
Environmental Research 140 (2015) 95–101
Contents lists available at ScienceDirect
Environmental Research
http://d
0013-93

n Corr
E-m

lars.lind
1 Th
journal homepage: www.elsevier.com/locate/envres
Genome-wide association study of plasma levels of polychlorinated
biphenyls disclose an association with the CYP2B6 gene in a
population-based sample

Esther Ng a,n,1, Samira Salihovic b,1, P. Monica Lind c, Anubha Mahajan a,
Anne-Christine Syvänen d, Tomas Axelsson d, Erik Ingelsson b, Cecilia M. Lindgren a,
Bert van Bavel e, Andrew P. Morris a,f, Lars Lind g

a Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
b Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
c Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
d Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
e MTM Research Centre, Örebro University, 701 82 Örebro, Sweden
f Department of Biostatistics, University of Liverpool, Liverpool, United Kingdom
g Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
a r t i c l e i n f o

Article history:
Received 29 September 2014
Received in revised form
18 March 2015
Accepted 23 March 2015
Available online 2 April 2015

Keywords:
Genome-wide association studies
Polychlorinated biphenyls
Cytochrome P450
Single nucleotide polymorphisms
Metabolism
Pollutants
x.doi.org/10.1016/j.envres.2015.03.022
51/& 2015 The Authors. Published by Elsevie

esponding authors.
ail addresses: esther.ng@well.ox.ac.uk (E. Ng),
@medsci.uu.se (L. Lind).
ese 2 authors contributed equally to the man
a b s t r a c t

Background: Polychlorinated biphenyls (PCBs) are a group of man-made environmental pollutants which
accumulate in humans with adverse health effects. To date, very little effort has been devoted to the
study of the metabolism of PCBs on a genome-wide level.
Objectives: Here, we conducted a genome-wide association study (GWAS) to identify genomic regions
involved in the metabolism of PCBs.
Methods: Plasma levels of 16 PCBs ascertained in a cohort of elderly individuals from Sweden (n¼1016)
were measured using gas chromatography–high resolution mass spectrophotometry (GC-HRMS). DNA
samples were genotyped on the Infinium Omni Express bead microarray, and imputed up to reference
panels from the 1000 Genomes Project. Association testing was performed in a linear regression fra-
mework under an additive model.
Results: Plasma levels of PCB-99 demonstrated genome-wide significant association with single nu-
cleotide polymorphisms (SNPs) mapping to chromosome 19q13.2. The SNP with the strongest association
was rs8109848 (p¼3.7�10�13), mapping to an intronic region of CYP2B6. Moreover, when all PCBs were
conditioned on PCB-99, further signals were revealed for PCBs -74, -105 and -118, mapping to the same
genomic region. The lead SNPs were rs8109848 (p¼3.8�10�12) for PCB-118, rs4802104 (p¼1.4�10�9)
for PCB-74 and rs4803413 (p¼2.5�10�9) for PCB-105, all of which map to CYP2B6.
Conclusions: In our study, we found plasma levels of four lower-chlorinated PCBs to be significantly
associated with the genetic region mapping to the CYP2B6 locus. These findings show that CYP2B6 is of
importance for the metabolism of PCBs in humans, and may help to identify individuals who may be
susceptible to PCB toxicity.

& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Polychlorinated biphenyls (PCBs) are a group of man-made li-
pophilic chemicals that have, over the years, been linked to a
r Inc. This is an open access article

uscript.
number of adverse effects (Brouwer et al., 1999). From the late
1920s until the late 1970s, PCBs were manufactured in a broad
range of industrial applications (e.g. electrical equipment and in-
sulation) where their exceptional chemical stability was found
useful. Among the complete set of 209 different congeners of PCBs,
twelve have been denoted as being “dioxin-like” because of their
structural resemblance with 2,3,7,8-tetrachlorodibenzo-p-dioxin
(2378-TCDD) (Van den Berg et al., 2006).

Although PCBs were banned decades ago, they are frequently
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Table 1
Median concentrations (pg/mL), with 25th and 75th percentiles and genomic
control lambda are given for the different PCBs included in the study.

Pollutant Median value Genomic control
lambda

PCB-74 91.4 1.000
2,2′,4,4′,5-pentachlorobiphenyl (63.9–128.1)
PCB-99 90.9 0.995
2,2′,4,4′,5-pentachlorobiphenyl (62.4–131.9)
PCB-105 32.0 1.001
2,3,3′,4,4′-pentachlorobiphenyl (21.0–46.8)
PCB-118 200.6 0.998
2,3′,4,4′,5-pentachlorobiphenyl (136.4–281)
PCB-126 40.4 1.005
3,3′,4,4′,5-pentachlorobiphenyl (71.9–385.8)
PCB-138 819.3 1.001
2,2′,3,4,4′,5′-Hexachlorobiphenyl (619.2–1115.8)
PCB-153 1427.6 0.996
2,2′,4,4′,5,5′-Hexachlorobiphenyl (1114.4–

1847.9)
PCB-156 154.3 1.007
2,3,3′,4,4′,5-Hexachlorobiphenyl (118.7–197.6)
PCB-157 28.0 1.015
2,3,3′,4,4′,5′-Hexachlorobiphenyl (21.4–37.0)
PCB169 171.4 0.997
3,3′,4,4′,5,5′-Hexachlorobiphenyl (219.9–636.4)
PCB-170 497.5 1.002
2,2′,3,4,4′,5,5′-Heptachlorobiphenyl (385.7–633.0)
PCB-180 1165.4 1.001
3,3′,4,4′,5,5′-Hexachlorobiphenyl (917.8–1487.8)
PCB-189 19.3 0.999
2,3,3′,4,4′,5,5′-Heptachlorobiphenyl (14.6–25.8)
PCB194 119.4 1.003
2,2′,3,3′,4,4′,5,5′-Octachlorobiphenyl (87.6–158.9)
PCB-206 26.8 0.987
2,2′,3,3′,4,4′,5,5′,6-Nonachlorobiphenyl (20.8–35.2)
PCB-209 26.2 0.982
(2,2′,3,3′,4,4′,5,5′,6,6′-
Decachlorobiphenyl)

(19.6–34.7)
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detected in various biological and environmental samples around
the world (Jones and de Voogt, 1999). In the general population,
PCB contaminated food is considered to be the major source of
exposure, and numerous studies have shown that foods with a
high fat content such as fish, meat, and dairy products are of
particular concern (Darnerud et al., 2006). Human exposure to
PCBs has been comprehensively monitored through extensive
biomonitoring programmes in Sweden, U.S.A, Germany, and Japan,
and research has concluded that PCBs not only accumulate effec-
tively in humans, but also contribute to a long-term toxic exposure
that increases with age (Link et al., 2005; Minh et al., 2006; Noren
and Meironyte, 2000; Patterson et al., 2009). Since the ban and
regulation of PCBs was made effective during the 1970s, most
temporal studies have observed declining trends of PCBs in the
general population (Fangstrom et al., 2008; Hardell et al., 2010).
However, despite the declining concentrations in the general po-
pulation, evidence is growing that even the quite low levels seen
today might have a negative effect on human health. For example,
several studies have linked levels of PCBs with cardiovascular
disease, type-2 diabetes, and obesity (Lee et al., 2010; Son et al.,
2010; Turyk et al., 2007). Still, there is very little information re-
garding the mechanisms behind these observations.

Like other lipophilic exogenous compounds, PCBs have to be
metabolised in order to be excreted. A first oxidative phase I re-
action step is carried out by the members of the cytochrome P450
system. Several CYPs included in that system have been described
to interfere with PCBs, such as CYP1A1/2, CYP3A4, CYP2A6,
CYP2B6, CYP2C19 (Gährs et al., 2013; Lehmler et al., 2010). Oxi-
dised PCBs can later undergo phase II metabolism to glucuronic or
sulphate conjugates, as recently reviewed by Kania-Korwel and
Lehmler.

Recently, genotyping, which aims at characterising the genetic
variation within and between different human populations, has
become increasingly important in the quest to understand the
mechanism behind the complex processes underlying disease
susceptibility. From this perspective, genome-wide association
studies (GWAS) offer new possibilities to study how genetic var-
iation might influence the metabolism of PCBs and thereby iden-
tify individuals that are susceptible to their toxicity. So far, only a
few studies have examined the associations between different
organic pollutants and genetic variation in human populations.
These studies have, for example, found PCBs to be influenced by
the CYP1A1 gene (Lind et al., 2014), while a polybrominated di-
phenylether (PBDE47) was found to be associated with the CYP2B6
(Penell et al., 2014). Another study of 290 individuals exposed to
perfluorooctane sulphonic acid (PFOS) and perfluorooctanoic acid
(PFOA) found several genetic variants involved in cholesterol
metabolism to be associated to these perfluorinated compounds in
an inverse manner (Fletcher et al., 2013).

The aim of this study is to examine the associations between
plasma levels of a broad range of PCBs, including seven dioxin-like
PCBs, and the genetic variability among 1016 individuals using a
genome-wide association approach. For environmental con-
taminants with a long half-life, like the PCBs, a plasma sample is
good estimate of exposure.
Fig. 1. Manhattan plot of PCB 99. Each point corresponds to a SNP passing QC,
plotted according to genomic position on the x-axis and the strength of association
(� log10 p-value) on the y-axis. The red line indicates the genome wide significance
threshold (5�10�8), while the blue line indicates a threshold of 10�05. (For in-
terpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
2. Materials and methods

2.1. Study population

The Prospective Investigation of Vasculature in Uppsala Seniors
(PIVUS) study was initiated in 2001 to investigate the predictive
power of different measurements of vascular characteristics for
future cardiovascular events. Secondary aims of the study included
measurements of cardiac and metabolic function, as well as serum



Fig. 2. (a) Regional Association plot of PCB 99. Each point represents a SNP plotted with their p-value (on a � log10 scale) as a function of genomic position (NCBI Build 37). In
each panel, the lead SNP is represented by the purple diamond. The colour coding of all other SNPs (circles) indicates LD with the lead SNP (estimated by CEU r2 from the
1000 Genomes Project March 2012 release): red r2Z0.8; gold 0.6rr2o0.8; green 0.4rr2o0.6; cyan 0.2rr2o0.4; blue r2o0.2; grey r2 unknown. Recombination rates are
estimated from the International HapMap Project and gene annotations are taken from the University of California Santa Cruz genome browser. (b) Regional Association plot
of PCB 138. Each point represents a SNP plotted with their p-value (on a � log10 scale) as a function of genomic position (NCBI Build 37). In each panel, the lead SNP is
represented by the purple diamond. The colour coding of all other SNPs (circles) indicates LD with the lead SNP (estimated by CEU r2 from the 1000 Genomes Project March
2012 release): red r2Z0.8; gold 0.6rr2o0.8; green 0.4rr2o0.6; cyan 0.2rr2o0.4; blue r2o0.2; grey r2 unknown. Recombination rates are estimated from the Inter-
national HapMap Project and gene annotations are taken from the University of California Santa Cruz genome browser. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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biomarkers and levels of environmental pollutants, including
PCBs. All individuals aged 70 and living in the community of Up-
psala in Sweden were deemed eligible for the study. The subjects
were selected from the community register and invited to parti-
cipate in a randomised order between April 2001 and June 2004.
They received an invitation letter for participation within
2 months of their 70th birthday. Of the 2025 subjects invited, 1016
(507 male, 509 female) subjects agreed to participate. The parti-
cipants were asked to complete a questionnaire about their
medical history, smoking habits and regular medication. Sample
details and methods are described more fully elsewhere (Lind
et al., 2005).

2.2. Chemical analysis

Polychlorinated biphenyls 2,2′,4,4′,5-pentachlorobiphenyl
(PCB-74), 2,2′,4,4′,5-pentachlorobiphenyl (PCB-99), 2,3,3′,4,4′-
pentachlorobiphenyl (PCB-105), 2,3′,4,4′,5-pentachlorobiphenyl
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(PCB-118), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), 2,2′,3,4,4′,5′-
Hexachlorobiphenyl (PCB-138), 2,2′,4,4′,5,5′-Hexachlorobiphenyl
(PCB-153), 2,3,3′,4,4′,5-Hexachlorobiphenyl (PCB-156), 2,3,3′,
4,4′,5′-Hexachlorobiphenyl (PCB-157), 3,3′,4,4′,5,5′-Hexa-
chlorobiphenyl (PCB-169), 2,2′,3,4,4′,5,5′-Heptachlorobiphenyl
(PCB-70), 3,3′,4,4′,5,5′-Hexachlorobiphenyl (PCB-180), 2,3,3′,
4,4′,5,5′-Heptachlorobiphenyl (PCB-189), 2,2′,3,3′,4,4′,5,5′-Octa-
chlorobiphenyl (PCB-194), 2,2′,3,3′,4,4′,5,5′,6-Nonachlorobiphenyl
(PCB-206), and (2,2′,3,3′,4,4′,5,5′,6,6′-Decachlorobiphenyl (PCB-
209) were measured in 1016 stored plasma samples. Briefly, frozen
plasma was allowed to thaw at room temperature and formic acid
was added to 500 mL plasma samples to denature proteins, after
which sonication was performed. Internal standards (13C-labelled
2,3′,4′,5-Tetrachlorobiphenyl (13C-PCB-70), 2,2′,4,5,5′-penta-
chlorobiphenyl (13C-PCB-101), 13C-PCB-118, 13C-PCB-105,
13C-PCB-138, 13C-PCB-153, 13C-PCB-156, 13C-PCB-170, 13C-PCB-180,
13C-PCB-194, 13C-PCB-206, 13C-PCB-209) were added to the sam-
ples and sonicated prior to the solid-phase extraction (SPE) using
Oasiss HLB single use cartridges (6 cm3/150 mg, Waters, Milford,
MA, USA). The extracts were further purified with multi-layered
acidified silica columns containing 56% KOH silica gel, 40% H2SO4

silica gel and activated anhydrous Na2SO4. Of the final 25 mL vo-
lume (in toluene), 2 mL was injected on a HRGC/HRMS system and
measurements were performed on a Micromass Autospec Ultima
(Waters, Mildford, MA, USA) mass spectrometer (MS) operating at
Z10,000 resolving power using EI ionisation at 35 eV. Measure-
ments were performed in selective ion mode (SIM) and quantifi-
cation was performed according to the isotope dilution method
using the 13C-labelled standards. The MS was coupled to a 6890N
gas chromatograph (GC) (Agilent Technologies, Atlanta, GA, USA).
The injector was programmed to 275 °C. The PCBs were separated
on a 30 m�0.25 i.d.�0.25 mm DB-5 capillary column (SGE Ana-
lytical Science, Victoria, AUS) with the GC oven programmed from
180 °C (2 min) to 260 °C (3.5 °C/min) and to 300 °C (6.5 °C/min,
2 min). The analytical method applied to all plasma samples was
successfully validated in terms of recovery, precision, and re-
producibility. Recovery of labelled internal standards ranged be-
tween 49–86%. Reproducibility of procedural quality control
samples was below 25% relative standard deviation for PCBs above
the limit of detection in the samples. Contamination of procedural
blank samples did not exceed any PCB levels above 5% of the levels
in the authentic samples. Limits of detection were between 0.8–
117.7 pg/mL. Further details on the method and its analytical
performance have been described by previously (Salihovic et al.,
2012b).

2.3. Genotype analysis

DNA samples were genotyped according to the manufacturer's
instructions on Illumina Infinium Omni Express bead microarrays.
Samples were excluded from downstream analyses if the call rate
was less than 95%, if they had extreme heterozygosity (43 SD
from the mean), if they were ethnic outliers, or if they were gender
discordant. SNP quality control measures included exact p-value
Fig. 3. (a) Regional Association plot of PCB118 conditioned on PCB 99. Each point repres
position (NCBI Build 37). In each panel, the lead SNP is represented by the purple diam
(estimated by CEU r2 from the 1000 Genomes Project March 2012 release): red r2Z0.8
unknown. Recombination rates are estimated from the International HapMap Project an
browser. (b) Regional Association plot of PCB 105 conditioned on PCB 99. Each point repr
position (NCBI Build 37). In each panel, the lead SNP is represented by the purple diam
(estimated by CEU r2 from the 1000 Genomes Project March 2012 release): red r2Z0.8
unknown. Recombination rates are estimated from the International HapMap Project an
browser. (c) Regional Association plot of PCB 74 conditioned on PCB 99. Each point repre
position (NCBI Build 37). In each panel, the lead SNP is represented by the purple diam
(estimated by CEU r2 from the 1000 Genomes Project March 2012 release): red r2Z0.8
unknown. Recombination rates are estimated from the International HapMap Project an
browser. (For interpretation of the references to colour in this figure legend, the reader
for deviation from Hardy–Weinberg equilibrium (HWE) o10�6

and missing genotype rate40.01 (minor allele frequency o5%) or
missing genotype rate 40.05 (minor allele frequencyZ5%).
Multidimensional scaling was performed to obtain principal
components to adjust for population structure. Prior to imputa-
tion, variants with minor allele frequency (MAF) o1% were re-
moved from the GWAS scaffold. Samples were pre-phased with
SHAPEIT2. Genotype data were then imputed up to the “all an-
cestries” reference panel from the 1000 Genomes Project Con-
sortium Phase 1 interim release (June 2010) (Abecasis et al., 2012)
using IMPUTEv2 (Howie et al., 2012).

2.4. Statistical analysis

Wet-weight plasma concentrations (pg/mL) of polychlorinated
biphenyls were inverse rank normalised to generate a Gaussian
distribution for downstream association analyses, and minimise
the impact of outliers. Association testing for each transformed
PCB congener was performed in a linear regression framework
under an additive model in the minor allele, after adjusting for
triglycerides, cholesterol, gender and 2 principle components from
multidimensional scaling to account for population structure as
covariates. This is performed because lipids in the circulation
transport PCBs. In addition, there are gender differences between
PCBs (Salihovic et al., 2012a). Age was not included as a covariate
because all individuals were of the same age.

Association testing was performed in SNPTEST, allowing for
uncertainty in the imputation in a missing data likelihood. The
association analysis was restricted to SNPs with MAF 41%, im-
putation quality information score (info) of greater than 0.4, and
HWE exact po10�10. The genomic control inflation factor for each
PCB congener was used to assess evidence of residual population
structure (Devlin and Roeder, 1999). It is calculated by converting p
values to chi square and taking the median value of the SNPs
analysed. To account for multiple testing of 16 PCBs, we defined
genome-wide significance as po3.1�10�9. Conditional analyses
to search for secondary signals of association were performed by
including genotype dosage at the lead SNP as an additional cov-
ariate in the linear regression model. To evaluate the impact of
genetic variation on multiple pollutants, we also performed re-
ciprocal conditional phenotype analysis, by including serum levels
of one PCB as an additional covariate in the regression model for
another. SNPs that passed genome wide significance were anno-
tated with the Encyclopaedia for DNA elements (ENCODE, 2011)
using Annovar (Wang et al., 2010).
3. Results

In total, PCBs were successfully determined in 922 participants
and the majority of the studied congeners were detected in 70–
100% of the samples. Median values for the studied PCBs are
presented in Table 1. Among the 16 PCB congeners measured, PCB-
153 was detected in the highest plasma concentrations among the
ents a SNP plotted with their p-value (on a � log10 scale) as a function of genomic
ond. The colour coding of all other SNPs (circles) indicates LD with the lead SNP
; gold 0.6rr2o0.8; green 0.4rr2o0.6; cyan 0.2rr2o0.4; blue r2o0.2; grey r2

d gene annotations are taken from the University of California Santa Cruz genome
esents a SNP plotted with their p-value (on a � log10 scale) as a function of genomic
ond. The colour coding of all other SNPs (circles) indicates LD with the lead SNP
; gold 0.6rr2o0.8; green 0.4rr2o0.6; cyan 0.2rr2o0.4; blue r2o0.2; grey r2

d gene annotations are taken from the University of California Santa Cruz genome
sents a SNP plotted with their p-value (on a �-log10 scale) as a function of genomic
ond. The colour coding of all other SNPs (circles) indicates LD with the lead SNP
; gold 0.6rr2o0.8; green 0.4rr2o0.6; cyan 0.2rr2o0.4; blue r2o0.2; grey r2
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participants (1430 pg/ml) followed by PCB-180, -138, and -118.
Together, these four compounds accounted for 470% of the entire
PCB exposure in the participants. Compared to other studies, the
concentrations of the PCBs in the present study were found si-
milar, or comparable, to other studies of general populations from
Sweden and Europe (Salihovic et al., 2012a).

Following imputation, a total of 8,736,858 high-quality SNPs
with MAF 41% were included in the analysis. The genomic control
inflation factor for each PCB congener was close to 1 (Table 1), so
no additional correction for residual population structure after
adjustment for principal components was required. We identified
genome-wide significant evidence of association for plasma levels
of PCB-99, mapping to CYP2B6. The SNP with the strongest asso-
ciation signal was rs8109848 (β¼0.34, SE¼0.05, p¼3.7�10�13),
which maps to an intronic region of CYP2B6 (Fig. 1 and 2, Sup-
plemental Tables S1 and S2). This SNP also showed weaker asso-
ciation with several other PCBs (Supplemental Table S3) including
PCB-138 (p¼3.0�10�8) and PCB-153 (p¼0.000041). Conditional
analyses, including the genotype dosage of rs8109848 as a cov-
ariate in the regression model, extinguished the association signal
for all PCBs at this locus.

Given the known high correlation between different pollutant
levels (Lampa et al., 2012) (Supplemental Fig. 1), we sought to
dissect the effect of CYP2B6 variation on PCB-99 and other PCB
congeners through reciprocal conditional phenotype analyses.
After adjusting for PCB-99 as an additional covariate in the re-
gression model, the previously observed associations of rs8109848
with PCB-138 and PCB-153 were extinguished (p¼0.17 and
p¼0.0074 respectively). These data would suggest that the asso-
ciation of rs8109848 with PCB-138 and PCB-153 is mediated
through PCB-99, and does not reflect pleiotropic effects on serum
levels of the pollutants. We next performed conditional phenotype
association testing for all other PCB congeners within the CYP2B6
region, adjusting for PCB-99 levels as an additional covariate in the
regression model. When all PCBs were conditioned on PCB-99,
further genome-wide significant association signals were revealed
for PCB-74, PCB-105 and PCB-118, all mapping to the same geno-
mic region (Fig. 3). The lead SNPs were rs8109848 (β¼�0.21,
SE¼0.03, p¼3.8�10�12) for PCB118, rs4802104 (β¼�0.19,
SE¼0.03, p¼1.4�10�9) for PCB-74 and rs4803413 (β¼�0.18,
SE¼0.03, p¼2.5�10�9) for PCB 105. These SNPs had no sig-
nificant association in unconditional analysis: rs8109848 (p¼0.43)
for PCB-118, rs4802104 (p¼0.32) for PCB-74 and rs4803413
(p¼0.27) for PCB-105.

The three index SNPs are in strong linkage disequilibrium (LD)
in European ancestry populations (r240.76), and thus may reflect
the same underlying causal variant. Furthermore, when the PCBs
were conditioned on PCB-99 and PCB-118 together, the association
signals at this locus were extinguished for PCB-74 (rs4802104,
p¼0.02) and PCB-105 (rs4803413, p¼0.52). Furthermore, no ad-
ditional signals of association achieved genome-wide significance.

Taken together, these findings suggest that the identified as-
sociation signals observed for PCBs at this locus are mediated
through PCB-99 and PCB-118. Annotation with ENCODE database
revealed that several SNPs associated with serum levels of PCBs at
the CYP2B6 locus are located in H3k27me3 and H3k4me1 regions.
H3K27Me3 is known to repress transcription, while H3K4Me1 is
known to mark active enhancers, suggesting two potential func-
tional mechanisms for serum PCB metabolism at this locus.
4. Discussion

This study demonstrates, through a GWAS approach, an asso-
ciation between genetic variation mapping to the CYP2B6 locus
and plasma levels of multiple PCBs within a population-based
cohort. The relationship appears to be complex, with effects
mediated predominantly through PCB-99 and PCB-118.

The present study is the first examination, in humans, of the
relationship between genome-wide genetic variation and plasma
levels of a broad range of PCBs. Our results support the view that
CYP2B6 is involved in the metabolism of at least some PCBs in
humans, as previously described in experimental studies (Gährs
et al., 2013; Lehmler et al., 2010). Furthermore, CYP2B6 has also
been reported to metabolise a range of environmental chemicals,
including insecticides such as malathion (Buratti et al., 2005) and
carbofuran (Usmani et al., 2004).

CYP2B6 has several known alleles (http://www.cypalleles.ki.se/
CYP2B6.htm), many of which are associated with serum levels of a
range of pharmaceutical drugs. CYP2B6 genotyping has been ap-
plied successfully in HIV-infected individuals to reduce the ther-
apeutic dose of efavirenz, resulting in improvement of central
nervous system-related side effects (Gatanaga et al., 2007). The
commonest allele is CYP2B6n6 [Q172H and K262R], tagged by
rs3745274 and rs2279343, respectively. However, these tagging
SNPs were not associated with serum PCB levels in the present
study.

All PCBs found to be associated with genetic variation in
CYP2B6 in this study are highly bioaccumulative. One common
way to characterize the PCBs is through their binding to the aryl
hydrocarbon (Ah)-receptor. Because of their structure, dioxin-like
PCBs are agonists of Ah-receptors, while non-dioxin-like PCBs are
not. PCB-99, PCB-138 and PCB-153 are non-dioxin like, while PCB-
118 and PCB-105 are dioxin-like. McFarland and Clarke (1989)
suggested a classification based on the ability to induce CYPs in a
barbiturate-like fashion, and PCB-99 and PCB-153 belong to that
class. Wolff et al. later further subdivided the PCBs in to anti-
estrogenenic and phenobarbital-type inducers, and PCB-99 and
PCB-153 belong to that latter class (Wolff et al., 1997). It should,
however, be pointed out that not all PCBs considered to be phe-
nobarbital-type inducers demonstrated an association with ge-
netic variation in the CYP2B6 gene in the present study. Within
this group it was mainly those with a moderate number of
chlorine atoms that were associated, but not those with a large
number of chlorine atoms, such as PCB-180 and PCB-194, having a
longer half-life (Wimmerova et al., 2011).

Conditional phenotype analyses suggest that association sig-
nals with pollutants at the CYP2B6 locus are mediated through
PCB-99 and PCB-118. The only common denominator for these
pollutants, being related to variation in the CYP2B6 gene, seems to
be the low number of chlorine substitutions, possibly reflecting a
shorter half-life than the more lipophilic PCBs with a larger
number of chlorine atoms. The substitution pattern of PCB-99 and
PCB-118 with chlorine substitution in both the meta- and the para-
position prevents degradation in biota (Furukawa et al., 1978). The
same is true for the hexachlorobiphenyls PCB-153 and -138. The
larger molecules, hepta- to decacholorbiphenyl congeners and
dioxin-like hexachlorobiphenyl congeners show no correlation vs
variation in the CYP2B6 gene.
5. Conclusions

The present study is the first of its kind to relate genetic var-
iation to plasma concentrations of PCBs by means of a GWAS ap-
proach. This approach has the advantage that it covers the in-
formation on variation in all human genes, and thereby no prior
hypotheses on which genes that are of importance are needed. The
environmental implication of the current results is that the
CYP2B6 is involved in PCB metabolism in humans and that sub-
jects with a certain CYP2B6 genotype might be more susceptible
for the toxic effects of PCBs.
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