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Abstract

Objective—The P300 speller is a common brain–computer interface (BCI) application designed 

to communicate language by detecting event related potentials in a subject’s electroencephalogram 

(EEG) signal. Information about the structure of natural language can be valuable for BCI 

communication, but attempts to use this information have thus far been limited to rudimentary n-

gram models. While more sophisticated language models are prevalent in natural language 

processing literature, current BCI analysis methods based on dynamic programming cannot handle 

their complexity.

Approach—Sampling methods can overcome this complexity by estimating the posterior 

distribution without searching the entire state space of the model. In this study, we implement 

sequential importance resampling, a commonly used particle filtering (PF) algorithm, to integrate 

a probabilistic automaton language model.

Main Result—This method was first evaluated offline on a dataset of 15 healthy subjects, which 

showed significant increases in speed and accuracy when compared to standard classification 

methods as well as a recently published approach using a hidden Markov model (HMM). An 

online pilot study verified these results as the average speed and accuracy achieved using the PF 

method was significantly higher than that using the HMM method.

Significance—These findings strongly support the integration of domain-specific knowledge 

into BCI classification to improve system performance.
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1 Introduction

The P300 Speller is a common brain-computer interface (BCI) system that uses 

electroencephalogram (EEG) signals to simulate keyboard input, providing a means of 

communication [1]. The P300 speller works by presenting a grid of characters on a graphical 

interface and instructing the user to focus on a target letter. Groups of relatively few 

characters (most commonly and in this report in rows and columns) are illuminated (i.e., 

“flashed”) in a pseudo-random manner and the neural responses are recorded in the user’s 

electroencephalogram (EEG). Because stimuli containing any given character are relatively 

uncommon, evoked responses known as P300 signals are elicited when a group containing 

the target character is flashed. A classifier detects these signals and then determines the 

corresponding target character. Because the signal to noise ratio is low, several trials must 

be combined in order to correctly classify responses. The resulting typing speed can 

therefore be slow, prompting many studies focused on system optimization. Approaches 

include varying the grid size [2–4], optimizing system parameters [5–6], and adopting 

different signal processing methods [7–10].

While the P300 speller is designed to provide a means for communication, signal 

classification methods traditionally have not taken advantage of existing knowledge about 

the language domain, treating character selections as independent elements chosen from a 

set with no prior information. While knowledge about the domain of natural language has 

been used for years to improve classification in other domains such as speech recognition 

[11], the usage of this information in the BCI field is a recent movement. BCI studies using 

n-gram language models have demonstrated improvements in system speed and accuracy 

[12–17]. However, these models provide a poor representation of natural language, as they 

ignore context and can give high probability to character strings that do not formulate words 

(Table 1). More sophisticated language models could improve accuracy by giving stronger 

prior probabilities to target characters, but are generally too computationally complex for 

classification algorithms currently in use.

Stochastic methods such as particle filters (PF) can overcome this challenge by estimating 

probability distributions using sampling [18]. These methods can approximate distributions 

by projecting many samples through a model based on the observed output and then 

summing over the resulting states. PF methods can be adapted to any state-space model and 

are particularly useful for processing of on-line data [19]. In the context of BCI 

communication, PF methods can be applied by projecting samples through a state-space 

language model based on the observed EEG signals. The system can then determine the 

most likely output by finding the state that attracts the highest number of samples.

In this work, English words are modeled using a probabilistic automaton [20] and 

probability distributions are estimated using sequential importance resampling (SIR), a 

common PF algorithm [18]. These probability distributions are used as priors to classify 

EEG signals in the P300 speller system using Bayesian inference. The algorithm chooses the 

string that it determines is most probable and automatically makes the correction. This 

method was compared offline with a standard stepwise linear discriminant analysis 

(SWLDA) method with dynamic stopping as well as a previously presented hidden Markov 
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model (HMM) classifier on a previously published data set consisting of 15 healthy subjects 

[16]. Prospective evaluation was then performed online using the HMM and PF algorithms 

on an additional 15 subjects.

2 Materials and methods

2.1 Data Collection

All data was acquired using g.tec amplifiers, active EEG electrodes, and electrode cap 

(Guger Technologies, Graz, Austria); sampled at 256 Hz, referenced to the left ear; 

grounded to AFZ; and filtered using a band-pass of 0.1 – 60 Hz. Data for offline analyses 

were obtained from 15 healthy graduate students and faculty with normal or corrected to 

normal vision between the ages of 20 and 35. The electrode set consisted of 32 channels 

placed according to a previously published configuration [6]. Only one subject (subject F) 

had previous experience using a BCI for typing. The system used a 6 × 6 character grid, row 

and column flashes, and a stimulus duration of 100 ms and an interstimulus interval of 25 

ms for a stimulus onset asynchrony of 125 ms. Each subject underwent between 8 and 10 

trials consisting of spelling a five letter word with 15 sets of 12 flashes (six rows and six 

columns) for each letter. The choice of target words for this experiment was independent of 

the trigram language model used in the NB and HMM methods.

The subjects for the online study consisted of 15 healthy volunteers with normal or corrected 

to normal vision between the ages of 20 and 30. The electrode set consisted of a reduced set 

of four channels (PO8, PO7, POz, and CPz) [21]. The training sessions for these subjects 

consisted of three sessions of copy spelling 10 character phrases. Each subject then chose a 

target phrase to spell in online sessions. In each session, the subject had five minutes to spell 

as much of the phrase as they could using one of the three analysis methods: SWLDA (with 

dynamic stopping), HMM, or PF. Subjects were instructed not to correct errors and to repeat 

the phrase if they completed it in under five minutes.

BCI2000 was used for data acquisition and online analysis [22]. Offline analysis was 

performed using MATLAB (version 7.10.0, MathWorks, Inc, Natick, MA).

2.2 Traditional Classifier

2.2.1 SWLDA—SWLDA is a classification algorithm that selects a set of signal features to 

include in a discriminant function [23]. Signals are assigned labels based on two classes: 

those corresponding to flashes containing the attended character and those without the 

attended character. The algorithm uses ordinary least-squares regression to predict class 

labels for the training set. It then adds the most significant features in the forward stepwise 

analysis and removes the least significant features in the backward analysis step. These steps 

are repeated until either the target number of features was met or it reached a state where no 

features were added or removed [10].

The score for each flash in the test set can then be computed as the dot product of the feature 

weight vector, w, with the features from that trial’s signal, . Traditionally, the score for 

each possible next character, xt, is computed as the sum of the individual scores for flashes 

that contain that character:
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(1)

where  is the set of characters illuminated for the ith flash for character t in the sequence. 

After a predetermined set of stimuli, the character with the highest score is selected.

2.2.2 Dynamic Stopping—It has been shown that scores can be approximated as 

independent samples from a Gaussian distribution given the target character [12]:

(2)

and

(3)

where μa, , μn and  are the means and variances of the distributions for the attended and 

non-attended flashes, respectively. The conditional probability of a target given the EEG 

signal and typing history can then be found:

(4)

where p(xi|xi−1, …, x1) is the prior probability of character xi determined from a language 

model. In the simplest case, a uniform prior probability is used, simplifying the posterior to

(5)

Dynamic classification was implemented by setting a threshold probability, pthresh, to 

determine when a decision should be made. The program flashed characters until either 

 or the number of sets of flashes reached the maximum (15). The 

classifier then selected the character that satisfied . In offline analysis, the 

speeds, accuracies, and bit rates were found for values of pthresh between 0 and 1 in 

increments of 0.01 and the threshold probability that maximized the bit rate was chosen for 

each subject.

2.3 HMM Classifier

HMMs represent language using an n-gram model that can only be observed indirectly via 

the user’s EEG signal. The goal of such systems is to use dynamic programming to 

determine the most probable states in the Markov process that could have produced the 

observed output signal [16].
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2.3.1 Trigram Language Model—N-gram models are simple representations of 

language that produce probability distributions based on relative character frequency in a 

training corpus. States in these models represent characters in the alphabet with transitions 

based on the probability of their co-occurrence in text. For example, a state with the 

character “Q” would have a high probability transition to a state with the character “U” 

because the string “QU” is relatively common in English text while other strings beginning 

with “Q” are much less common. In this study, the second order Markov assumption is used, 

so prior probabilities can determined from relative trigram counts in the Brown English 

language corpus [24]. The prior probability of character, xt, given the previous characters, 

x1:t−1, is

(6)

where c(‘a’, ‘b’, ‘c’) denotes the number of times the string “abc” occurs in the corpus.

2.3.2 Viterbi Algorithm—In the Viterbi algorithm, a typed word is simply a sequence of 

states of the Markov process, x = (x0, …, xn). The goal of the algorithm is to search all 

possible state sequences to determine the most probable output given the known language 

model and the observed EEG signal. At any given time t, the Viterbi algorithm finds the 

highest probability path to each possible value for the target character, xt. It then determines 

the highest probability of those paths and returns it to the user. The lower probability paths 

are retained for calculation of the probability distribution for the next time step.

The EEG response at time t is dependent only on the current target character and governed 

by the conditional probability, p(yt|xt). At each time step, the joint probability of being in 

state xt and previously being in state xt−1 can then be computed by

(7)

where p(yt|xt) is computed as in equation 2 and p(xt|xt−2, xt−1) is determined by the language 

model (equation 6). The total probability of the target character xt can then be computed by 

summing over all possible previous states xt−1.

(8)

A back pointer to a previous state 〈xt−1, xt−2〉 is saved representing the highest probability 

path to the state 〈xt, xt−1〉, determined using the Viterbi algorithm.

(9)
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As in the previous method, characters are selected when a threshold probability is reached 

(i.e.,  and the character xt is selected that satisfies 

. The back pointers are then followed from the selected 

character to find the optimal string up to the current time step. This string is then presented 

as the output of the system up to the current time. If this string differs from the previous 

output, the previous characters are assumed to be errors and are replaced by those in the 

current string.

2.4 PF Classifier

The PF algorithm uses a Bayesian process model to classify P300 signals. Prior probabilities 

are determined from a probabilistic automaton and movement in the model is estimated 

using SIR.

2.4.1 Probabilistic Automaton—The probabilistic automaton models the English 

language by creating states for every substring that starts a word in the corpus. Thus, the 

word “the” would result in three states: “t,” “th,” and “the.” The start state is the root node, 

x0, which corresponds to a blank string. Each state then links to every state that has a string 

that is a superstring that is one character longer. Thus, the state “t” will link to the states “th” 

and “to” (Figure 1).

States that represent completed words contain links back to x0 to begin a new word. The 

state “the,” for instance, links to the terminal state “the_” which includes the valid English 

word “the” and a space indicating the intent to start a new word. The state “the” also 

contains links to nonterminal states such as “them” because it begins other English words in 

addition to being a complete word.

Similar to the trigram model, the transition probabilities are determined by the relative 

frequencies of words starting with the states’ substrings in the Brown English language 

corpus [24].

(10)

where c(‘a’, ‘b’) denotes the number of occurrences of a word that starts with the string “ab” 

in the corpus. When t =1, c( ) represents the total number of words in the corpus and p(x0:1|

x0) is the fraction of words in the copus that begin with character ‘x1’. Similarly, the 

probability that a word ends and the model transitions back to the root, x0, is the ratio of the 

number of occurrences of complete words consisting of a string to the total number of 

occurrences of words beginning with that string.

(11)

where c(‘a’, ‘b’, ‘ ’) is the number of occurrences of the word “ab” in the corpus.
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2.4.2 SIR—The SIR method estimates the probability distribution over possible outputs by 

sampling a batch of possible realizations of the model called particles. Each of these 

particles moves through the language model independently, based on the model transition 

probabilities. Low probability realizations are removed and replaced by more likely 

realizations by resampling the particles based on weights derived from the observed EEG 

response. The algorithm estimates the probability distribution of the possible output strings 

by computing a histogram of the particles after they have moved through the model.

Each particle j consists of a link to a state in the language model, x(j); a string consisting of 

the particle’s state history; and a weight, w(j). When the system begins, a set of P particles is 

generated and each is associated with the root node, x0, with an empty history and a weight 

equal to 1/P. At the start of a new character t, a sample xt
(j) is drawn for each particle, j, 

from the proposal distribution defined by the language model’s transition probabilities from 

the particle’s history, x0:t−1
(j).

(12)

where p(x0:t|x0:t−1
(j)) is provided by the language model (equation 10). When a particle 

transitions between states, its pointer changes from the previous state in the model, x0:t−1
(j), 

to the new state x0:t. The history for each particle, x0:t
(j), is stored to represent the output 

character sequence associated with that particle. After each stimulus response, the 

probability weight is computed for each of the particles

(13)

where  is computed as in equation 2. The weights are then normalized and the 

probability of the current character is found by summing the weights of all particles that end 

in that character.

(14)

where δ is the Kronecker delta. If the maximum probability is above a threshold, the particle 

with the maximum weight is selected and its history is used as the output text. As in the 

HMM algorithm, if characters in this output differ from the previous output text, the 

previous characters are assumed to be errors and are replaced by those in the current text. A 

new batch of particles, xt
*, are then sampled from the current particles, xt, based on the 

weight distribution, wt. Each of the new particles are then assigned an equal weight wt
*(j) = 

1/P. The subject then moves on to the next character and the process then repeats with the 

new batch of particles.

The main concern with using this method is the number of particles to use. Using more 

particles increases the processing necessary for estimating the distributions. However, a low 

number of particles could result in undersampling the distributions and missing important 
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possible sequences. Sensitivity analysis is performed on the number of particles by 

determining the offline performance using 10, 100, 1,000, 10,000 and 100,000 particles.

2.5 Evaluation

Evaluation of a BCI system must take into account two factors: the ability of the system to 

achieve the desired result and the amount of time required to reach that result. The efficacy 

of the system can be measured as the selection accuracy, which we defined as the percentage 

of characters in the final output that matched the target string. The speed of the system was 

measured using the selection rate (SR), the inverse of the average time required to make a 

selection.

As there is a tradeoff between speed and accuracy, we also use information transfer rate 

(ITR) (in bits/min) for evaluation, which takes both into account. The bits per symbol, B, is 

a measure of how much information is transmitted in a selection taking into account the 

accuracy and the number of possible selections [25]:

(14)

where N is the number of characters in the grid (36) and Acc is the selection accuracy. ITR 

can then be found by multiplying the selection rate by the bits per symbol. Significance was 

tested using Wilcoxon signed-rank tests. In offline analysis, the value of pthresh was 

determined independently for each algorithm for each subject. This optimization was 

impractical for online experiments, so a previously reported value of 0.95 was used for all 

trials [16].

3 Results

3.1 Sensitivity Analysis

Using 10 particles, the average ITR was 12.34 bits/min as no subject achieved an accuracy 

above 50% (Figure 2). Progressively changing the number of particles to 100, 1,000, and 

10,000 resulted in significant improvements in average ITR value: 33.34 (p<0.001), 36.79 

(p<0.001), and 38.07 (p=0.01), respectively. Increasing the number of particles to 100,000 

did not result in a significant increase (ITR=38.21; p=0.35).

3.2 Offline Performance

When using SWLDA in offline analysis, all subjects were able to type with varying levels of 

performance. The best performer (subject D) was able to achieve 89% accuracy at a rate of 

9.96 selections per minute, while the worst performer (subject C) achieved an accuracy of 

80% at a rate of only 3.96 selections per minute (Table 2). The accuracy increased with the 

number of flashes for all subjects and 12 of the 15 were able to exceed 90% accuracy within 

15 sets of flashes.

Six of the subjects reached 100% accuracy within the 15 sets of flashes using the HMM 

method and subject D had all characters correct within two sets of flashes. The improvement 

in ITR from the static method to the HMM method ranged from 40% (subject N) to 100% 
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(subject I). The average bit rate across subjects improved by 32% from 24.44 to 32.33 (p < 

0.001). The selection rate rose from 5.87 to 7.88 (p < 0.001) and the accuracy increased 

stayed relatively constant (p = 0.39).

Using the PF classifier, 11 of the 15 subjects reached 100% accuracy within the 15 sets of 

flashes. Compared to HMM, the average bit rate rose significantly using this method from 

32.33 to 38.07 (p < 0.001), with increases of at least five bits/min for nine of the 15 subjects. 

The average selection rate rose significantly over the HMM method from 7.88 to 8.70 (p = 

0.01) and the accuracy showed significant improvement from 88.34% to 91.59% (p = 0.03).

3.3 Online Performance

In online experiments, all 15 subjects were able to type characters with at least 65% 

accuracy using each of the algorithms (Table 3). Using the HMM method, 11 of the 15 

subjects achieved at least 80% accuracy and 6 characters per minute. All subjects selected 

characters with at least 74% accuracy using the PF method, with 13 of 15 subjects selecting 

over seven characters per minute on average. One subject (subject P) had substantially lower 

results than the rest of the data set, selecting fewer than three characters per minute on 

average with accuracy under 75% for both methods.

In this study, 12 of 15 subjects achieved a higher bit rate when using the PF classifier than 

when using the HMM method. On average, subjects selected 8.05 characters per minute 

with 83.74% accuracy, resulting in an average bit rate of 30.69 bits/minute using the HMM 

algorithm. When using the PF algorithm, subjects achieved significant improvements with 

an average selection rate of 8.64 characters/minute (p=0.002), an average accuracy of 

89.70% (p=0.02), and an average bit rate of 37.31 bits/minute (p=0.005).

The PF algorithm successfully corrected 6.8 errors on average for each subject (Table 4). 

These corrections accounted for 49% of the classification errors in the initial classifications. 

All subjects had at least two errors corrected with correction rates varying between 20% 

(subject AA) and 100% (subject V). Automatic error correction was responsible for 

increasing classifier accuracy from 82.90% to 89.70% and the average bit rate from 31.55 

bits/min to 37.31 bits/min.

4 Discussion

PF algorithms are widely used for tracking the progress of a physical system using a state-

space model [19]. In the PF classifier presented here, PF methods are applied to estimate 

target output strings by formulating typing as a series of transitions through a language 

model. The PF classifier required fewer samples and made more accurate selections than the 

standard classification and HMM methods. This improvement is due to the improved 

language model that biases selections towards English words rather than simply common 

character patterns. Because n-gram models only use a limited character history, they give 

high probability to strings that resemble correct patterns locally, which do not necessarily 

make sense in context (Table 1). Limitations in the language model result in incorrect prior 

distributions, which can mislead the classifier or cause the threshold probability to be met 

before sufficient observations were made.
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Online performance was consistent with the results from offline analysis, with only a small 

decrease in average performance. This decrease is largely due to a single subject (subject P) 

as the average bit rates of the remaining subjects (32.32 bits/min for HMM and 39.37 

bits/min for PF) are almost identical to the offline results (32.33 bits/min and 38.07 bits/min, 

respectively). A decrease was expected as online studies did not optimize the probability 

threshold, but this may have been offset by added user motivation resulting from feedback 

and free spelling [26].

Several subjects saw modest or no improvement over the HMM method. In general, the 

errors that these subjects saw were consistent with the language model. For instance, a typo 

that changes “UNITS” into “UNITY” cannot be solved by a single word language model as 

both are valid words. In this case, context would need to be incorporated into the system to 

truly determine the target character. For instance, previous words can help to determine the 

most likely part of speech of the current target word. This information could be used to 

change the probabilities on the automata, so that the model reflects the appropriate subset of 

the corpus.

Variance between subjects increased in online trials because allowing subjects to select the 

target sentence allowed for target strings that were not well represented by the training 

corpus for the language model. When implementing this system with “locked-in” patients, a 

targeted corpus could be developed that models likely words or phrases for a patient rather 

than a generic model of the English language. Such a model could also adapt based on 

context such as time of day or the subject’s environment. The model would then provide a 

stronger prior probability to the PF algorithm, resulting in faster selections and more 

accurate automatic error correction.

The performance of the PF algorithm was shown to be reliant on a sufficient number of 

particles as the algorithm failed to accurately classify characters for any subject when using 

only 10 particles. This is not surprising as undersampling the posterior distribution will not 

accurately reflect the true distribution, which can have highly volatile results. However, the 

algorithm proved fairly robust, as it was able to achieve good classification accuracy with as 

few as 100 particles and its results stabilized after increasing the number to 10,000. While 

the complexity of the algorithm is linear in the number of particles, it is important to limit 

the number used because of the short duration of a time step (125 ms) in the online system. 

In this instance, 10,000 is a reasonable number for online computation, but more particles 

will be needed as the complexity of the language model increases. Future implementations 

should be wary of the number of particles needed for a sufficient representation of the 

posterior distribution and the effect that will have on the performance of the classifier in a 

real-time setting.

4.1 Limitations and future directions

Final output strings from the PF algorithm could contain errors as it is not able to make all 

corrections automatically. Some errors are obvious to a reader and are unlikely to affect the 

ability of the user to convey intent. However, in some cases a small error can change the 

meaning of a sentence or make output incomprehensible. To handle these cases, the user can 

be given the option to make manual corrections in scenarios where the system is unlikely to 
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be able to make a correction automatically. The system could alternatively present the user 

with a set of the candidate outputs rather than simply selecting the most probable. In such a 

system, a row in the matrix could be replaced with a set of word options as in systems with 

an autocomplete method [27–28]. Studying the relationship between error rate in BCI output 

and reader understanding could provide insight into the impact of misclassifications and 

optimal strategies for correcting errors.

This study was conducted using healthy volunteers who did not have the same constraints as 

“locked-in” patients, such as restrictions to eye gaze. As a result, studies implemented in the 

target patient population are likely to yield lower bit rates and are also likely to be more 

variable as patients will have differences in severity of disease. The PF algorithm is 

expected to have a similar improvement for these subjects as it does not change the front end 

of the system that is presented to the user. Therefore, the signal quality is not affected and 

the classification improves by incorporating external language domain knowledge. 

Performance using the P300 speller system with language domain knowledge needs to be 

tested in the target patient population in order to measure the true effect on performance.

5 Conclusion

Typing with a P300 system can be modeled as a Bayesian process that can be indirectly 

observed through EEG response signals. Stochastic importance sampling effectively 

incorporates domain information into signal classification, which greatly improves a user’s 

ability to create language. This study shows that incorporating this natural language 

information significantly improves the performance of a BCI communication system.
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Figure 1. 
Example automaton for a reduced vocabulary consisting only of the words “a,” “the,” and 

“to.” Double circles represent possible termination states for a word. These states link back 

to the root node to represent the beginning of a subsequent word.
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Figure 2. 
Analysis of the sensitivity of offline results to the number of particles used. Results were 

computed for each subject in the offline dataset using cross-validation with the particle filter 

classifier and the specified number of particles. Selection accuracies were then computed 

and averaged across all subjects. Optimal classifier performance was achieved when using at 

least 10,000 particles.
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Table 1

String counts in the Brown corpus. Component trigrams for the string “_ing_” are common in the corpus, 

which results in a high probability in the trigram model, despite the exact string rarely occurring.

String Count Probability

__i 68440 0.07

_in 33783 0.49

ing 30454 0.34

ng_ 30035 0.78

_ing_ 1 ~0
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Table 4

Example online output for each of the tested methods. Each row is the result of subject Q attempting to spell 

“I want to be the very best like no one ever was to catch them is my real test” for five minutes. HMM* and 

PF* are the outputs of the two algorithms without error correction.

Method Output

TARGET I WANT TO BE THE VERY BEST LIKE NO ONE EVER WAS TO CATCH THEM IS MY REAL TEST

HMM* I WANT TE BERTHE VERY BEGN LIKE HELONE QVEREWAS TA C

HMM I WANT TO BERTHE VERY BEGN LIKE HELONE EVEREWAS TO C

PF* CFWANT TO BE THE WERE BESTSLIKE NO ONCHESER WAS TP CA

PF I WANT TO BE THE WERE BEST LIKE NO ONE EVER WAS TO CA
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