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Abstract

Cyanobacteria have a strong potential for biofuel production due to their ability to accumu-
late large amounts of carbohydrates. Nitrogen (N) stress can be used to increase the con-
tent of carbohydrates in the biomass, but it is expected to reduce biomass productivity. To
study this trade-off between carbohydrate accumulation and biomass productivity, we char-
acterized the biomass productivity, biomass composition as well as the transcriptome and
proteome of the cyanobacterium Arthrospira sp. PCC 8005 cultured under N-limiting and N-
replete conditions. N limitation resulted in a large increase in the carbohydrate content of
the biomass (from 14 to 74%) and a decrease in the protein content (from 37 to 10%). Analy-
ses of fatty acids indicated that no lipids were accumulated under N-limited conditions. Nev-
ertheless, it did not affect the biomass productivity of the culture up to five days after N was
depleted from the culture medium. Transcriptomic and proteomic analysis indicated that de
novo protein synthesis was down-regulated in the N-limited culture. Proteins were degraded
and partly converted into carbohydrates through gluconeogenesis. Cellular N derived from
protein degradation was recycled through the TCA and GS-GOGAT cycles. In addition,
photosynthetic energy production and carbon fixation were both down-regulated, while gly-
cogen synthesis was up-regulated. Our results suggested that N limitation resulted in a redi-
rection of photosynthetic energy from protein synthesis to glycogen synthesis. The fact that
glycogen synthesis has a lower energy demand than protein synthesis might explain why
Arthrospira is able to achieve a similar biomass productivity under N-limited as under N-
replete conditions despite the fact that photosynthetic energy production was impaired by N
limitation.
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Introduction

Microalgae are considered to be a promising feedstock for the production of biofuels [1,2]. Most
research on microalgal biofuels is focusing on production of lipids for their conversion into bio-
diesel. However, many species of microalgae are known to accumulate carbohydrates to a much
greater extent than lipids. Carbohydrates can be converted into bio-ethanol using alcoholic fer-
mentation or into bio-methane using anaerobic digestion [3]. This carbohydrate route for biofuel
production is more efficient in terms of light energy conversion into bio-energy feedstocks than
the classical biodiesel route [4]. Approximately 6.3 moles ATP per C are required for the produc-
tion of lipids in microalgae as opposed to only 4.2 ATP per C for carbohydrates (i.e., a difference
of 53%), which corresponds to a 50% higher energy demand. On the other hand, lipids only yield
41% more energy than carbohydrates in thermal oxidation processes (i.e., as biodiesel), and only
329% more in biochemical oxidation (i.e., in bio-methane or bio-ethanol formation) [4].

The cyanobacterium Arthrospira is the photosynthetic microorganism that is cultured at
the largest scale. Although cyanobacteria are unrelated to microalgae, their production and
applications are comparable. The global production of Arthrospira is estimated at 10 thousand
tons dry biomass per year, and represents 50% of the total microalgal biomass production [5].
Cultivation of Arthrospira is relatively easy compared to other microalgae because contamina-
tion of cultures is easily avoided and the biomass can be harvested using simple microstrainers
[1]. Since the accumulation of lipids in Arthrospira is low, as in other cyanobacteria, it is not
attractive for biodiesel production [6]. Nevertheless, this microorganisms is able to accumulate
up to 70% of carbohydrates in its biomass under nitrogen (N) limitation, mostly as glycogen
granules [7-12]. The advantages of Arthrospira cultures (i.e., ease of cultivation and strong car-
bohydrate production) make Arthrospira a highly attractive candidate for production of carbo-
hydrate-based biofuels in the near term.

When Arthrospira is cultured in regular medium containing non-limiting N concentrations,
the cells produce large quantities of proteins (up to 63% of the biomass) [13]. When N is
depleted from the culture medium, the concentration of proteins in the biomass is reduced,
while the concentration of carbohydrates increases [14]. Proteins are crucial for the cells,
because they form the main resource acquisition mechanisms of the cell being essential for pho-
tosynthetic C-fixation in the light, and thus the production of new biomass. Therefore, N limi-
tation not only causes carbohydrate accumulation, but also slows down the rate of biomass
production [15,16]. As a result of this trade-off between growth and carbohydrate accumula-
tion, the total carbohydrate yield of a N-limited culture may decrease despite the fact that the
carbohydrate content of the biomass increases [17]. In[10], for instance, they observed the high-
est carbohydrate concentration in the biomass in a culture lacking nitrate in the medium, but
the carbohydrate yield of the culture was higher at intermediate nitrate concentrations (3 mM).

In order to maximize the production of carbohydrates and to minimize the trade-off with
biomass production by an Arthrospira culture, it is important to understand the metabolic
changes that occur under N-limited growth (i.e., investment in storage compounds like carbo-
hydrates and degradation of resource acquisition mechanisms). The combination of genome
and proteome tools offer a huge potential to provide insight into the metabolic changes that
occur during N-limited growth [18-20]. Metabolic changes induced by N limitation have
already been characterized in several species of cyanobacteria (e.g., Synechococcus and Prochlor-
ococcus [21,22], Microcystis [23], Anabaena [24] or Synechocystis [25-27]). These studies docu-
mented major changes in the metabolism following the induction of N limitation, including
up-regulation of N-acquisition genes and down-regulation of photosynthesis.

The annotated genome sequence of two Arthrospira strains were published for the first time
in 2010 by Janssen et al. (Arthrospira PCC 8005) [28] and by Fujisawa et al. (Arthrospira
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platensis NIES-39) [29]. Other strains were sequenced in 2012 (Arthrospira platensis C1
PCC9438 [30]) and 2014 (Arthrospira platensis strain Paraca [31]). These genome investiga-
tions paved the way for studies of the response of Arthrospira to various stresses using tran-
scriptomic and/or proteomic studies (e.g., response to light/dark cycle [32], temperature stress
[33] or salt stress [34]). So far, a few studies have investigated the response of Arthrospira to N
limitation on the proteomic level [14]. In that study, Arthrospira cells were transferred from N-
replete conditions to a complete N-free medium. This situation is different from a N-limited
culture, where the cells experience gradually declining N concentrations in their medium.

The goal of this study was thus to investigate the response of Arthrospira strain PCC 8005 to
N limitation integrating transcriptomic and proteomic analyses. Changes in the metabolism as
evaluated from transcriptomic and proteomic analysis were compared with changes in protein
and carbohydrate content and in the photosynthetic mechanisms. We specifically wanted to
evaluate the trade-off between carbohydrate accumulation and biomass productivity. To our
knowledge, only two studies have compared the effect of an environmental stress factor on
both transcriptomic and proteomic level in cyanobacteria, and both studies were on Synecho-
cystis sp. PCC 6803 [26,35].

Materials and Methods
1. Arthrospira cultivation

The Arthrospira strain PCC 8005 (Pasteur collection, France) was maintained axenic in sterile
250 mL Erlenmeyer flasks on a rotary shaker (120 rpm). The cultures were incubated at 30°C
under a continuous irradiance of + 39 umol photons m ™ s*. The culture medium used was
Zarrouck’s medium as modified by Cogne [36].

To evaluate the effect of N limitation on productivity, biomass composition and the tran-
scriptome and proteome of Arthrospira strain PCC 8005, two treatments with three replicates
were compared: a control treatment with non-limiting N concentration (100 mg N L") and a
N-limited treatment (20 mg N L™). Preliminary experiments had shown that N was depleted
after 5 days in the N-limited treatments while it remains well above limiting levels up to 10
days in the control treatment (> 35 mg N L)

A first experiment was set up to evaluate the influence of N limitation on biomass composi-
tion and productivity. Every day except for days 6 and 7, the biomass concentration was esti-
mated from optical density measurement at 750 nm and the culture medium was sampled to
analyze dissolved nutrients. Samples for dissolved nutrients were filtered over a 0.45 pm cellu-
lose nitrate filter and stored frozen. At the end of the experiment on day 10, dry weight was
determined gravimetrically after filtration of a known volume on a pre-weighed microfiber
GF/C filter. The remaining biomass was harvested using 20 um nylon mesh, rinsed once with
de-ionized water, freeze-dried and kept frozen at -20°C for further analysis.

Dissolved phosphate and nitrate concentrations in the culture medium were measured
using standard protocols (malachite green for phosphate [37]; 2.6-dimethylphenol method for
nitrate [38]). The N and P content of the biomass was measured as phosphate and nitrate ions
after biomass lysis using the acid persulphate digestion method [39]. Carotenoids and chloro-
phyll were measured spectrophotometrically according to [40] and phycocyanin according to
[41]. The amounts of proteins and total carbohydrates were respectively evaluated by Bradford
assay [42] and phenol-sulphuric acid method [43]. Lipid content and fatty acid profile were
determined according to the modified direct trans-esterification method [44,45].

A second experiment was carried out to investigate the metabolic response to N limitation
using transcriptomic and proteomic analyses. Four replicate N-limited and control Arthrospira
strain PCC 8005 cultures were set up under exactly the same conditions as described above.
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Samples were collected daily during 10 days to estimate the biomass density by optical density
measurement (750 nm) and to analyze dissolved nitrate concentrations after filtering over a
0.45 um cellulose nitrate filter. On day 7, biomass samples for transcriptomic and proteomic
analysis were collected by centrifugation (10 000 g, 15 minutes, 4°C) and stored frozen (-80°C).

2. Transcriptomic analysis

RNA extraction was performed as described in [46]. Prior to RNA extraction, the biomass sam-
ple was mixed with 1 mL Trizol to prevent RNA degradation during defrosting (Invitrogen).
Cells were lyzed by a temperature shock procedure (5 minutes at 95°C followed by 5 minutes
in ice bath). The released RNA was separated from the cell debris by centrifugation (10 000 g,
10 minutes, 4°C). RNA was purified using the Direct-zol RNA miniprep 2050 kit following the
manufacturer's instructions (Zymo Research). DNA was removed using the Ambion TURBO
DNA-free kit following the manufacturer's instructions (Life Technologies). The RNA was
concentrated using Zymosearch RNA Clean & Concentrator-25 (Laborimpex, Brussels, Bel-
gium). The quantity and purity of the RNA was assessed using a NanoDrop ND-1000 Spectro-
photometer (Thermo Scientific). The quality and integrity of RNA was checked with the
Bioanalyzer 2100 (Agilent Technologies) according to manufacturer's instructions. Absence of
DNA was confirmed by PCR with universal 16S rRNA primers.

The microarray was designed by Roche NimbleGen based on version 3 of the full genome of
Arthrospira PCC 8005 (692 contigs, ~6.8 Mbp), sequenced by Genoscope (Team of Dr. Valerie
Barbe) [28]. A 12x135k tiling array Arthrospira HX12 was designed with probes ranging from
50 up to 72 nucleotides (mean length of 53 nucleotides) and on average over 34 nucleotides.
The total of 135 367 probes were mapped back to the improved version 5 of the Arthrospira
PCC 8005 (EMBL database GCA_000176895, CAFEN1000000), which includes 5853 gene cod-
ing sequences and 3142 intergenic regions.

The RNA extracts (25 ng) were converted into a cDNA library using the Complete Whole
Transcriptome Amplification WTA2 kit according to the instructions of the manufacturer
(Sigma-Aldrich). The cDNA was labelled with Cy3 nonamer primers and Klenow polymeriza-
tion and 2pg Cy3-labeled cDNA was hybridized to the Arthrospira HX12 array for 18 hours at
42°C. The arrays were washed and scanned in a MS 200 scanner (Roche-Nimblegen). Raw data
files (Pair and XYS files) were obtained from images using DEVA software (Roche-Nimblegen)
for further analysis [46].

Raw data files were pre-processed using the “Oligo” package (version 1.24) in BioConductor
(version 2.12 / R version 3.0.1). Pre-processing included i) background correction based on the
Robust Multichip Average (RMA) convolution model [47], ii) quantile normalization to make
expression values from different arrays more comparable [48], and iii) summarization of multi-
ple probe intensities for each probe set to one expression value per gene using the median pol-
ish approach [47]. To evaluate changes in gene expression between N-replete and N-limiting
conditions, the Bayesian adjusted t-statistics were used as implemented in the “LIMMA” pack-
age (version 2.18.0) [49]. p-values were corrected for multiple testing using the Benjamini and
Hochberg’s method to control for false discoveries [50]. Transcripts were considered as signifi-
cantly differentially expressed when the corresponding adjusted p-value was less than 0.05 and
their absolute fold change (FC) was equal or larger than 1 for up-regulated genes, and equal or
less than -1 for the down-regulated ones [46].

3. Proteomic analysis

Proteomic analysis was carried out as reported in [14]. Briefly, proteins were extracted in 6M
guanidinium chloride pH = 8.5 (Lysis buffer of ICPL kit (SERVA, Germany)) by
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ultrasonication (3x10 seconds, 20% amplitude, U50 IKAtechnik). Proteins were recovered by
centrifugation (13.2x10° rpm, 15 minutes, 4°C), and 5ug of proteins (Bradford, 1976) were sub-
mitted to a label-free differential proteomic analysis. Previously, proteins were reduced and
alkylated according to the instructions of the manufacturer (Serva kit protocol). Proteins were
precipitated with acetone overnight, and then dissolved in 40ul of 50mM NH,HCO; (v/v,

pH = 8.5) containing 1ug of trypsine (Promega V51 11). Samples were incubated at 37°C over-
night, and trypsinization was stopped with formic acid (0,1% final v/v). Trypsic peptides
(0.8ug/pL final concentration, v/v) were separated on reverse phase column (length: 25cm,
diameter: 75pum, particles: 3um, outlet: 300nL/min, PepMap C18, Dionex), and submitted to
an ACN gradient (4 to 35%, v/v) for 120 minutes. Previously, the column was equilibrated with
4% ACN during 20 minutes, and each peptide elution was followed by a wash step (90% v/v
ACN, 10 minutes). Online MS analysis was performed with ABSCIEX 5600 TripleTOF. Peptide
mass spectra were acquired in DDA mode. One MS spectrum (m/z: 400-1500; acquisition
time: 0.5 seconds) was acquired followed by 50 MS/MS (m/z: 100-1800, acquisition time: 0.05
seconds) spectra under HS mode for each acquisition cycle. The 50 precursors with at least 200
counts were selected, and were submitted to a CID with nitrogen gas. The selected precursors
were excluded after 1 MS/MS spectrum for 30 seconds. To maintain average mass error below
10 ppm during analysis, calibration of TOF analyzer was automatically performed with trypsic
peptides of B-galactosidase from Escherichia coli after every 4 samples.

ProteinPilot (v4.5) was used for protein identification, which was performed against a local
copy of the Arthrospira PCC 8005 genome version 5 using the Paragon algorithm (4.0.0.0,
459). Search parameters were defined as trypsin for digestion enzyme, cysteine alkylation for
iodoacetamide, and thorough ID search effort was processed. ID focus also considered the bio-
logical modifications.

Protein quantification was performed using Skyline software (v2.0) as previously reported
[51,52]. Previously, identified protein list was filtered to obtain an FDR of 1% at protein level.
Background proteome was built according to the protein database deduced from version-5
genome sequence of Arthrospira PCC 8005. Raw files were imported into Skyline to extract MS1
precursors of each peptide identified in the MS/MS spectral libraries. The three isotope peaks (M,
M-+1, M+2) of the isotopic envelope for each peptide precursor were extracted from the XICs, and
used for the quantification of proteins. 2 minutes of time window defined the prediction parame-
ters, and the modification of peptides included carbamidomethylation (C) as fixed modifications,
oxidation of methionine and deamination of asparagine and glutamine as variable modifications.

Finally, a report was generated summarizing each area of each peptide calculated in natural
logarithmic space. Normalization of data was performed according to the median of the repli-
cates, and fold change was calculated as the ratios of differential expression between N-limited
and control condition at day 5 of culture. Significance of fold changes between our experimen-
tal conditions (control and N-limited) was evaluated through student test with statistical
threshold at 5% (p-value < 0.05). Only proteins which exhibited a significant fold change (p-
value < 0.05) and were identified by at least 2 peptides were retained for biological interpreta-
tion. All peptides from each retained protein were manually validated. Protein classification
was determined with COG automatic classification obtained from Genoscope and the specific
activity of proteins considered was elucidated with KEGG database.

Results and Discussion
1. Effect of N limitation on growth and biomass composition

To evaluate the impact of N limitation on Arthrospira at both organism (i.e., growth) and
molecular level (i.e., biomass composition, transcriptome and proteome level), we compared
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cultures of Arthrospira in N-limited and N-replete medium. N was depleted on day 5 in the N-
limited medium, while it remained above limiting threshold in the control medium (Fig 1).
Based on OD;s5, measurement, growth did not significantly differ between the N-limited and
the control culture up to day 10. The final biomass concentration (day 10) as estimated from
dry weight measurements also did not differ significantly between the control and N-limited
cultures (Table 1).

In agreement with previous studies of N-limited Arthrospira cultures [14], the biomass from
the N-limited culture had a much higher carbohydrate concentration and a much lower protein
concentration than the control culture. Fatty acids were not accumulated in the N-limited cul-
ture. The N-limited cultures experienced chlorosis, as was evident from the lower concentration
of photosynthetic pigments phycocyanin, chlorophyll a and carotenoids in the biomass.

2. Comparison between proteomic and transcriptomic data

Of the 5853 gene coding sequences, 4629 could be matched with a known function. Of these,
322 were significantly down-regulated, while 319 were significantly up-regulated. It should be
noted that another 76 genes of unknown function were significantly up-regulated while 66
were down-regulated in the N-limited treatment. In the proteomics analysis, 4589 proteins
were identified and 4142 of those could be matched with a known function. Among those, 21
proteins had a lower abundance and 127 proteins had a higher abundance in the N-limited
treatment. Another 34 proteins of unknown function had a higher abundance in the N-limited
treatment.

32 genes were up-regulated at both protein and transcript level, while 5 genes were down-
regulated at both protein and transcript level. 12 genes exhibited an opposite response at the
protein and transcript level. In general, genes encoding glycolysis/gluconeogenesis, TCA cycle
enzymes and N metabolism were significantly up-regulated both at the protein and transcript
level. On the contrary, genes related to photosynthesis (chlorophyll synthesis, photosystem I
and II, ATP synthesis, phycobilisome linker polypeptide, phycocyanin synthesis and carbon
fixation) as well as protein synthesis (ribosomal genes) were significantly down-regulated at
the transcript level but did not display any response on the protein level.

For glycogen synthesis, we observed an up-regulation at the protein level but not at the tran-
script level. Discordant changes between proteomics and transcriptomics studies have also
been observed in Synechocystis sp. PCC6803 under N-limitation [26].

3. Up-regulation of N acquisition mechanisms

Proteomics as well as transcriptomics indicated that Arthrospira activated its N acquisition
mechanisms in response to the N depletion in the medium. An up-regulation of membrane
transporters for uptake of nitrate (NrtA) or alternative N sources (amino acids, Aap]J and Liv];
putrescine, PotG) was observed at protein level (Table 2). Enzymes involved in degradation of
organic N sources seemed to be enhanced, o-subunit of urease (UreA), formamidase (FmdA)
and cyanase (CynS) were up-regulated at protein level and/or mRNA level (Table 2 and Fig 2).
The up-regulation of these genes was also shown in N-limited Synechocystis sp. PCC 6803 [27].
The nitrile hydratase gene cluster (NthA1 and NthB2) was also up-regulated. This gene cluster
allows this strain to utilize nitriles as a N source. This gene cluster is uncommon in cyanobacte-
ria and is unique to Arthrospira PCC 8005 among the sequenced Arthrospira strains [28].
Since these alternative N sources were not present in the medium, however, these strategies
could probably not balance the depletion of N from the medium.

The main regulators of the N metabolism are the transcription factor NtcA, which controls
the expression of genes involved in the N metabolism, and the signaling protein PII (encoded
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Table 1. Dry weight (g L™') and composition (%) of control and N-stressed Arthrospira sp. biomass at
the end of the experiment (day 10).

Parameter Control N stress
dry weight (g L) 0.59+0.06 2 0.66+0.04 2
total sugars (%) 13.47+0.83 2 73.70+3.10°
proteins (%) 36.53+5.71 2 10.44+1.66 °
phycocyanin (%) 8.00+1.53 2 1.34+0.20 °
chlorophyll (%) 2.08+0.15 2 0.66+0.04 °
carotenoids (%) 0.39£0.01 2 0.15+0.01 °
nitrogen (%) 9.58+0.59 2 3.29+0.16°
phosphorus (%) 0.78+0.05 2 0.39+0.02 2
FAME (%) 4.84 1.67

FAME, fatty acid methyl esters. Statistical analyses were performed using Sigma-plot 11 (Systat Software,
Inc.). Before evaluating the results with one-way analysis of variance (ANOVA), normality of the data was
determined with the Shapiro-Wilk normality test. To analyze the pairwise differences, a Tukey’s post-hoc
test was used. The significance level of statistical analyses (p-value) was set at 5%.

ab Different letters indicate statistical difference.

doi:10.1371/journal.pone.0132461.1001

by ginB), which fine-tunes the cellular metabolism in response to fluctuating intracellular C/N
ratios [53]. The ginB gene is transcriptionally activated by NtcA and the glnB product, the pro-
tein PII, is required for the activation of NtcA-regulated genes [22]. The activity of the PII pro-
tein itself, depends on its phosphorylation by binding 2-OG and ATP [54]. In our study, PII
was up-regulated at the protein and transcript levels. However, NtcAwas not up- or down-reg-
ulated. The up-regulation of the glnB gene under N-stress without a change in expression of
NtcA was previously reported within Synechocystis sp. PCC 6803 [27].

In addition, mRNA of NtcB, a nitrate assimilation transcriptional activator, was more abun-
dant under N-depletion, and might indicate a positive activation of the use of alternative N-
sources reported in Table 2. Similar responses to N limitation have already been reported in a
previous proteomic analysis of Arthrospira [14] as well as in other cyanobacteria [25].

4. Down-regulation of de novo protein synthesis

Transcriptomic data indicated that exhaustion of N from the medium resulted in down-regula-
tion of de novo protein synthesis. Transcripts of many ribosomal genes were down-regulated.
No change in ribosomal proteins was observed in the proteomic analysis, suggesting that
Arthrospira might maintain its existing ribosomes but stops creating new ones. The observed
down-regulation of protein synthesis was reflected in the decrease in total protein content of
the N-limited Arthrospira (see above). A down-regulation of ribosomal gene transcription
under N limitation has also been observed in Synechocystis sp. PCC 6803 [26,27].

5. Degradation of proteins and recycling of N

Transcriptomic and proteomic information suggest that N-limited Arthrospira actively
degrades its proteins and recycles the N atoms associated with the amino acid residues. Indeed,
some proteases were up-regulated at gene and/or protein level (e.g., Peptidase C14, PepA,
Ybkk. ..) (Table 2 and Fig 3). In cyanobacteria, particularly in non-diazotrophic species, the
phycobilisome proteins are considered as an important N-storage reservoir and are actively
degraded under N-starvation, as has been previously reported in studies of other cyanobacteria
[26,27,54]. The nblA gene encoding the phycobilisome degradation protein was found to be
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Fig 2. The molecular response of Arthrospira sp. PCC 8005 to nitrogen limitation: the glycolysis, endogenous-N and arginine metabolism.
Molecular pathways were predicted according to the Genoscope and KEGG databases. The squares correspond to protein abundance (nitrogen limitation
versus control) and the circles correspond to mMRNA expression (nitrogen limitation versus control). The data presented here were taken from three
biologically independent replicates.

doi:10.1371/journal.pone.0132461.9002

up-regulated at mRNA level, indicating that Arthrospira sp. PCC 8005 might indeed degrade
its phycobilisomes to supply N for other metabolic processes. Although the NblA protein did
not show an increased abundance, the degradation of the phycobilisome could be in agreement
with the observed reduction in phycocyanin content (Table 1).

In addition, transcriptomic analyses showed a reduced expression of phycocyanin genes
(apcA, apcB, apcC and apcF). Phycobilisome linker proteins (CpcC1, CpcC2 and CpcD) were
also down-regulated at transcript as well as protein level (Table 2).

There are indications that the N associated with amino acids derived from protein degrada-
tion are recycled to provide a source of intracellular N. The amine group of amino acids is
transferred to 2-oxoglutarate (2-OG) by glutamine synthetase (GlnA) and glutamate synthase
(GIsF), which were both significantly up-regulated at the proteomic and transcriptomic level
(Table 2 and Fig 2). Up-regulation of GInA and GIsF in response to N limitation has been pre-
viously observed in Arthrospira PCC 8005 and Synechocystis sp. PCC 6803 [14,25,27]. 2-OG
required for accepting amine groups is provided through the TCA cycle enzymes phosphoenol-
pyruvate carboxylase (ppc), citrate synthase (gltA) and isocitrate dehydrogenase (icd), which
were up-regulated at the transcriptomic and proteomic level (Fig 2). This stimulation of amino
acid biosynthesis and TCA cycle intermediates under N deprivation has also been previously

PLOS ONE | DOI:10.1371/journal.pone.0132461
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Fig 3. The molecular response of Arthrospira sp. PCC 8005 to nitrogen limitation: the pentose phosphate pathway (OPP), protein and
phycobilisome degradation, glycogen metabolism and citric acid cycle. Molecular pathways were predicted according to the Genoscope and KEGG
databases. The squares correspond to protein abundance (nitrogen limitation versus control) and the circles correspond to mRNA expression (nitrogen
limitation versus control). The data presented here were taken from four biologically independent replicates.

doi:10.1371/journal.pone.0132461.9003

observed in Arthrospira platensis [56] and in Synechocystis sp. PCC 6803. [27] under N limita-
tion. The fact that arginine synthesis genes (argF, argG and ArgH) as well as the cyanophycin
synthetase gene cphA were up-regulated at the protein or mRNA level might indicate that
internal N is temporarily stored in cyanophycin granules. However, this is in contradiction to
previous studies of N-limited Synechocystis sp. PCC 6803 and Arthrospira sp. PCC 8005, where
cyanophycin was degraded under N-limitation [14,35]. Cyanophycin is an internal N storage
reserve in cyanobacteria and is known to serve as a transient N reservoir in N-starved cyano-
bacteria [57]. It seems that the regulation of cyanophycin synthesis depends on a complex
interrelation between cyanophycin synthesis, the arginine catabolism and photosynthesis [55].
Amino acid biosynthesis genes were found to be up-regulated at transcriptional level, e.g., ilvH,
metE and trpD (Table 2 and Fig 3), suggesting that this internal N reserves are used for produc-
tion of new proteins. All this evidence suggests that N-limited Arthrospira degrades non-essen-
tial proteins to mobilize N for production of new proteins that are essential to maintain its
activity in a low N medium.

6. Conversion of proteins into carbohydrates through gluconeogenesis

A recent study on dynamic metabolic profiling of the cyanobacterium Arthrospira platensis
under N limitation suggested that a part of the accumulated glycogen under N-limiting condi-
tions is derived from protein C through gluconeogenesis in Arthrospira platensis sp. PCC 8005
[14,56]. Although some key enzymes in the gluconeogenesis (phosphoenolpyruvate carboxyki-
nase (Pck), fructose 1.6 bisphosphatase (GlpX) and glucose 6 phosphatase) were not up-regu-
lated under N limitation, the succinate dehydrogenase gene (sdh) and phosphoenolpyruvate
synthase protein (PpS) showed a higher abundance. Moreover malate dehydrogenase (MaeB)

PLOS ONE | DOI:10.1371/journal.pone.0132461 July 21,2015 13/19
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and enolase (Eno) were up-regulated at both transcriptional and protein level, all evidencing a
stimulation of the gluconeogenesis (Table 2 and Fig 2).

Although a part of C-glycogen stock might be derived from protein C through gluconeogen-
esis, an analysis of changes in the productivity and composition of the biomass during N limi-
tation suggested that the contribution of protein C for glycogen production in N-limited
Arthrospira cells is likely limited. Prior to N depletion, the biomass concentration was about
03g L, with 0.11 g L'as proteins (36%) and 0.04 g L'as carbohydrates (13%) (Table 1).
When N was depleted from the medium, the biomass concentration in the culture approxi-
mately doubled to 0.6 g L". Due the changes in biomass composition, the protein content of
the culture dropped to 0.07 g L' (10.4%), while the carbohydrate content increased to 0.44 g
L' (73.7%). This represented a loss of 0.04 g L' protein and a production of 0.40 g L' carbohy-
drates. From this calculation it is clear that protein C was not the main contributor to glycogen
production under N-limited conditions. Hence, C for glycogen production was most likely pro-
vided by residual photosynthetic carbon fixation.

7. Up-regulation of glycogen synthesis

In agreement with the massive increase in carbohydrate concentration in the biomass of the N-
limited treatment, an up-regulation of the glycogen synthesis metabolism was observed. Glyco-
gen synthesis proteins like 1,4-alpha-glucan branching enzyme (GlgB) and glucose-1-phos-
phate adenylyltransferase (GlgC) were up-regulated, and the glycogen degradation gene
glycogen/starch/alpha-glucan phosphorylase (glgP) was down-regulated (Table 2 and Fig 3). In
[25], they reported not only an up-regulation of glgB but also of glgP during accumulation of
glycogen in N-limited Synechocystis sp. PCC 6803. In this study, no up-regulation of glycogen
synthase was observed. The lack of response of glycogen synthase has also been observed in N-
limited Synechocystis sp. PCC 6803 [55]. This might suggest that the glycogen production is
controlled by the supply of ADP-glucose rather than by the amount of the enzyme [55].

8. Changes in lipid and polyhydroxybutyrate metabolism

In most eukaryotic microalgae, lipids are accumulated under N-limitation [6,58,59]. In cyano-
bacteria, the accumulation of lipids under N limitation has been observed in some species (e.g.
Oscillatoria), but not in Arthrospira [6]. Phosphoenolpyruvate is the substrate for the synthesis
of fatty acids (via acetylcoenzyme A) [18]. Although the conversion of phosphoenolpyruvate to
oxaloacetate by ppc was up-regulated (as mentioned above), acetylcoenzyme A carboxylase
(accA), which catalyses the rate-limiting step in the fatty acid biosynthesis was not up-or
down-regulated. Two other important enzymes for the fatty acid biosynthesis, malonyl CoA-
acyl carrier protein transacylase (fabD) and 3-oxoacyl-[acyl-carrier-protein] synthase 3 (fab H)
were both down-regulated. Also the gene encoding the acyl carrier protein (acpP) and the acet-
ylcoenzyme A synthetase protein (AcsA) were down-regulated. In [26], they observed a down-
regulation of accA and acpP at transcript level in Synechocystis sp. PCC 6803 under N-limita-
tion, although these genes were up-regulated at protein level. The first step in the lipid biosyn-
thesis is the formation of 1-acyl-sn-glycerol-3-phosphate and is catalyzed by the pls X gene
encoding the fatty acid/phospholipid synthesis protein. This gene was also down-regulated in
our study. And finally, a down-regulation of the oxidative pentose phosphate (OPP) pathway,
which is the major source of reducing power in cyanobacteria, was observed (Fig 3) [60]. These
findings all suggest that the fatty acid biosynthesis is down-regulated and is in agreement with
the observed reduced fatty acid methyl ester content in N-limited Arthrospira (Table 1).
Because a significant proportion of the fatty acids is associated with photosynthetic thylakoid
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membranes, the reduction in fatty acid content may be result of a down-regulation of photo-
synthesis (see below).

Cyanobacteria are also known to accumulate polyhydroxybutyrate as carbon and energy
storage product [18]. High concentrations of polyhydroxybutyrate have been reported from
Arthrospira sp. (about 6%) [61]. In Synechocystis sp. PCC 6803, the polyhydroxybutyrate con-
tent increased from 2.4% to 13.5% in response to N limitation [62]. As for lipids, the substrate
for synthesis of polyhydroxybutyrate is acetylcoenzyme A. The enzymes poly(R)-hydroxyalka-
noic acid synthase subunit C (phaC) and subunit E (phaE) catalyse the final stages in the poly-
hydroxybutyrate synthesis [62,63]. We observed no up- or down-regulation of phaC and phaE
under N-limitation. However, B-ketothiolase (phbA), which catalyses the first step of the PHB
synthesis was significantly up-regulated.

It may be interesting to include polyhydroxybutyrate measurement in future studies to
know if Arthrospira accumulates polyhydroxybutyrate under N-stress.

9. Down-regulation of photosynthesis

It is evident from the transcriptomic and proteomic data that N-limited Arthrospira had
down-regulated its photosynthesis. In agreement with the observed decrease in chlorophyll
concentration in the biomass, we observed a lower expression of chlorophyll synthesis genes
(hem). Chlorosis caused by N stress was previously shown in Arthrospira sp. PCC 8005 [14]
and in Synechocystis sp. PCC 6803 [27].

The photosystem I (psa) and II (psb) genes and ATP synthesis (atp) genes were all down-
regulated, but the abundance of the corresponding proteins seemed to remain unchanged
(Table 2). This suggests that no new photosynthetic proteins are formed under N limitation
but that existing photosynthetic proteins are not actively being degraded, as has been observed
in Synechocystis sp. PCC 6803 [26,35]. Under N limitation, photosynthetic carbon acquisition
was down-regulated at the level of light harvesting and CO, fixation. Indeed, the key enzyme
ribulose-1,5-bisphoshate carboxylase/oxygenase RuBisCO (cbbL and cbbS) exhibits a lower
transcript level and the regulator ribulose bisphosphate carboxylase/oxygenase activase (Rca) a
lower abundance of proteins (Table 2 and Fig 3). Also, the transcription of fructose 1.6-bispho-
sphatase (glpX), which is a key enzyme for the photosynthetic CO, assimilation, was down-reg-
ulated (Table 2 and Fig 2). Similar results have already been reported for Synechocystis sp. PCC
6803 [25] and Arthrospira PCC 8005 [14].

If carbon acquisition is clearly down-regulated in N-limited Arthrospira cells, why were the
growth rate and final biomass concentration not reduced by N limitation? Our data suggest
that in the N-limited culture, most C fixed during photosynthesis was converted into glycogen,
while in the control culture a large part of the C was used to produce proteins. Production of
carbohydrates requires much less energy than production of proteins. Only 0.012 g ATP is
required to produce 1 g of storage carbohydrates as opposed to 0.082 g ATP for the production
of proteins (when nitrate is used as a N source) [64]. This corresponds to 1.09 g glucose equiva-
lents for the production of glycogen as opposed to 2.45 g glucose equivalents for production of
proteins [65]. Thus, Arthrospira is capable of producing new biomass at a similar rate in N-lim-
ited as in N-replete conditions because the energy produced during photosynthesis is converted
into new biomass in a more efficient way in N-limited conditions (when mainly carbohydrates
are produced) than in N-replete conditions (when mainly proteins are produced).

Conclusion

N-limited Arthrospira cultures were able to produce biomass at the same rate as N-replete cul-
tures up to 5 days after N was fully depleted from the medium. In N-limited conditions, de
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novo protein synthesis was down-regulated, and existing proteins were partly converted into
carbohydrates and the N-containing group was internally recycled, respectively through gluco-
neogenesis and TCA cycle. Photosynthetic energy production and carbon fixation were down-
regulated, which resulted in a reduced availability of energy to the cells. The glycogen synthesis
was up-regulated suggesting that photosynthetic energy was channeled towards glycogen pro-
duction rather than protein production.

The glycogen synthesis requires lower energy demand than protein synthesis. This might
explain why the N-limited Arthrospira cultures were able to achieve an equally high biomass
production rate as the control cultures, despite a weaker activity of photosynthetic energy
production.
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