder cancer cells. Tu-
mour Biol 2015; 36: 1155-1162.



Regulatory network in clear cell renal cell carcinomas

7219	 Int J Clin Exp Med 2015;8(5):7209-7219

[36]	 Tang O, Chen XM, Shen S, Hahn M and Pollock 
CA. MiRNA-200b represses transforming 
growth factor-beta1-induced EMT and fibro-
nectin expression in kidney proximal tubular 
cells. Am J Physiol Renal Physiol 2013; 304: 
F1266-27

[37]	 Borthwick LA, Gardner A, De Soyza A, Mann DA 
and Fisher AJ. Transforming Growth Factor-be-
ta1 (TGF-beta1) Driven Epithelial to Mesenchy-
mal Transition (EMT) is Accentuated by Tumour 
Necrosis Factor alpha (TNFalpha) via Crosstalk 
Between the SMAD and NF-kappaB Pathways. 
Cancer Microenviron 2012; 5: 45-57.

[38]	 Li R, Wang Y, Liu Y, Chen Q, Fu W, Wang H, Cai 
H, Peng W and Zhang X. Curcumin inhibits 
transforming growth factor-beta1-induced EMT 
via PPARgamma pathway, not Smad pathway 
in renal tubular epithelial cells. PLoS One 
2013; 8: e58848.

[39]	 Miao ZF, Li WY, Wang ZN, Zhao TT, Xu YY, Song 
YX, Huang JY and Xu HM. Lung cancer cells in-
duce senescence and apoptosis of pleural me-
sothelial cells via transforming growth factor-
beta1. Tumour Biol 2015; 36: 2657-65.

[40]	 Jia Y, Wu D, Yun F, Shi L, Luo N, Liu Z, Shi Y, Sun 
Q, Jiang L, Wang S and Du M. Transforming 
growth factor-beta1 regulates epithelial-mes-
enchymal transition in association with cancer 
stem-like cells in a breast cancer cell line. Int J 
Clin Exp Med 2014; 7: 865-872.


