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Introduction

The use of nanomaterials in various commercial products has 
greatly increased recently, as a consequence of rapid develop-
ments in nanotechnology [1,2]. In particular, silver nanoparti-
cles (Ag NPs) that have antibacterial activity are widely used in 
medical products, mobile devices, cleaning processes, baby care, 
and textile applications [3-5]. Thus, Ag NPs are likely to enter 
water bodies and cause adverse effects on aquatic organisms. 
For example, Ag NPs are known to induce high toxicity to Pseu-
dokirchneriella subcapitata (algae), Daphnia magna (water flea), 
and Danio rerio (zebrafish) [6,7]. In addition, the impact of NPs 
in sediment receives more attention, and recent studies have in-
vestigated various benthic organisms such as snails and chirono-
mid larvae [8-11]. For instance, Ag NPs have a greater impact 
on the oxidative stress and detoxification of Chironomus riparius 

than Ag ions [10].
The toxicity of NPs is largely dependent on their physical and 

chemical properties, including surface charge and particle size, 
which affect the dissolution and aggregation of NPs [12]. Posi-
tively charged Ag NPs were found to be more toxic to Bacillus 
cells with a negative charge [13], and smaller Ag NPs showed 
greater influx rates and bioaccumulation in D. magna [14]. The 
bioaccumulation of Ag and CuO NPs in a macrobenthic spe-
cies, Macoma balthica, was also found to depend on the particle 
size [15]. In general, smaller Ag NPs are dissolved as Ag ions 
more easily, resulting in greater toxicity [16,17]. However, a pre-
vious assessment of the size-dependent uptake or toxicity of Ag 
NPs to benthic organisms was very limited.

In the present study, the size-dependent toxicity of Ag NPs to 
Glyptotendipes tokunagai was investigated. Ag NPs were capped 
with polyvinyl pyrrolidone (PVP) to reduce aggregation. G. 
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tokunagai is a dominant species in urban rivers of Korea that has 
a short life cycle, a high fecundity, and is easy to culture [18]. 

Materials and Methods

Chemicals and Test Organisms
PVP-Ag NPs of three nominal sizes (50, 100, and 150 nm) 

were obtained from Nanotech and Beyond (Yongin, Korea). 
The PVP-Ag NPs were in a water-based colloid containing 
500000 mg/L Ag and about 12% (w/w) PVP as the coating 
agent. In addition, silver nitrate (AgNO3, 99.9%) was purchased 
from Kojima Chemicals (Saitama, Japan) and used as the con-
trol for Ag ions.

G. tokunagai was collected from Jungrang stream (a branch of 
Han River in Seoul of Korea) in 2007, and cultured over 30 gen-
erations in the laboratory of Prof. Yeon Jae Bae, Korea Universi-
ty, Seoul (Korea). G. tokunagai was reared in aerated tap water at 
20 ± 1˚C with a photoperiod of 16 hours/8 hours (light/dark), 
and Tetra Min (Tetra Werke, Melle, Germany) was provided as 
food.

Characterization of Polyvinyl Pyrrolidone-Silver 
Nanoparticles 

The morphology of the PVP-Ag NPs was analyzed by trans-
mission electron microscopy (TEM; Tecnai TF20, Austin, TX, 
USA). The hydrodynamic size and surface charge (zeta poten-
tial) Hillsboro, OR, were measured using dynamic light scatter-
ing (DLS) and electrophoretic mobility methods, respectively, 
by a NanoBrook 90Plus Particle Size Analyzer (Brookhaven In-
struments, USA). In addition, the dispersion stability of the 
PVP-Ag NPs was evaluated by measuring surface plasmon reso-
nance (SPR) absorption using a UV vis spectrophotometer 
(Optizen POP; Mecasys, Daejeon, Korea).

Ag ions released from the PVP-Ag NPs were analyzed using cen-
trifugal ultrafilters with three replicates per treatment [19]. The 
PVP-Ag NP solution (10 mL) was centrifuged with 10 kDa cen-
trifugal filters (Amicon Ultra-15 centrifugal filter, Millipore Co., 
Billerica, MA, USA) at 5000 g for 20 minutes. The Ag concentra-
tions in the supernatant were analyzed using an inductively cou-
pled plasma–optical emission spectrophotometer (ICP-OES; 
Varian Vista PRO, Hayward, CA, USA).

Toxicity and bioaccumulation testing of PVP-Ag NPs
The test medium used in this study was prepared following the 

US Environmental Protection Agency standard method using 
moderately hard water (MHW; NaHCO3 =96 mg/L, 
CaSO4·H2O = 60 mg/L, MgSO4 =60 mg/L, KCl =4 mg/L) at 
pH 7.5 with a hardness of 100 mg/L as CaCO3 [20]. The PVP-

Ag NP solution was prepared in deionized water (18.2 MΩ cm-1, 
Esse-UP Water System; Mirae St Co., Anyang, Korea). Acute tox-
icity tests using G. tokunagai under water-only conditions were 
conducted according to the Organization for Economic Coopera-
tion and Development standard procedures [20]. Six concentra-
tions of PVP-Ag NPs, ranging from 31.25 to 1000 mg/L, and the 
control (MHW medium) were prepared. One third instar larva 
(15 days old) was added to the test solution (10 mL) with two 
replicates, and each replicate consisted of six individuals. Toxicity 
tests were conducted at 20 ±1˚C with a 16 hours light and 8 
hours dark photoperiod for 48 hours. After 48 hours of exposure, 
the mortality of the test organisms was evaluated, and the results 
are presented in terms of the median lethal concentration (LC50), 
using the trimmed Spearman-Karber method [21]. G. tokunagai 
mortality was defined as a lack of response when touched using a 
fine brush.

Bioaccumulation of PVP-Ag NPs (100 mg/L) in MHW medi-
um with G. tokunagai was observed under the same conditions 
as the acute toxicity testing. Live individuals were separated at a 
specific exposure time (1, 2, 4, 8, 12, 24, and 48 hours) and 
transferred to clean MHW media for 1 hour to remove particles 
attached to the body and to clear the contents of the gut. The 
clean larvae were transferred to a 1.5 mL tube, dried at 80˚C, 
and then weighed (dry weight). The dried larvae were then add-
ed to 68% nitric acid (HNO3, Aristar grade), allowed to stand to 
dissolve the cellular tissue of the organisms, and digested at 
110˚C until the acid solution was volatilized. The digestion tube 
was washed with 2% HNO3, and the washing solutions were 
transferred to a 15 mL conical tube (SPL Life Science, Pocheon, 
Korea). The Ag concentrations in the solution were analyzed 
using an ICP-OES.

Statistical analysis
All statistical analyses were carried out using SAS version 9.3  

(SAS Institute Inc., Cary, NC, USA). A one-way analysis of vari-
ance followed by Tukey’s test was used to identify significant 
differences between treatments (p < 0.05).

Result

Physicochemical Properties of PVP-Ag NPs
TEM images of PVP-Ag NPs with different particle sizes are 

shown in Figure 1. The PVP-Ag NPs were spherical and the pri-
mary particle sizes were 56.57 ± 10.13 nm, 100.06 ± 23.25 nm, 
and 151.00 ± 39.38 nm for 50 nm, 100 nm, and 150 nm PVP-Ag 
NPs, respectively. The shape of PVP-Ag NPs, as measured by 
TEM, was spherical in all cases. The zeta potential and hydrody-
namic size of the PVP-Ag NPs in MHW medium are given in Ta-
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ble 1. All PVP-Ag NP samples showed a negative charge, with 
values larger than -30 mV, which may result in the aggregation of 
PVP-Ag NPs [22]. 

In fact, hydrodynamic sizes measured by DLS method for 48 hours 
were larger than the corresponding nominal sizes (101.1±19.3 nm, 
147.8±6.94 nm, and 174.2±7.85 nm for 50, 100, and 150 nm PVP-
Ag NPs, respectively). In addition, the hydrodynamic sizes increased 
as the exposure time increased, particularly for 50 nm PVP-Ag NPs. 
The concentration of Ag ions released from PVP-Ag NPs in MHW 
medium is shown in Figure 2. The smaller PVP-Ag NPs, particularly 
for the 50 nm samples, gave dissolved Ag concentrations that were 
higher than those for the larger particles. Moreover, the solubility in-
creased with increasing exposure concentration.

Acute toxicity of PVP-Ag NPs to G. tokunagai
The mortality of G. tokunagai exposed to PVP-Ag NPs with 

different particle sizes is shown in Figure 3. In general, the acute 

toxicity (48 hours) of PVP-Ag NPs decreased with increasing 
particle size, so that the LC50 values for 50 nm and 150 nm PVP-
Ag NPs were 297.36 and 820.34 mg/L, respectively. No LC50 
value was calculated for the 100 nm PVP-Ag NPs, and no acute 
toxicity was observed for the coating material (PVP). 

Uptake of PVP-Ag NPs by G. tokunagai during a 48 hours ex-
posure period is shown in Figure 4. Contrary to the results of 
the acute toxicity tests, the uptake was greater for larger PVP-Ag 
NPs. In particular, 150 nm Ag NPs were accumulated in a con-
centration-dependent manner, which was significantly different 
from those for 50 nm and 100 nm PVP-Ag NPs (p < 0.05).

Discussion

Dispersion Stability of PVP-Ag NPs
As revealed by DLS measurements (Table 1), the 50 and 100 

nm PVP-Ag NPs became larger in MHW medium when com-

A B C

Figure. 1. Transmission electron microscopy images of polyvinyl pyrrolidone-silver nanoparticles with nominal particle sizes of (A) 50 nm, (B) 100 nm, and 
(C) 150 nm.

Figure. 2. Dissolved concentration of Ag ions released from PVP-Ag NPs in 
moderately hard water medium after 48 hours exposure. PVP-Ag NPs, polyvi-
nyl pyrrolidone- silver nanoparticles. 
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Figure. 3. Mortality (48 hours) of G. tokunagai exposed to PVP-Ag NPs as a 
function of concentration. PVP-Ag NPs, polyvinyl pyrrolidone-silver nanoparti-
cles.



http://e-eht.org/Page 4 of 6

Environmental Health and Toxicology   2015;30:e2015003

pared with the primary particle sizes (Figure 1). In general, ionic 
strength and pH have no effect on the aggregation of sterically 
stabilized PVP-Ag NPs [23]. However, electrostatic repulsion 
may play a role in controlling the stability of PVP-Ag NPs when 
Ag NPs were partially coated with PVP [24], likely resulting in 
the aggregation of PVP-Ag NPs in the MHW medium with a 
higher ionic strength. In addition, the hydrodynamic size of 50 
nm PVP-Ag NPs was significantly different from those for 100 
and 150 nm PVP-Ag NPs (p < 0.05) (Table 1). This indicates 
that 100 and 150 nm PVP-Ag NPs may show similar behaviors 
in acute toxicity and bioaccumulation.

UV/Vis absorption spectra were recorded to evaluate the dis-
persion stability of PVP-Ag NPs in MHW medium (Figure. 5). 
All of the PVP-Ag NPs showed an absorption peak at about 440 
nm, and the intensity of the peak was reduced with increasing 
primary particle size. The strong absorption peak is a result of 
the collective oscillations of the metal valence electrons of Ag 
NPs, known as surface plasmon resonance (SPR) [25]. In gen-
eral, smaller Ag NPs give a sharp peak with higher intensity 
[26]. The SPR peak decreased significantly with increasing ex-
posure time, particularly for the 50 nm and 100 nm PVP-Ag 
NPs, possibly because of the aggregation or sedimentation of 
PVP-Ag NPs [27]. In general, aggregation increases with in-
creasing collision frequency, which is proportional to the num-
ber of particles in a given volume [28]. Considering the same 
concentration based on the mass of NPs, the number of smaller 
PVP-Ag NPs should be greater than that of larger PVP-Ag NPs, 
resulting in a higher possibility of aggregation. These findings 
suggest that the smaller PVP-Ag NPs were not stable in MHW 
medium for the exposure period of 48 hours.

Toxicity of PVP-Ag NPs to G. tokunagai
The solubility of the 50 nm PVP-Ag NPs was much higher 

compared with the solubility of the 100 nm and 150 nm PVP-
Ag NPs, possibly owing to the larger surface area of the smaller 
50 nm PVP-Ag NPs [29]. In addition, 50 nm PVP-Ag NPs 
showed significantly higher acute toxicity to G. tokunagai com-
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Figure. 4. Uptake of PVP-Ag NPs in moderately hard water medium by G. 
tokunagai after 48 hours exposure. PVP-Ag NPs, polyvinyl pyrrolidone-silver 
nanoparticles. 

Table 1. Hydrodynamic size and zeta potential of PVP-Ag NPs (100 mg/L) in MHW medium as a function of exposure time		

Nominal size (nm) 50 100 150

Exposure time (hr) 0 24 48 0 24 48 0 24 48
Hydrodynamic size (nm) 83.07 98.66 121.5 147.62 140.99 154.86 178.91 165.18 178.63

101.1±19.3* 147.8±6.94* 174.2±7.85b

Zeta potential (mV) -2.63 -4.34 -4.47 -7.99 -5.43 -6.03 -7.09 -10.12 -5.72

PVP-Ag NPs, polyvinyl pyrrolidone-silver nanoparticles; MHW, moderately hard water. 
*p<0.05.
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tion of exposure time.  
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pared with the 100 nm and 150 nm particles, which is in line 
with the general fact that smaller particles are more toxic than 
larger ones [30]. As indicated in Figure 2, the dissolved concen-
tration of Ag released from PVP-Ag NPs was far below the LC50 
values for AgNO3 (3.51 mg/L) determined in this study. This 
suggests that the acute toxicity of PVP-Ag NPs to G. tokunagai is 
probably not attributable to Ag ions, but to Ag NPs. However, 
the dissolution of PVP-Ag NPs in the gut of G. tokunagai cannot 
be ruled out and these Ag ions may contribute to the toxicity 
observed in this study. Considering that Ag ions can inhibit 
Na+/K+-ATPase activity in biological membranes, whereas Ag 
NPs may induce membrane deformation and DNA damage 
[31], the toxicity mechanism should be further studied in order 
to identify their relative contributions to the observed toxicity 
of PVP-Ag NPs.

The uptake of PVP-Ag NPs in G. tokunagai showed the oppo-
site pattern to the acute toxicity results (Figure 3), in which bio-
accumulation in G. tokunagai was greater for the 150 nm PVP-
Ag NPs (Figure 4). This is also contrary to the result that small-
er Ag NPs were accumulated more in D. magna [14]. G. tokun-
agai, a deposit feeder in sediment, ingests nutrients from parti-
cles suspended in sediment, whereas D. magna, a filter feeder, 
obtains nutrients from water. Thus, theses different feeding hab-
its may be related to their different uptake results. The uptake of 
PVP-Ag NPs by G. tokunagai as a function of time is shown in 
Figure 6. The larger PVP-Ag NPs were absorbed and excreted 
rapidly, resulting in a shorter stay in G. tokunagai. These findings 
suggest that the higher toxicity of smaller PVP-Ag NPs could be 
attributed to the longer retention time. In addition, the higher 
solubility of smaller PVP-Ag NPs may also lead to the observed 
toxicity difference.

In summary, the toxicity of PVP-Ag NPs was very dependent 
on the particle size. Particularly, smaller PVP-Ag NPs were more 

toxic to G. tokunagai compared to larger particle, possibly owing 
to their prolonged stay and higher dissolution in the body. How-
ever, the toxicity mechanism of PVP-Ag NPs should be further 
studied in order to identify the role of Ag ions and NPs more 
clearly.
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