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Abstract

Given the fundamental roles of microRNAs (miRNAs) in physiological, developmental and 

pathological processes, we hypothesized that genes involved in miRNA biogenesis contribute to 

human complex traits. For thirteen such genes, we evaluated the relationship between transcription 

and two classes of complex traits, namely cellular growth and sensitivity to various 

chemotherapeutic agents in a set of lymphoblastoid cell lines. We found a highly significant 

correlation between protein argonaute-2 (AGO2) expression and cellular growth rate (Bonferroni-

adjusted p < 0.05), and report additional miRNA biogenesis genes with suggestive associations 

with either cellular growth rate or chemotherapeutic sensitivity. AGO2 expression was found to be 

correlated with multiple drug sensitivity phenotypes. Furthermore, small interfering RNA (siRNA) 

knockdown of AGO2 resulted in cellular growth inhibition in an ovarian cancer cell line 

(OVCAR3), supporting the role of this miRNA biogenesis gene in cell proliferation in cancer 

cells. Expression quantitative trait loci mapping indicated that genetic variation (in the form of 

both single nucleotide polymorphisms (SNPs) and copy number variations (CNVs)) that may 

regulate the expression of AGO2 can have downstream effects on cellular-growth-dependent 

complex phenotypes.
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Introduction

MicroRNAs (miRNAs), the non-coding small RNA molecules that have been shown to play 

important roles in post-transcriptional gene expression, are predicted to target a third of all 

human mRNAs (1,2). Studies have demonstrated the role of miRNAs in diverse cellular, 

developmental and pathological processes (3) as well as in drug sensitivity (4,5). Given the 

important role of miRNAs, we hypothesized that genes affecting miRNA biogenesis and 

function may broadly influence complex phenotypes, and altering the expression and/or the 

function of these genes may have substantial downstream phenotypic effects.

Many gene products have been found to be involved in miRNA biogenesis and function (6–

9). miRNA biogenesis is a highly complex and finely tuned series of biological processes, 

including transcription, nuclear processing, export from nucleus, and cytoplasmic 

processing. We selected thirteen genes that have been shown to be directly involved in 

converting primary miRNA to pre-miRNA (DGCR8 and DROSHA (RNASEN)), exporting 

pre-miRNA from nucleus to cytosol (RAN and XPO5), and regulating post-transcriptional 

and translational processes (DICER1, TARBP2, PRKRA, AGO1, AGO2, AGO3, AGO4, 

DDX20 and GEMIN4). Furthermore, to explore the functional significance of these genes as 

well as to evaluate the effect of genetic variation on their expression, we conducted our 

study in a collection of cell lines from the International HapMap project (10). The primary 

reason for the choice of such a discovery model is the readily available genomic, 

transcriptomic and miRNA expression data along with a wide range of phenotypic 

information (e.g. intrinsic cellular growth rate, cellular sensitivity to different drugs) in these 

cell lines (11–14).

In this study, we evaluated the expression correlation between each of the thirteen miRNA 

biogenesis/function related genes and cell growth rate and sensitivity to various drugs. 

Expression quantitative trait loci (eQTL) mapping was performed to quantify the effect of 

genetic variation (in the form of SNPs and CNVs) on the expression of these miRNA 

biogenesis genes. Functional validation experiment was carried out in cancer cell lines.

Materials and Methods

Cell lines

EBV-transformed B-lymphoblastoid cell lines (LCLs) from the International HapMap 

consortium were purchased from the Coriell Institute for Medical Research (Camden, NJ). 

Fifty-three unrelated CEU (Utah residents with northern and western European ancestry) 

and 54 unrelated YRI (Yoruba people from Ibadan, Nigeria) samples were used for this 

study. These LCLs were maintained as suspension cultures in RPMI 1640 with supplements 

described previously (15). For functional studies, OVCAR-3, an ovarian cancer cell line, 

was procured from ATCC (Manassas, VA) and grown as an adherent culture in RPMI-1640 

medium with 20% fetal bovine serum (Atlanta Biologicals, GA) and 0.01 mg/mL bovine 

insulin. OVCAR-3 cells were passaged every three days at a ratio of 1:3.
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Genomic, transcriptomic, microRNAomic expression information and intrinsic cellular 
growth rate, drug sensitivity data

We included in our study a total of 13 genes that have been shown to influence miRNA 

biogenesis and function (6–9). The expression levels of these genes in the HapMap samples 

were obtained from Gene Expression Omnibus (GEO, GSE7761) which was quantified 

using microarray-based gene expression profiling (Affymetrix GeneChip® Human Exon 1.0 

ST array).

Genome-wide miRNA expression in these HapMap samples were characterized using the 

Exiqon miRCURY LNA arrays v.10.0 (Exiqon array), obtained from GEO (GSE34406)

(4,16). SNP genotypes were downloaded from International HapMap database 

(www.hapmap.org, release 27). CNV data were obtained based on the Conrad et al 2010 

publication (17).

We have previously generated an intrinsic cellular growth (iGrowth) phenotype in over 500 

HapMap LCLs (11). The iGrowth for the CEU and YRI samples were used in this study. 

Data on sensitivity to chemotherapeutic drugs carboplatin, cisplatin, daunorubicin and 

etoposide were queried using a publicly available pharmacogenomics resource we 

developed (www.PACdb.org) (14).

Integrative analysis of miRNA biogenesis genes, miRNA expression, genomic and other 
cellular phenotypes

We combined the CEU and YRI samples and performed linear regression of gene expression 

against iGrowth or IC50 for each drug independently with the ancestral group as covariate. 

Linear regression analysis was also performed for each of the cellular phenotypes in the 

HapMap CEU and YRI samples separately using the R Statistical Software (http://www.r-

project.org/) (18). For this study, Bonferroni-adjusted p < 0.05 was considered significant, 

but we report all suggestive associations (p<0.05).

SNP and CNV associations with miRNA biogenesis gene expression were identified using 

SCANdb (www.scandb.org), an online gene expression regulation database we developed 

(19). SNP and CNV associations with cellular growth rate and drug sensitivity were 

evaluated by generalized linear regression assuming an additive genetic model. The 

presence of a negative correlation between expression of a miRNA biogenesis gene and 

genome-wide miRNA expression was tested through linear regression.

Functional validation

Functional evaluation of the biological role of AGO2 was subsequently conducted in 

OVCAR-3 cell line, an ovarian cancer cell line. The rationale for selecting OVCAR-3 cells 

as a model was the observed common over-expression of AGO2 in primary ovarian cancers 

(data obtained through The Cancer Genome Atlas [TCGA] data query (Supplemental Fig 

1)). Gene knockdown was conducted through small interfering RNA (siRNA). Specifically, 

siAGO2 (Cat. No. 1027416, 25nM) and scrambled control (AllStars negative control 

siRNA, Cat No. 1027292), were purchased from Qiagen. Transfection experiments were 

conducted using DharmaFECT 1 (Dharmacon™). The effect of transfection was confirmed 
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by measuring AGO2 expression at 0, 24 and 48 hours post transfection using quantitative 

PCR (qPCR). The cellular growth rate was measured using CellTiter-Glo luminescent cell 

viability assay (Promega) at 0, 24, 48 and 72 hours post transfection. Two-way ANOVA 

was performed to compare cellular growth rate obtained after siAGO2 and that from 

scramble control. P<0.05 was considered statistically significant for validation.

Results

miRNA biogenesis/function related genes in human complex traits

The expression levels of 13 genes directly involved in miRNA biogenesis and function were 

compared with iGrowth and sensitivity to each of 4 chemotherapeutic agents (carboplatin, 

cisplatin, daunorubicin and etoposide) independently. In the pooled CEU and YRI samples, 

AGO2 (p=4×10−6) showed a highly significant correlation (Bonferroni-adjusted p < 0.05) 

with iGrowth, and several additional miRNA biogenesis genes showed suggestive 

associations: DGCR8 (p=0.0002), DROSHA (p=0.075), PRKRA (p=0.033) and TARBP2 

(p=0.066). Higher AGO2 expression was correlated with faster cellular growth in the 

combined CEU and YRI LCLs (Figure 1A). In each ancestral group (CEU or YRI), 3 genes 

had expression levels that were correlated with at least one of the four drug IC50s (Table 1 

for all nominal associations, p<0.05). Notably, AGO2 expression was correlated with almost 

all drugs evaluated in both populations with increasing expression level resulting in lower 

IC50, suggesting greater sensitivity to these agents (Figure 1B and 1C).

Functional validation of AGO2 in a cancer cell line

To explore the role of miRNA biogenesis genes in cancers, we analyzed The Cancer 

Genome Atlas (TCGA) dataset, in which a large number of tumors representing over 20 

different types of cancers have undergone genomic profiling (http://www.cbioportal.org/

public-portal/), for the miRNA biogenesis genes. We found that genetic mutations and 

altered gene expression are common for AGO2 in various types of cancers (including 

ovarian, breast, liver, prostate, uterine, head and neck cancers). More importantly, over 30% 

of the primary ovarian cancer samples evaluated by TCGA showed AGO2 over-expression 

relative to normal, making ovarian cancer a good candidate in evaluating the role of AGO2 

through gene knockdown (Supplemental Figure 1).

We conducted AGO2 inhibition experiment in an ovarian cancer cell line (OVCAR3) using 

siRNA. The transfection of siAGO2 resulted in significantly decreased expression of AGO2 

compared to scramble control (quantified through qPCR. Supplemental Figure 2). 

Subsequently, we observed a significant cellular growth inhibition after siAGO2 transfection 

when compared to that of control (two-way ANOVA p=0.036, Figure 2). This growth 

inhibition effect is most pronounced at 72 hours post transfection (t-test p= 0.002).

Genetic variation, miRNA biogenesis genes and downstream miRNA expression

To identify genetic effect on the miRNA biogenesis genes, we performed eQTL mapping for 

the 13 miRNA processing genes. We found a number of expression-associated SNPs 

(eSNPs, at nominal p≤10−4) for each of the 13 genes in either the CEU or YRI samples 

(Supplementary Table 1). In addition, a number of CNVs were found to be associated with 5 
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of these 13 genes (p≤10−4, Supplementary Table 1), including CNVR5446_full and 

DROSHA (CEU, p=4.1E-5), CNVR841.1 and DICER1 (YRI, p=1.4×10−5), CNVR5184_full 

and AGO2 (YRI, p=5.1×10−6), CNVR81.1 and AGO3 (YRI, p=2.6×10−5) and CNVR6423.1 

and GEMIN4 (YRI, p=2.3×10−5).

We tested the identified eSNPs for association with cellular growth. Particularly for AGO2, 

38 eSNPs were identified in CEU (p≤10−4, MAF>0.1). An example of such an eSNP 

(rs10508745) for AGO2 is shown in Fig 3A (p=0.0001). Notably, this SNP rs10508745 was 

also associated with cellular growth rate in CEU (Fig 3B, p=0.0006). A CNV 

(CNVR5184_full) was significantly associated with AGO2 expression in YRI (Fig 3C, 

p=5×10−6); CNVR5184_full was also associated with cellular growth rate in this population 

(Fig 3D, p=0.006).

For 12 of the 13 miRNA biogenesis genes, we found significant negative correlations 

between gene expression and miRNA expression in the HapMap samples (p≤10−4, 

FDR<0.05). The one exception was AGO2, for which we did not observe expression 

correlation between AGO2 and any of the miRNAs (p>0.05), suggesting that AGO2 may 

affect miRNA function rather than expression.

Discussion

In this study, we evaluated the effect of key miRNA biogenesis genes on two human 

complex traits (cellular proliferation and drug sensitivity) with implications for a range of 

complex phenotypes and implicated AGO2 in cellular proliferation and cellular sensitivity to 

drug. The effect of AGO2 in cell growth was originally observed in LCLs derived from 

apparently healthy individuals and subsequently validated in an ovarian cancer cell line.

It has been shown that genes involved in miRNA biogenesis can affect multiple human 

physiological and pathological functions. For example, DICER was found to play an 

essential role in thyroid function (20), hepatocyte survival, metabolism, tumor suppression 

(21) and in tumorigenesis (22). RNASEN (DROSHA) regulates cell proliferation and affects 

survival in esophageal cancer patients (23). RNASEN, DGCR8, DICER, TARBP2, and 

PRKRA were found to interact with miRNAs and affect liver regeneration (24). 

Furthermore, factors affecting miRNA biogenesis and function may also affect an 

individual’s susceptibility to pollutants (25) and sensitivity to drugs (26). Kovalchuk et al. 

observed decreased protein expression of DICER and Argonaute 2 (encoded by AGO2) in 

the doxorubicin resistant MCF-7 breast cancer cell line compared to the parent doxorubicin 

sensitive MCF-7 cells (26).

AGO2, a gene coding Argonaute 2 protein, plays a significant role in the regulation of post-

transcriptional and translational processes through miRNA and siRNA (27). It is an 

important component of RNA induced silencing complex (RISC) catalyzing RNA 

interference (RNAi) (28) which leads to alteration of many bioprocesses. In our study, the 

expression of AGO2 was found to be highly correlated with cellular proliferation in LCLs 

and with cellular sensitivity to multiple chemotherapeutic agents. Given the mechanism of 

action for these cytotoxic agents, for which cytotoxicity is highly dependent on cellular 
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proliferation rate (29), it is plausible that the observed relationship between AGO2 

expression and drug sensitivity may be a consequence of this gene’s effect on cell growth. 

To examine the correlation between AGO2 and cell growth in cancers, we utilized the 

comprehensive TCGA data. We found AGO2 is commonly over-expressed in many cancers 

when compared to the adjacent normal tissue. This observation finds support in the 

literature. For example, up-regulation of AGO2 mRNA and protein was observed in 

urothelial carcinoma of bladder compared to paired normal bladder (30). Chang et al. 

reported AGO2 over-expression in head and neck squamous cell carcinoma (HNSCC) cells 

(31). Multiple myeloma cell lines showed increased expression of AGO2 through DNA copy 

number gain (32) while AGO2 was overexpressed in pleural effusions when compared to 

primary ovarian caricinoma in patients with disease that spread beyond the ovary (33). In 

addition, knocking down AGO2 was shown to induce apoptosis in HL-60 (myeloid leukemia 

cells) and was, furthermore, involved in regulation of siRNA mediated RNAi pathways in 

HEK-293 cells (34). However, to our knowledge, no study to date has reported on the effect 

of AGO2 in ovarian cancer. Our AGO2 knockdown experiment in OVCAR3 resulted in 

decreased cell proliferation in ovarian cancer. Taken together, we have shown evidence of 

the effect of AGO2 on cell proliferation in both normal and cancer cells.

To further examine how AGO2 affects cell proliferation, we performed expression 

correlation study between this gene and all expressed miRNAs in the genome. Surprisingly, 

we did not observe any expression correlation between AGO2 and any of the miRNA 

expression in HapMap samples. AGO2 is one of the 4 argonaute proteins (AGO1-AGO4) 

that play major roles in guiding siRNAs or miRNAs to perform post-transcriptional gene 

silencing or activation (35). AGO1, AGO3 and AGO4 are present as tandem copies on 

chromosome 1 whereas AGO2 is present on its own on chromosome 8. Differing from the 

other 3 AGO subfamily proteins, AGO2 can carry out both site-specific cleavage and non-

cleavage mediated inhibition while the other AGO proteins are restricted to non-cleavage 

mediated inhibition (36). Based on these, we speculated that the variable AGO2 expression 

may result in differential miRNA-target gene binding, with downstream regulation of 

various cellular processes, rather than having a direct effect on miRNA expression.

Lastly, we hypothesized that genetic polymorphisms (in the form of SNPs and CNVs) that 

regulate the expression of genes in the miRNA biogenesis pathway may influence cellular 

growth. Indeed, we identified several SNPs/CNVs that were associated with the 

transcription of miRNA biogenesis genes. Both, the SNP rs10508745 and a CNV 

(CNVR5184_full) were associated with AGO2 expression and with cellular growth. These 

findings support a highly complex network of relationships among genetic variants, miRNA 

biogenesis and biological function.

In summary, through a comprehensive evaluation of 13 miRNA biogenesis genes, we found 

that AGO2 expression was associated with both cellular growth rate and sensitivity to 

multiple chemotherapeutic drugs. AGO2 inhibition results in cellular growth inhibition in an 

ovarian cancer cell line. Finally, eQTLs for AGO2 may provide genetic effects on cellular 

proliferation.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AGO1 Argonaute RISC catalytic component 1

AGO2 Argonaute RISC catalytic component 2

AGO3 Argonaute RISC catalytic component 3

AGO4 Argonaute RISC catalytic component 4

CEU Centre d’Etude du Polymorphisme Humain (CEPH) people from Utah, USA

CNV Copy Number Variation

DDX20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 20

DGCR8 DiGeorge syndrome critical region gene 8

DICER1 Drosophila, Homolog of, 1

eQTL expression Quantitative trait Locus

FDR False Discovery Rate

GEMIN4 Gem (nuclear organelle) associated protein 4

GEO Gene Expression Omnibus

HNSCC Head and Neck Squamous Cell Carcinoma

iGrowth Intrinsic cellular growth

LCLs Lymphoblastoid Cell Lines

miRNA microRNA

PRKRA Protein kinase, interferon-inducible double stranded RNA dependent activator

RAN Ras-related nuclear protein

RNAi RNA interference
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RNASEN Ribonuclease type III, nuclear

siRNA small interfering RNA

SNP Single Nucleotide Polymorphism

TARBP2 TAR RNA-binding protein 2

TCGA The Cancer Genome Atlas

XPO5 Exportin-5

YRI Yoruba people from Ibadan, Nigeria
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Figure 1. Relationships among AGO2 expression, cellular growth rate and drug sensitivity in the 
HapMap LCLs
A) Correlation between AGO2 expression and cellular growth rate in HapMap CEU and 

YRI samples (n=107); B) Correlation between AGO2 expression and each of four drug 

sensitivity phenotypes in HapMap CEU samples (n=53); and C) Correlation between AGO2 

expression and each of four drug sensitivity phenotypes in HapMap YRI samples (n=54). A 

“*” next to the drug name represents suggestively significant correlation between AGO2 

expression and drug IC50 (p<0.05). All drug IC50 values are in μmol unit.
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Figure 2. The effect of AGO2 inhibition on OVCAR-3 cellular growth
Significant inhibition of cell growth observed in OVCAR3 at 72 hours post-transfection (t 

test p=0.002, two-way ANOVA, p=0.036). Cellular growth was determined using CellTiter 

Glo reagent. “si” represents siRNA treatment while “scr” represents the control experiment.
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Figure 3. Genetic variations associated with AGO2 expression are also associated with cellular 
proliferation
A) rs10508745 and AGO2 expression association in HapMap CEU samples (p=0.0001); B) 

rs10508745 and cellular growth rate association in CEU (p=0.0006); C) CNVR5184_full 

and AGO2 expression association in YRI (p=5×10−6); D) CNVR5184_full and cellular 

growth rate association in YRI (p=0.006).
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Table 1

miRNA biogenesis genes whose expression levels correlated with a drug IC50 (P<0.05).

Genes Drugs Population Beta value P-value

DGCR8 daunorubicin YRI 0.079935 0.0027

DGCR8 etoposide YRI 0.055369 0.0003

AGO2 carboplatin CEU −0.13163 0.0023

AGO2 cisplatin CEU −0.08967 0.0003

AGO2 daunorubicin CEU −0.086 0.0043

AGO2 etoposide CEU −0.03606 0.0123

AGO2 cisplatin YRI −0.06142 0.0244

AGO2 daunorubicin YRI −0.05969 0.0181

AGO2 etoposide YRI −0.03971 0.0259

AGO3 daunorubicin CEU −0.0772 0.0337

GEMIN4 cisplatin CEU −0.05419 0.0407

GEMIN4 daunorubicin CEU −0.09949 0.0030

GEMIN4 etoposide CEU −0.044 0.0301

PRKRA etoposide YRI −0.04417 0.0366
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