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Abstract

Lipid-bilayers are the fundamental constituents of the walls of most living cells and lipid vesicles, 

giving them shape and compartment. The formation and growing of pores in a lipid bilayer have 

attracted considerable attention from an energetic point of view in recent years. Such pores permit 

targeted delivery of drugs and genes to the cell, and regulate the concentration of various 

molecules within the cell. The formation of such pores is caused by various reasons such as 

changes in cell environment, mechanical stress or thermal fluctuations. Understanding the energy 

and elastic behaviour of a lipid-bilayer edge is crucial for controlling the formation and growth of 

such pores. In the present work, the interactions in the molecular level are used to obtain the free 

energy of the edge of an open lipid bilayer. The resulted free-energy density includes terms 

associated with flexural and torsional energies of the edge, in addition to a line-tension 

contribution. The line tension, elastic moduli, and spontaneous normal and geodesic curvatures of 

the edge are obtained as functions of molecular distribution, molecular dimensions, cutoff 

distance, and the interaction strength. These parameters are further analyzed by implementing a 

soft-core interaction potential in the microphysical model. The dependence of the elastic free-

energy of the edge to the size of the pore is reinvestigated through an illustrative example, and the 

results are found to be in agreement with the previous observations.
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1. Introduction

A phospholipid molecule consists of a hydrophilic head and two hydrophobic fatty-acid tails 

[1]. When suspended in an aqueous solution at sufficient concentrations, phospholipid 

molecules self-assemble into structures such as lipid bilayers, in order to shield the tail 

groups from the solvent [2, 3]. Lipid bilayers are the main constituents of cell membrane in 

most living organisms, as well as model membranes such as liposomes [4]. They provide the 
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cell and its substructures with compartment and shape, and further, function as barriers for 

water-soluble molecules such as water, ions, and proteins [5, 6]. Lipid bilayers are 

composed of two adjacent leaflets of phospholipid molecules oriented transversely and set 

tail-to-tail.

Forming of open edges in lipid membranes results in exposer of the tail groups at the edge to 

water [4], which is energetically unfavourable. As a result, phospholipid molecules rapidly 

rearrange around the exposed edge, forming a semicylindrical rim along it. This 

rearrangement is the source of a line energy at the edge. In order to eliminate this edge 

energy, lipid bilayers commonly tend to form closed structures such as spheroids [7]. 

Nevertheless, they can transiently open due to various stimuli such as mechanical stresses 

and thermal instabilities. The formation of these transient pores is essential for regulation of 

PH, transmembrane electrochemical potential, and concentrations of different molecules in 

the cell [5]. Additionally, transient open membranes are formed during electro-formation 

[8]. More recently, stabilizing pores and control over their size have been pursued by means 

of electric fields [9], sonication [10], and use of edge-active chemical agents [11]. The rapid 

progress in these techniques has attracted increasing attention to the study of the open lipid 

bilayers, including molecular dynamic simulations, as well as continuum mechanical 

treatment and numerical investigations of the equilibrium configurations [12, 13].

Theoretical studies of the equilibrium and stability of pored membranes have mainly relied 

on constitutive assumptions for the edge, which neglect its flexural and torsional elasticity. 

For instance, Boal and Rao [14], Capovilla et al. [15], and Tu and Ou-Yang [16, 17] 

considered the edge energy of an open lipid bilayer as a given constant. Tu and Ou-Yang 

[18] considered dependence of the edge energy on its geometry, namely geodesic and 

normal curvatures. Nevertheless, their assumptions on the form of the line energy have not 

been precisely justified.

May [19] obtained the line energy of a lipid bilayer edge through optimization of the lipid 

packing at the vicinity of the edge. He modeled the edge as a semicylindrical micelle, and 

took the free energy per molecule to depend upon the chain length of the molecules, their 

cross-sectional area, and the strength of the interactions of the molecules with each other and 

with the surrounding solution. Although successful in obtaining the line tension, that 

framework did not capture the bending and torsional energetics of the edge. The gap in the 

literature to successfully relate the macro-scale edge energy to its microstructure has 

motivated the current study.

The interactions between the constituent molecules of a material may be used to obtain the 

free-energy density function of that material. For instance, Keller and Merchant [20] have 

employed such a microphysical approach to extract the internal energy, surface tension, and 

bending energy of a liquid surface and to relate its bending rigidity to the molecular density 

and interaction potential. In a recent application of the work of Keller and Merchant [20], 

the Canham–Helfrich free-energy density for a lipid vesicle was derived based on 

microphysical considerations [21]. Using the same approach, a model for the elastic free-

energy of wormlike micelles was derived [22]. In so doing, the surfactant molecules 

comprising the wormlike micelle were assumed to have constant length, and thus, were 
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modeled by one-dimensional rigid rods. The resulted expression for the free energy was 

found to be quadratic in the curvature and torsion of the centerline of the micelle [22].

The current study adopts the microphysical approach of Keller and Merchant [20] to 

investigate the elastic behaviour of the edge of a lipid bilayer. Following May [19] and 

motivated by previous studies [23, 24, 25, 26], the edge is modeled as a semicylindrical 

surface. In addition, the phospholipid molecules comprising the edge are modeled as one-

dimensional rigid rods of constant length, oriented perpendicular to the centerline of the 

edge. The applied framework enables us to extract the form of the free energy and the 

flexural and torsional moduli of the edge, based on the intermolecular energetic interaction 

between phospholipid molecules.

To find the free-energy density of the edge at a position x, we account for the interactions 

between all phospholipid molecules on the edge within a cutoff distance δ from the 

molecules at x. We assume that the phospholipid molecules are perpendicular to the 

centerline of the edge. Our derivation relies on Taylor series expansions with respect to a 

dimensionless parameter , where  is a characteristic size parameter of the 

edge, such as its length. For  taken as the length of the edge (or equivalently, the perimeter 

of a pore), it can be related to the thickness or the length of the constituent molecules, if the 

density of the molecules along the edge and their aspect ratios are provided. The net free-

energy of the edge results from integrating the free-energy density ϕ over the centerline of 

the edge.

The paper is structured as follows. In Section 2, required mathematical definitions are 

presented. Modeling assumptions for the edge of an open lipid bilayer are synopsized in 

Section 3. Section 4 is concerned with the derivation of the free-energy density of such an 

edge. In Section 5, the consequences of choosing a spheroidal-particle potential (Berne and 

Pechukas [27] and Gay and Berne [28]) are considered to obtain the material parameters 

present in the derived model. As an illustrative example, a simplified model for a pore on a 

lipid bilayer is given in Section 6, and the parameters obtained in Section 5 are used to find 

the free-energy of the pore as a function of its size. Finally, the key findings of the study are 

summarized and discussed in Section 7. Details of the various derivations are provided in 

the Appendix.

2. Differential geometry of the bounding curve of a surface

Consider a smooth, orientable, open surface  representing the open lipid bilayer, with 

boundary , as depicted schematically in Figure 1. Let

(1)

denote the arclength parametrization of the closed boundary curve . On denoting the 

differentiation with respect to the arclength s by a superposed dot, it follows that , 

and thus,

(2)
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The unit tangent of  is introduced, in terms of the arclength parametrization x, by

(3)

Since the unit tangent t has a constant length, its arclength derivative  is 

perpendicular to it, and thus, perpendicular to the curve . The orientation of  is called the 

unit normal of , and is denoted by N. The curvature vector κ at any point of  is then 

defined by the arclength derivative of the unit tangent t as

(4)

where κ denotes the magnitude of the curvature of  at that point, which is given in terms of 

the arclength parametrization x, by

(5)

For an arbitrary point on curve  at which κ ≠ 0, the unit binormal vector is defined by B = 

t × N. The unit tangent t, unit normal N, and unit binormal B at each point of , form the 

Frenet frame {t, N, B} at that point.

The torsion τ of  is defined by , and is expressed in terms of the arclength 

parametrization x as

(6)

The torsion τ of , describes the tendency of the curve  to move out of its osculating plane 

at a given point, or, equivalently, it measures the turnaround of the unit binormal B of  at a 

given point. In general, a space curve is determined up to a rigid translation, by its two 

locally invariant quantities: the curvature κ and torsion τ, both in terms of the arclength 

parameter σ.

On the boundary curve  of the surface , the unit normal to the surface is denoted by n. 

Also, since  is a unimodular vector, its arclength derivative  is perpendicular to , and 

thus, can be considered as a linear combination

(7)

of the unit normal n, and the product . Notice that the unit normal n to the surface  is 

different from the unit normal N of the curve . Further, let p denote the unit vector in the 

tangent plane of  perpendicular to the unit tangent t while pointing outward. We call p the 

unit tangent-normal. The set of unit normal n to the surface  at , unit tangent-normal p, 

and the unit tangent t, which is t = n × p, form the oriented basis {t, n, p} on , known as 

the Darboux frame (Figure 1). Considering that the normal N and binormal B of the Frenet 

frame of  are also perpendicular to t, they both lie in the plane spanned by the normal n 
and tangent-normal p of the Darboux frame. Therefore, they are related to n and p by
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(8)

where  denotes the angle between the unit normal N of the curve  and the unit normal n 
to the surface . Following the proof provided in Appendix A, derivatives of t, n, and p 
with respect to the arclength s along  are expressed as

(9)

The quantity

(10)

is called geodesic torsion of the curve  on . This quantity describes the rate of the 

rotation of the tangent plane of the surface  about the unit tangent to the curve  with 

respect to the arc length s [29]. Also, τg can be expressed alternatively as

(11)

Further, the curvature vector κ of the curve  on the surface  is the sum of the normal 

curvature vector κn, and the tangential (or geodesic) curvature vector κg, i.e.

(12)

The normal curvature vector κn is the projection of the curvature vector κ along the normal 

n of the surface . The geodesic curvature κg is perpendicular to the unit normal n to the 

surface, and, thus, lies in the tangent plane of the surface . Hence,

(13)

According to (4), the curvature vector κ of  is κ = κN. Since  denotes the angle between 

N and n, the magnitude κn of the normal curvature κn is

(14)

The magnitude κg of the tangential (or geodesic) curvature vector κg, is a bending invariant, 

and is given by

(15)

According to , and

(16)

the right-hand side of (15) results
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(17)

As mentioned earlier, the geodesic curvature vector κg at any point of the curve  on the 

surface  is the vectorial projection of the curvature vector κ of the curve  into the 

tangent plane of the surface  at that point. This quantity is an intrinsic property of the 

surface, which reflects the deviation of the curve  from a geodesic on the surface  [30]. 

In general, for a geodesic, the geodesic curvature κg at any point is zero. Further, for a 

geodesic, the unit normal N of the curve  coincides with the unit normal n of the surface 

, or, equivalently, the osculating plane of  at each point is perpendicular to the tangent 

plane of the surface  at that point [29]. This means that the Darboux frame and the Frenet 

frame for a geodesic are the same at any point.

According to (10), and the right-hand sides of (14) and (17), the arclength derivatives of {t, 
n, p} in (9) take the form

(18)

3. Modeling assumptions

The phospholipid molecules comprising the edge are allocated so that their hydrophilic parts 

lie on a thin semicylindrical surface as shown in Figure 2 to form a core shielding the 

hydrophobic tails from the surrounding solution. The centerline of the edge is denoted by a 

boundary curve . The following assumptions, which are based on the previously reported 

observations [23, 24, 26, 31, 32], are considered to model the edge of an open lipid bilayer:

(i) · The phospholipid molecules comprising the edge are modeled as one-

dimensional rigid rods of the same length a.

(ii) · The lipid molecules are assumed to be perpendicular to the centerline , 

residing in the plane spanned by the unit normal n and the unit tangent-normal 

p, as depicted in Figure 2. This assumption is valid as long as the concentration 

of the lipid molecules on the edge  is sufficiently high.

(iii) · The phospholipid molecules at any cross-section of the edge have uniform 

angular distribution.

(iv) · The distribution of the phospholipid molecules at any point along  is denoted 

by the molecular density function Π > 0. In contrast to the angular distribution, 

which is assumed to be uniform because of symmetry considerations, the 

molecular distribution along  may be nonuniform as a result of localized 

curvature.

Consider a lipid molecule at the position corresponding to s on  with orientation θ 

measured counterclockwise from the corresponding tangent-normal p(s), as depicted 

Asgari and Biria Page 6

Int J Non Linear Mech. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



schematically in Figure 2b. Let the director d(s, θ) denote the orientation of this molecule. 

By the second assumption, such a director can be expressed as a linear combination

(19)

where p(s) and n(s) denote the tangent-normal and the unit normal (to ) at the position 

corresponding to s.

4. Derivation of the free-energy density

In this section, the free-energy density of the edge of an open lipid bilayer is derived taking 

into account the interactions between the molecules comprising the edge. To do so, a 

microphysical approach is applied, guided by the work of Keller and Merchant [20].

Consider two molecules, with directors d and d′, located respectively at positions x and x′ 

interior to . Let the interaction energy (encompassing steric, electrostatic, and other 

relevant effects) between the molecules under consideration be denoted by

(20)

Following Keller and Merchant [20], we assume that the interaction energy between two 

molecules separated by more than a fixed cutoff distance δ vanishes, in which case

(21)

In the present setting, the cutoff distance δ is required to be small relative to the 

characteristic length  of the edge, so that a dimensionless measure ϱ of cutoff distance 

obeys

(22)

Hereafter, we restrict attention to interaction energies Ω that are of the form (20) but are also 

frame indifferent [33]. It then follows that Ω(x, x′, d, d′) may depend on the positions x and 

x′ and the directors d and d′ only through the length |x–x′| of the vector between x and x′, the 

dot products (x–x′)·d and (x–x′)·d′ formed by the directors and that vector, and the dot 

product d·d′ formed by the directors. Like Keller and Merchant [20], we assume that 

dependence of the interaction energy on the length of the relative position vector is scaled by 

the ratio ϱ defined in (22) and, thus, that

(23)

with r = x – x′. The factor of two in the right-hand side of (23) is for simplifying later 

calculations. Notice that Ω depends explicitly on δ, whereas  does not. Consequently, (21), 

(22), and (23) yield
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(24)

where

(25)

with  being the unit vector corresponding to the intermolecular vector r.

As a consequence of the foregoing discussion, the net free-energy ϕnet of the edge can be 

expressed as

(26)

where

(27)

is the free energy due to the interactions between the molecule with director d(s,θ) at x(s) 

with all other molecules and where a factor of one-half compensates for the double counting 

of interactions arising from integrating over both s and t from 0 to L. From (26), the free-

energy density ϕ at position x(s) on  is simply

(28)

The function Π denotes the density of the lipid molecules at any point of the curve . 

Following the proof which relies on the Taylor series expansion of the integrand of (28) with 

respect to ϱ up to the second derivative term, provided in Appendix B, (28) becomes

(29)

which includes a quadratic expression in terms of κg, κn, and τg. Also, k○ and the 

coefficients ki in (29) are provided in Appendix B. Notice that k○ is the standard line energy 

of the edge—the part which is independent of edge geometry—while the coefficients ki, i = 

1, 2, 5, 6 represent the flexural and torsional rigidities of the edge. Up to the second 

derivative term of the Taylor expansion considered here, the derived model (29) contains the 

linear terms of the normal curvature κn and the geodesic curvature κg of the boundary curve 

, while it does not incorporate the linear term of the geodesic torsion τg of . Considering 

a simplification of (29) in the form

(30)

where
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(31)

it can be inferred that the remaining coefficients k3 and k4 are related to the spontaneous 

geodesic and normal curvatures κg○ and κn○ of . This transpires that our model captures 

the spontaneous normal and geodesic curvatures κn○ and κg○ of the edge, while an 

spontaneous geodesic torsion is absent from the free energy. Further, (29) and (30) include 

the coupling of the normal curvature κn and the geodesic curvature κg via the term κnκg. 

However, the couplings of the geodesic torsion τg with the normal and geodesic curvatures 

κn and κg are absent. Our calculations show that the latter terms only appear by including 

higher order terms in the Taylor expansion, and hence, are of less significance. In addition, 

if the molecules have non-uniform angular distribution, i.e. the molecular distribution 

function Π is allowed to depend upon θ or η, the model would also include a linear term in 

geodesic torsion τg that would lead to the presence of a spontaneous geodesic torsion.

The first term k○ on the right-hand side of (30) is insensitive to the shape of the boundary. 

Since the molecular distribution on the boundary has implicit dependence upon the ambient 

temperature and concentration, these effects may be encompassed in k○ and in the moduli 

k1–k6. The line tension k○ has been obtained through experiments and molecular dynamic 

simulations for various types of lipid bilayers (see [23] for a comparison of different 

measurements). However, there is not enough literature on measurement of the remaining 

coefficients. By fitting our model to existing measurements of the line tension, the 

controlling parameters of the interaction potential can be evaluated, and further used to 

obtain the remaining coefficients in (29).

The derived model (29) can be simplified into the previously presented models for the free-

energy of the edge. In particular, the general form (29) provides a development to the 

theoretical investigations of open lipid bilayers presented by Tu and Ou-Yang [12], and 

Guven et al. [31].

4.1. Total free-energy of the edge

The net free-energy ϕnet associated with the elasticity of the edge of the open lipid bilayer is 

simply obtained by integrating the free-energy density ϕ in (30) over the centerline  of the 

edge by

(32)

5. Applying a concrete interaction potential

The interaction potential in the model developed in the previous section was assumed to be a 

general function of four frame-indifferent arguments in terms of the intermolecular vector 

and the orientation of phospholipid molecules. There are numerous concrete models for such 

interaction potentials between axisymmetric particles, which are vastly employed for 

numerical simulations of liquid crystals and other similar systems. Our derivation gives rise 

to integral representations for elastic moduli k○–k6 of the edge. Substituting the general 
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form  in (B.1) with an available interaction potential yields the material parameters k○–k6 

appearing in (29).

One of the standard examples among such pair interaction potentials is the spheroidal-

particle model proposed by Berne and Pechukas [27], and Gay and Berne [28], in which the 

molecules are approximated by ellipsoids of revolution, or spheroids (see Figure 3). 

According to such model, the interaction potential between two molecules with the 

intermolecular vector r and the directors d and e possesses the multiplicative decomposition

(33)

where  and ζ(r, d, e) denote the strength and distance parameters respectively. The 

strength parameter  depends upon the orientation of the molecules and that of the 

intermolecular vector r through (Gay and Berne [28])

(34)

with ν, μ, and ξ○ the fitting parameters to be chosen. More specifically, ν depends upon the 

arrangement type of the molecules (e.g. side-to-side or end-to-end), whereas ξ○ is a constant 

that specifies the kind of molecules under consideration. The parameter χ in (34) is the shape 

anisotropy parameter, given in terms of the ratio of the length σe to the breadth σs of the 

molecules by

(35)

Also, the parameter χ′ in (34) is given by

(36)

where εe and εs denote the strength parameters for end-to-end and side-to-side arrangement 

of the molecules respectively. The distance parameter ζ(r, d, e) in (33) is given by (Berne 

and Pechukas [27])

(37)

where  is called the range parameter and is given as a function of the orientation of 

the molecules and that of the intermolecular vector r by

(38)
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In (38), σ○ is related to the breadth of the molecules, σs, via σ○ = √2σs. Following 

Whitehead et al. [34], the parameters μ and ν are chosen as

(39)

By applying the interaction potential (33) in (B.7), and assuming a constant molecular 

density Π along the boundary , the coefficients ki in (29) are obtained as

(40)

where x is a dimensionless parameter defined as the ratio of the cut-off distance δ to σ○ as

(41)

and I○, I and J are integral representations shown in Appendix C. Hence, the free-energy 

density ϕ in (29) specializes to

(42)

A single phospholipid molecule can be envisioned as a molecule in which a water-soluble 

spherical head is attached to a pair of water-insoluble tails. Here we rely on the dimensions 

of a specific kind of phospholipid molecule (DPPC/Water system) reported by Mashaghi et 

al. [35] According to their estimation, the length of the aforementioned phospholipid 

molecule from the center of the head-group to the tail is ~ 22.5–30 A○, and the diameter of 

the head-group is ~ 7–10 A○. The total volume of that molecule is thus the sum of the 

volume of the spherical head and that of a cylindrical tail-group. Based on the equality of the 

volumes of the phospholipid molecule and that of the spheroidal replacement, the aspect 

ratio σe/σs of the spheroid in Figure 3 is obtained between 3 and 4. Hence, the schematic of 

the constant line energy k○ and that of the flexural rigidity k1 are depicted in terms of the 

dimensionless cutoff distance δ/σ○ in Figure 4, for molecular aspect ratio σe/σs between 1 

and 5. According to Figure 4, the change in the constant line energy k○ and flexural rigidity 

k1 is negligible after some value of the dimensionless cutoff distance δ/σ○. Therefore, a 

rather conservative choice for the cut-off distance, which guarantees inclusion of all 

significant molecular interactions, is

(43)

This result has been used to obtain the constant part of the line energy k○ and flexural 

rigidity k1 of the edge in terms of the molecular aspect ratio, as depicted in Figure 5.
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6. Illustrative example: dependence of free-energy on the pore size

In order to estimate the change of energy of a pore with its size, consider the simple case of 

a spherical lipid bilayer with radius R, with a pore of radius r at a distance h from its centre, 

as depicted in Figure 6. For such a pore, the total curvature of the boundary curve  is 1/r, 

and the geodesic torsion τg vanishes. Also, the normal and geodesic curvatures find the 

froms

(44)

As a result, the free-energy density (30) specializes to

(45)

which with (32), yields a representation for the net free-energy ϕnet of the pore as

(46)

It was demonstrated in the previous section that when the spheroidal interaction potential 

[27] is employed in the microphysical model, the spontaneous curvatures κg○ and κn○, and 

the coefficient k5 vanish, while the bending moduli k1 and k2 find the same value. Using 

those results in (46) yields

(47)

whereby the energy of the pore does not depend on the size of the lipid bilayer, nor on the 

placing of the pore on it. For the cut-off distance δ* = 3σ○ and the molecular aspect ratios 

σe/σs = 3 and σe/σs = 4, the dependence of the net free-energy to pore size has been 

demonstrated in Figure 7. The second term in the right-hand side of (47) leads to a minimum 

point for the free energy for r < σ○, which does not fall in the physically-relevant ranges of 

the pore size. For reasonable values of r/σ○, the first term on the right of (47) is dominant 

and the dependence of the net energy on the pore size is effectively linear.

7. Discussion and Summary

An expression for the free-energy density of the edge of an open lipid bilayer was derived 

taking into account the interaction between the constituent molecules. The resulting 

expression contains quadratic terms in geodesic curvature, normal curvature, and geodesic 

torsion of the boundary curve and a term including the multiplication of geodesic and 

normal curvatures. The derived free-energy of the edge is the evidence of an excess energy 

due to the specific arrangement of the phospholipid molecules in the vicinity of the 

boundary of an open bilayer, in accord with the results of the existing molecular dynamic 

simulations [23, 24, 25, 26]. Further, our study supplements the previous molecular dynamic 
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simulations [23, 24, 25, 26] and theories [19] in which the free energy was obtained as a 

constant, by providing the contribution due to bending and torsional energies. For certain 

classes of lipid bilayers, the bending free-energy, which can be captured by our framework, 

is of more importance in contrast to the line energy [36, 37]. In addition, our microphysical 

model justifies the constitutive assumptions that appear in continuum mechanical theories 

for open lipid bilayers [12, 38, 31].

Our derivation gives rise to integral representations for the material parameters present in 

the model. Specifically, the molecular origins of the spontaneous curvatures of the edge of a 

lipid bilayer have been investigated. A concrete soft-core interaction potential for 

axisymmetric rod-like molecules was applied on the derived model to obtain those material 

parameters. Hence, a special form of the interaction potential suggested by Berne and 

Pechukas [27] was employed to further explore the developed microphysical model. 

Assuming that the molecules are uniformly distributed along the edge, (i.e.Π =constant), the 

spontaneous curvatures and the torsional contribution to the energy vanish, resulting in (42), 

which includes only a constant part k○, which can be interpreted as a line tension, and a 

contribution due to bending with flexural rigidity k1 = k2. The dependence of the parameters 

k○ and k1 on the aspect ratio σe/σs and the dimensionless cutoff distance δ/σ○, for various 

aspect ratios common for phospholipid molecules comprising lipid membranes, was 

investigated. It was concluded that increasing the cut-off distance after a value δ* = 3σ○ 

does not affect those parameters. This result and the definition σ○ = √2σs reveals that each 

molecule on the edge interacts with less than 6 molecules in its vicinity along the edge. In 

view of this observation, the cut-off distance was set to δ* to study the dependence of the 

line tension k○ and flexural rigidity k1 on the molecular aspect ratio σe/σs. It is evident from 

Figure 4 that the line tension k○ is not as sensitive as the flexural rigidity k1 to the molecular 

aspect ratio σe/σs. This difference can be quantified by considering the relative change of 

those quantities associated with a same increment of the molecular aspect ratio σe/σs. 

Further, with an increase in the aspect ratio, the line tension decreases while the flexural 

rigidity increases. This signals that for molecules with greater aspect ratios, inclusion of the 

bending contribution to the free-energy is of more significance. Considering that a rod with 

a larger diameter shows more resistance to bending, the observation that the flexural rigidity 

of the edge is greater for larger molecular aspect ratios (longer molecules lead to larger 

cross-sectional diameter of the edge), agrees with what would be expected intuitively.

The energy functional obtained in (30) was used to explore energy of the degenerate case of 

a circular pore on a spheroidal lipid bilayer, resulting in the expression (47). The pore size 

needs to be greater than the mean distance of molecules σ○. For such sizes, the contribution 

of the flexural part to the energy given by (47) is negligible, and effectively, the energy 

increases linearly with the pore size. Inspired by earlier investigations on rupturing of soap 

films [39], Litster [40] developed a continuum model for the free-energy ϕ needed for 

opening-up of a pore in a lipid membrane in the form

(48)
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with Γ the line energy of the edge and γs the interfacial surface tension. It can be inferred 

from (48) that transient pores with sizes less than a critical radius r* = Γ/γs tend to reseal, 

while those having the size exceeding this critical radius, might grow indefinitely, leading to 

rupture of the membrane [41]. In other words, the energy to form a pore of radius r is 

determined by a balance between two competitive contributions: the energy required to 

create the edge of the pore, and the energy released by the pore surface [42]. Nevertheless, it 

is a common knowledge today (see for example the review by Jähnig [43]) that lipid 

membranes possess zero surface tension, by which the second term on the right hand of (48) 

vanishes. This transpires the agreement of the current result based on molecular interactions, 

with that obtained previously on continuum grounds. The increasing cost of generating a 

larger pore confirms the stability of a lipid membrane with respect to the fluctuations that 

might bring about transient pores. Furthermore, the growth of stable pores in homogenous 

lipid bilayers is only possible in the presence of external stimuli such as an electric field.

The class of the interaction potentials (23) selected in the present study and the integration 

(26), only account for the lipid bilayers in which the physiochemical properties of the 

constituent molecules are identical. An important corollary of our model would follow from 

a generalization of the arguments of the interaction potential (23) and the integration (26), to 

allow for the interactions between phospholipid molecules of different physiochemical 

properties. Such a generalization permits modeling perforated mixed lipid bilayers, such as 

those reported by Oglȩcka et al. [44] and Jiang & Kindt [36]. Further, our model accounts 

for the elastic free-energy of the edge of open lipid bilayers in which the lipid molecules are 

tilted only at the edge, forming a semicylindrical rim along it. Another generalization of the 

present work would include tilt fields of smaller gradient, such as those considered by 

Hamm and Kozlov [45], Rangamani and Steigmann [46], and Rangamani et al. [47]. In such 

an approach, the gradual tilt at the vicinity of the edge changes the thickness of the lipid 

bilayer and, thus, leads to the deviation of the conformation of the edge from a 

semicylindrical shape. These potential generalizations remain to be investigated in future.
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Appendix A. Detailed derivation of (18)

Let  denote the angle between the unit normal N to the curve  and the unit normal n to 

the surface . The Darboux frame {t, n, p} at any point on , is obtained by rotating the 

Frenet frame {t, N, B} about the unit tangent t by angle. Hence,

(A.1)

Let the array X = [t n p]T denote the Darboux frame, and Y = [t N B]T denote the Frenet 

frame at a given point on , where T denotes the transpose. Also let
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(A.2)

denote the transformation between the two frames. Thus,

(A.3)

The derivative of the Frenet frame {t, N, B} of  with respect to the arclength s, follows 

from the Frenet-Serret formulas [48]

(A.4)

Thus,

(A.5)

where

(A.6)

Taking arclength derivative from both sides of (A.3)1 yields

(A.7)

where

(A.8)

In view of (A.3)2 and the right-hand side of (A.5), (A.7) takes the form

(A.9)

or, equivalently,

(A.10)

In view of , and , (A.10) simplifies to (18).
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Appendix B. Derivation of the free-energy density (29)

In this Appendix, the expansion of (28) to (29) is presented. As mentioned earlier, only the 

molecules separated by a distance less than δ may interact. Hence, the domain of the integral 

with respect to t in (27) is replaced by [–δ,δ]. Upon replacing ω(s,θ) in (28), and substituting 

Ω by its equivalent from (23), and applying the change of variable t – t○ = sϱ, (28) takes the 

form

(B.

1)

It is necessary to expand the right-hand side of (B.1) in powers of ϱ neglecting terms of 

o(ϱ2). Introducing the abbreviations

(B.2)

and applying the identities given in (18), the following expansions up to ϱ2 are obtained:

(B.

3)

Therefore, the arguments of the interaction potential  in the right-hand side of (B.1) 

become

(B.4)

where tϱ = t○ + sϱ, and

(B.

5)

Expanding  up to ϱ2 and using

(B.6)

results in the following energy-density for the edge
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(B.

7)

where

(B.8)

Note that ,  and  vanish when . Thus, the final expression for the free-energy 

density of the edge becomes

(B.9)

or, equivalently,

(B.10)

where the parameters k○–k6 are given by the integral representations in (B.7).

Appendix C. Integral representations I○, I and J in (40)

(C.1)
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Figure 1. 
Mathematical identification of an open lipid bilayer as an open surface  with boundary 

 on which a Darboux frame has been shown. Also the schematic arrangements of 

phospholipid molecules in an interior point on  and at the vicinity of the edge  are 

depicted at a point.
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Figure 2. 
(a) The schematic of a section of the edge of an open bilayer, (b) cross-sections of the edge 

at positions x(s) and x(t) with Darboux frame {t, n, p} at those positions.
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Figure 3. 
(a) The schematic of a phospholipid molecule modelled as an ellipsoidal particle.
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Figure 4. 
(a). Schematic of the constant line energy k○/Π2ξ○σ○ in terms of the dimensionless cut-off 

distance δ/σ○. (b) Schematic of the flexural rigidity  in terms of the dimensionless 

cut-off distance δ/σ○. As is evident from the plots, the change in k○/Π2ξ○σ○ and 

is negligible after δ = 3σ○. Consequently, the effective cut-off distance after which the 

potential decays rapidly, can be reasonably approximated by δ = 3σ○.
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Figure 5. 
(a). Schematic of the constant line energy k○/Π2ξ○σ○ in terms of the aspect ratio σe/σs for a 

cut-off distance δ/σ○ = 3. (b) Schematic of the flexural rigidity k1/Π2ξ○σ○ in terms of the 

aspect ratio σe/σs for the cut-off distance δ = 3σ○.
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Figure 6. 
Schematic of a pore on a spheroidal lipid bilayer
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Figure 7. 
Schematic of the net free-energy ϕnet/Π2ξ○σ○ versus the scaled pore-size r/σ○ for two 

values of the aspect ratio σe/σs and for the scaled cutoff distance δ = 3σ○.
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