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Abstract

The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown 

tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy 

presents a unique opportunity to incorporate advanced systems and synthetic biology approaches 

to create cancer therapeutics with novel functions. Here, we first review the development of 

synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell 

activity against tumors. In addition, we discuss the cellular engineering and genome editing of 

host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce 

the time and cost of manufacturing.

Keywords

Synthetic biology; genetic circuits; chimeric antigen receptors; immunotherapy; cancer

Emergence of cellular immunotherapy

The intricate relationship between tumors and the immune system has been the subject of 

intense research, providing both insight into cancer progression [1, 2] and an arena for 

therapeutic intervention [3]. The immune system can directly attack tumors, and harnessing 

this power to eradicate tumors is a major goal in immunotherapy. The involvement of the 

immune cells in combating tumors was demonstrated when a lower rate of relapse was 

observed in cancer patients who underwent a hematopoietic stem cell transplant (HSCT) 

(see Glossary) to replace their bone marrow after chemotherapy [4–6]. This effect has been 

attributed to fresh T cells from the transplant engaging and killing the tumor in a graft-

versus-tumor (GVT) response. However, this response is also correlated to graft-versus-host 

disease (GVHD), wherein the donor T cells begin to attack the host’s own tissue. This 

potential autoimmune response has limited the use of stem cell transplants for cancer 

treatment as a universal solution. Instead, aiding a patient’s own immune system to fight 

cancer may provide more viable, widespread therapies. However, cancer cells have also 

evolved strategies to oppose immune action [2, 3, 7]. As such, a major goal of cancer 

immunotherapy is to overcome these immunosuppressive mechanisms, including the use of 
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cytokines to promote T cell proliferation [8–10] or antibody checkpoint blockers to prevent 

the signaling of inhibitory or apoptotic pathways of a T cell [11–13]. Cytokines and 

checkpoint blockers have shown great promise in therapy [14, 15], and several high profile 

drugs have been approved in recent years. These forms of immunotherapy aid the body’s 

response against cancer, but immune cells can also be directly used as therapeutic agents.

Cells are inherently capable of carrying out complex computations and responses, and the 

immune system in particular is composed of cells designed to perform cytotoxic tasks 

through careful assessment of targets. Adoptive T cell therapy, the use and engineering of a 

patient’s T cells as therapeutic agents, has emerged as a promising branch of 

immunotherapy (Figure 1 A). Much of the current success in adoptive T cell therapy is 

derived from the genetic engineering of tumor-targeting receptors. However, synthetic 

sensors, switches, and circuits are also being explored to improve efficacy and safety by 

providing greater control over the location, duration, and magnitude of T cell activity 

(Figure 1C). Synthetic biology, an emerging discipline aimed at reprogramming living 

organisms through the combined use of genetics, engineering principles, and systems and 

computational analysis [16–18], is primed to deliver the genetic tools necessary to enhance 

the control of these living therapies and explore T cell behavior [19]. In addition to the 

introduction of exogenous sensors and circuits, the endogenous machinery of the host cell 

(chassis) presents numerous opportunities for tinkering and optimization (Figure 1C). 

Therefore, cellular engineering and genome editing of T cells are also under active 

investigation [20, 21]. Much akin to the role synthetic chemistry plays in transforming the 

development of small molecule drugs, synthetic biology approaches are becoming a major 

engine in driving the progress of adoptive T cell therapy.

Genetic engineering and cellular immunotherapy: a potent combination 

against tumors

One of the most promising and earliest forms of adoptive T cell therapy involves the use of a 

patient’s tumor-infiltrating lymphocytes (TILs), which are T cells extracted from the tumor. 

These isolated TILs were expanded ex vivo, and then transfused back into the patient to treat 

cancer [22]. Due to their inherent ability to locate and traffic to the tumor site, TILs have 

had some success against melanoma in clinical trials [23, 24]. However, the identification 

and isolation of TILs in sufficient quantity from a patient is challenging, limiting their 

potential [25]. The shortcomings of TILs have accelerated efforts to redirect the specificity 

of T cells towards cancer rather than relying on the isolation of T cells with inherent tumor-

targeting capability. A patient’s T cells can be modified with genes that encode tumor-

targeting receptors that will “teach” the T cell to bind and kill cancer cells [25]. In this 

process, T cells (typically CD8 T cells) are collected from the patient, genetically modified 

ex vivo to express the receptor, and then transfused back into the patient. Two different types 

of receptors have been used for this purpose. One is a T cell receptor (TCR) that is 

engineered to detect cancer epitopes [26, 27]. The other is a chimeric antigen receptor 

(CAR) that is composed of a cancer antigen-specific single chain variable fragment (scFv) 

fused to T cell signaling domains that trigger activation and proliferation [28, 29] (Figure 

1B). The design of CARs has undergone some engineering through the choice and addition 
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of different T cell signaling domains that can drive activation or proliferation, resulting in 

therapeutic variations between these different designs. TCRs and CARs are distinguished 

from one another by the type of cancer antigen they recognize. TCRs on CD8 T cells 

recognize protein epitopes derived from proteins expressed in the cell and presented on the 

surface by the major histocompatibility complex-1 (MHC-1). CARs bind to markers 

expressed at the surface of the cell.

Both TCR- and CAR-based therapy have been tested in clinical trials with promising results. 

In one clinical trial treating 20 patients with melanoma using TCRs targeted towards 

Melanoma Antigen Recognized by T cells 1 (MART-1), 33% of the patients demonstrated 

objective responses (Clinical Trials: NCT00509288, NCT00509496) [27]. Treatment of 

lymphoid leukemia with CD19-specific CARs have shown up to a 90% complete response 

rates (Clinical Trials: NCT01044069, NCT01626495, NCT01029366, NCT01593696) [30–

33], though similar clinical success in CAR-based targeting of myeloid leukemia has not 

been achieved yet (Clinical Trials: NCT01864902, CTX 08-0002) [34, 35].

Although extremely encouraging and commonly considered to be breakthroughs in the fight 

against cancer [36], toxicities have been observed in clinical trials associated with both 

forms of engineered T cell therapy [31, 37]. The selectivity between tumors and vital organs 

is an especially significant safety issue that has emerged with both TCRs and CARs [37]. 

The identification of target epitopes and antigens for these therapies is limited by the 

potential for expression of these targets on non-cancerous cells, which could lead to 

autoimmune responses against healthy tissue. MART-1 has demonstrated this “on-target, 

off-tumor” autoimmune toxicity in TCR therapy [27]. And in one trial using an ERBB2-

specific CAR to treat a patient with colon cancer, the patient died after the CAR-bearing T 

cells responded to low levels of ERBB2 in the vital organs (Clinical Trial: NCT00924287) 

[38].

Another major safety concern is the potential for an excessively strong, life-threatening T 

cell response. In clinical trials using CARs to treat leukemia, the release of large amounts of 

cytokines [30], or cytokine release syndrome (CRS), has led to severe symptoms including 

high fever, hypotension, and hypoxia [30]. CRS has been treated with immunosuppressive 

steroids and antibodies to temper the response of the immune system [33]. A recent clinical 

trial was also conducted to determine the maximum load of CAR-bearing T cells that can be 

given to a patient while minimizing the severity of CRS [33].

Despite these adverse side effects, the promising results of adoptive T cell therapy in clinical 

trials have generated enormous enthusiasm, which has led to numerous joint ventures, 

acquisitions, and collaborations within the pharmaceutical industry, as well as between 

industry and academia (Table 1). In particular, CARs have attracted the most attention 

because of their extraordinarily positive clinical trial results (Table 1). Both the success of 

these clinical trials and the significant financial investment from the industry heighten the 

urgency to engineer a cell-based therapy that is effective and safe, as well as to design 

practical strategies that will make manufacturing these therapies cheaper and faster.
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Synthetic receptors and circuits for spatiotemporal control of T cell activity

Current T cell therapies, although promising, all share a similar design that triggers the same 

signaling pathways in response to a single target antigen. In this section, we review the next 

wave of receptor designs that expand the signaling pathways triggered, enhance specificity, 

or provide inducible controls over the therapy. Furthermore, we also discuss the 

development of drug-inducible switches and circuits that will endow additional 

spatiotemporal control over the T cell response.

Receptors

Next generation receptors—Understanding how receptors affect T cell response is 

particularly important to the implementation of CAR-based therapy due to the novel nature 

of CARs. The design of CARs has undergone changes over time, and the second generation 

of CARs contains an intracellular proliferative domain derived from either CD28 or 4-1BB 

(Figure 2A). The choice of proliferative domain has led to divergent therapeutic outcomes 

that have been further explored in vitro [30–33, 39]. In clinical trials, the CD28 domain has 

been associated with faster short-term expansion, but also shorter persistence compared to 

trials that use the 4-1BB domain. Developing CARs with different signaling domains could 

lead to the development of receptors with varied properties and in turn, treatments that are 

more complex and oriented around a patient’s specific needs. An inhibitory CAR (iCAR) 

has been developed using signaling domains from inhibitory pathways to suppress T cell 

activity upon binding to antigens from healthy cells [40], demonstrating the potential to 

reprogram the functionality of CARs using different signaling domains. A library approach 

has been used to test for different proliferative domains and their ability to drive anti-tumor 

activity [39, 41]. Similar approaches to systematically map the effect of parameters that 

describe different signaling domains to therapeutic outcomes will provide valuable 

information for the optimal design of T cell therapy.

Combinatorial receptor system—A major concern in adoptive T cell therapy is the 

potential for severe side effects due to the inadvertent attack on healthy tissue by engineered 

T cells [37, 38]. Improving the specificity of the T cell towards cancer represents a high 

priority in this field, and multiple strategies are being explored to identify tumor-specific 

antigens [42–47]. However, due to the heterogeneous nature of tumors, a single antigen is 

unlikely to uniquely distinguish all tumors from healthy tissues. Requiring the T cell to 

recognize two targets for full activation and proliferation will increase specificity towards 

the intended cancer cells, which has been achieved using a combinatorial activation system 

consisting of a low-activating CAR and a chimeric costimulatory receptor (CCR) [48, 49] 

(Figure 2B). The CAR and CCR each recognize different antigens, and antigen recognition 

by both receptors is required to drive full activation and proliferation of the T cell. This 

combinatorial activation system demonstrated promising selectivity in mouse models [48].

Split receptor systems—While specificity is critical to the outcome of T cell therapy, 

the magnitude and duration of T cell response will also influence the severity of any side 

effects that arise. Novel split receptor designs where full activation of the engineered T cell 

requires both the antigen target and an exogenous factor (such as a drug or antibody) are 
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under investigation. These systems provide a method to titrate the response of the T cell 

through dosage of the secondary activating factors. For example, the GoCAR-T designed by 

Bellicum Pharmaceuticals contains a CAR that, similar to the combinatorial activation 

system, is split into the antigen-responsive activation domain and a co-stimulatory domain 

[50] (http://www.bellicum.com/technology/gocart/) (Figure 2B). The co-stimulatory domain 

is fused to a rimiducid-inducible homodimerizer domain. For full activation of the T cell, 

binding to both rimiducid and the antigen is required.

Unum Therapeutics is also developing an alternative “universal CAR” design using their 

Antibody-Coupled T cell Receptor (ACTR) system (http://www.forbes.com/sites/

brucebooth/2014/10/21/cellular-immunotherapy-unum-therapeutics-out-of-many-one/). 

ACTR contains the same T cell signaling domains as the current CARs, but the scFv is 

replaced with the extracellular portion of CD16, a receptor that binds to the constant 

fragment of antibodies [51] (Figure 2B). With ACTRs, any clinically relevant cancer-

specific antibody can, in theory, be administered to the patients. The antibody binds to the T 

cell through CD16, which triggers T cell activation upon antigen binding. With the 

prevalence of commercially available, cancer-specific antibodies, the ACTR system can 

rapidly expand the repertoire of potential targets for engineered T cells. These split systems 

illustrate the potential of separating target recognition from T cell activation, providing a 

bedside “on-demand” control of therapeutic strength and duration through the addition of a 

drug or antibody.

Chemokine receptors—A major barrier to the success of T cell-based therapy against 

solid tumors is the marked reduction of T cell trafficking to the tumor microenvironment 

[52]. The irregular blood flow and endothelium modification found in a tumor mass restricts 

T cell adhesion and infiltration [53]. Recent in vivo results have shown that localized 

delivery to the tumor can improve T cell activity against a solid tumor [54], and a 

biopolymer implant has been developed to provide localized delivery in conjunction with 

cytokines to improve T cell proliferation [55]. T cell localization can also be improved by 

directing their migration machinery toward signals derived from tumors. In T cells, the 

overexpression of CXCR2, a receptor that binds to the tumor-derived chemokine Growth-

Regulated Oncogene-α, drove preferential trafficking to the site of the tumor [56, 57]. 

Another approach to direct T cell infiltration into tumors is to introduce small molecule-

inducible chemotaxis receptors into the T cell, which can be achieved using engineered G 

protein-coupled receptors called RASSLs that are activated solely by a synthetic ligand [58] 

(Figure 2C). The induction ligand can be added to the site of the tumor, directing T cell 

traffic towards the cancerous cells. Using this system, the migration of engineered T cells 

can be controlled in mice in response to localized delivery of the small molecule clozapine-

N-oxide (CNO) [59].

Control switches and circuits

Kill switches—Designed to increase the safety of the therapy, inducible kill switches are 

simple circuits that provide a mechanism to terminate a T cell therapy if the patient exhibits 

severe side effects [60, 61]. Several drug-inducible kill switches have been tested in clinical 

trials for this purpose. In patients who received allogeneic bone marrow transplants (allo-
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BMT), the transplanted T cells were modified to express herpes simplex virus-thymidine 

kinase (HSV-TK), which drives apoptosis in the cell upon addition of ganciclovir [62]. 

Patients who developed GVHD were treated with ganciclovir, triggering apoptosis in the 

modified T cells. However, induced killing of T cells was not complete, and the viral origins 

of HSV-TK led to immunogenic responses [63]. CD20 and an inducible Caspase 9 (iCasp9) 

(Figure 3A) are being explored as possible alternatives due to their human origins [63, 64]. 

In particular, iCasp9 has been tested in vivo in conjunction with a CD20-specific CAR to 

demonstrate its potential to eliminate CAR-bearing T cells [65]. In a clinical trial to treat 

leukemia patients receiving stem-cell transplants, donor T cells were modified to express 

iCasp9. In patients who developed GVHD, induction of iCasp9 activity killed more than 

90% of the transgenic T cells within 30 minutes of induction, successfully controlling 

GVHD with no observed immunogenicity [66]. This system is under commercial 

development by Bellicum Pharmaceuticals (Table 1) [67].

Pause switch and amplitude limiter—While inducible kill switches provide vital 

control over the safety of adoptive T cell therapy, they ultimately limit the benefit a patient 

might receive from the treatment. Modulating the T cell response through other circuits can 

enable physicians to fine tune the immune response before resorting to termination of the 

therapy.

The bacterial virulence proteins OspF and YopH can modify the activity of a critical kinase 

in TCR signaling pathways to reduce T cell activation [68, 69]. With these proteins as 

effectors in genetic circuit design, the behavior of the T cell can be further controlled. For 

example, a library expressing OspF or YopH under a series of TCR-responsive promoters 

were designed as a negative feedback loop to reduce the amplitude of T cell activation [70] 

(Figure 3B). The amplitude could be furthered adjusted by tagging the OspF or YopH with a 

degradation tag. This circuit could be used to lower the activation of an engineered T cell, 

potentially reducing the severity of CRS. OspF and YopH were also used to design an 

inducible pause switch for T cells [70] (Figure 3C). By expressing the proteins under a 

doxycycline-inducible promoter, the T cell activity could be paused upon addition of 

doxycycline. This circuit presents an alternative to the inducible kill switch, allowing for the 

therapy to stop without completely destroying the cells involved so that they may be used 

again.

Growth switch—Increasing the growth of T cells will lead to greater persistence of the 

therapy, while decreasing the growth can potentially limit the severity of CRS. Therefore, a 

drug-inducible controller for the growth of engineered T cells can provide a powerful “dial” 

to regulate the efficacy and safety of the therapy. A ribozyme switch to regulate the 

expression of the cytokines IL2 or IL15 has been developed such that without the addition of 

a drug, the cytokine-ribozyme mRNA self-cleaves and no cytokine is produced [71] (Figure 

3D). The addition of a drug prevents self-cleavage, allowing cytokine production that drives 

proliferation of the T cell. While T cell expansion can conceivably be controlled by adding 

cytokines directly to the patient or expressing transgenes under inducible promoters, a large 

cytokine dosage can lead to systemic toxicity in the patient [72], and the packaging of large 
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amounts of transgenes can be challenging [73]. An RNA-based system allows for specific 

control that is easy to deliver and non-immunogenic.

Host cell (chassis) engineering and genome editing in adoptive T cell 

therapy

Another important design criterion of adoptive T cell therapy is deciding the best cell type 

for therapy as the type of T cell used has a direct role in the efficacy of the treatment. In 

particular, naïve and early effector T cells are more effective at treating tumors in mice than 

differentiated effector T cells [74]. This effect was attributed to several characteristics, 

including the entry of differentiated effector T cells into a proapoptotic state and an inability 

to produce IL-2. Therefore, using T cells that are less differentiated could potentially 

increase their efficacy.

Cellular engineering of chassis

Engineering T cells to bias a population towards the naïve phenotype before transfusion 

back into the patient is an attractive possibility to boost the antitumor effect of the therapy 

[21]. Increasing evidence illustrates the importance of metabolism on T cell development 

and differentiation. In particular, differentiation into effector T cells is accompanied with a 

transition from oxidative phosphorylation to aerobic glycolysis [75]. Limiting the cells’ 

dependence on glycolysis can prevent T cells from differentiating into effector cells [76]. 

Hence, a metabolic engineering strategy can be employed to limit glycolysis by lowering the 

expression of the glucose transporter Glut 1 or by reducing the activation of the protein 

kinase Akt, a glycolysis enhancer [77] (Figure 4A).

In addition to using more naïve T cells, promoting the development of the memory T cell 

phenotype (particularly central or stem cell memory) may help prevent relapse of the disease 

[78]. Limiting glycolysis can also help to promote memory T cell formation, as can the 

enhancement of fatty acid oxidation (FAO) [79, 80]. For instance, the addition of metformin, 

an activator of AMPK that promotes fatty acid oxidation, limits CD8+ effector T cell 

differentiation while increasing CD8+ memory T cell development (Figure 4A) [79]. 

Moreover, the overexpression of CPT 1, a critical fatty acid transporter, had been shown to 

increase FAO and promoter memory T cell formation in mice [79].

RNA interference and genome editing

Clinical trials with CARs have demonstrated significant promise against hematological 

cancers such as leukemia, but solid tumors remain a major challenge due to their 

immunosuppressive microenvironment [2]. For example, tumors can deplete the 

microenvironment of tryptophan [7] while also expressing factors to promote regulatory T 

cell development [81] and effector T cell death [82]. Antibody drugs such as ipilimumab 

(anti-CTLA-4) and pembrolizumab (anti-PD-1) attempt to address the challenges presented 

by the microenvironment by blocking inhibitory or apoptotic signals in T cells. However, 

given the complexity of the tumor microenvironment, a greater understanding of the T cell’s 

response to these challenges can help in the development of novel strategies to improve their 

performance in adoptive T cell therapy.
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Analyzing how the disruption of certain genes within a T cell affects survival in a tumor can 

provide insight into the development of a stronger tumor-penetrating T cell. Given the large 

number of genes within the T cell, a library approach to gene disruption would be especially 

valuable for identifying novel factors at play in the T cell. One such shRNA knockdown 

library was used in an in vivo screen, revealing the potential of the Ppp2r2d knockdown to 

promote anti-tumor activity [83]. Similar approaches using gene activation libraries could 

reveal important factors to promote T cell activity, and exploring tools for multiplexed 

activation and knockdown libraries could also illustrate the more complex responses in a T 

cell that would be beneficial to target in therapy [84–86].

In addition to making T cells more adept at navigating the tumor microenvironment, T cells 

can be engineered to be both safer and easier to produce for therapy. Acquiring and 

modifying a patient’s T cells is a very involved process, and potential costs are estimated to 

be as high as $500,000 (http://www.wsj.com/articles/new-costly-cancer-treatments-face-

hurdles-getting-to-patients-1412627150). Currently, using a patient’s own T cells is 

important to prevent GVHD. However, a cell-based therapy could mitigate some of the 

challenges of large scale, personalized therapy if, similar to a blood bank, healthy donors 

could provide T cells. This sort of T cell bank would ideally provide “off-the-shelf” cancer-

killing cell products that can be manufactured at a large scale and implemented on demand.

T cells could be modified for this universal cell-based therapy by disrupting the donor T 

cells’ endogenous TCR, rendering them responsive only to targets programmed by the 

chosen cancer-targeting receptor (Figure 4B). A zinc finger nuclease has been used to 

eliminate endogenous TCR chain expression in a T cell that also expressed a CD19-specific 

CAR [87] (Box 1). This potential for an “off-the-shelf” therapy is valuable for 

pharmaceutical companies, and several companies with adoptive T cell portfolios are 

investing in companies with expertise in DNA nucleases technologies (Table 1).

A similar approach could be used to reduce the risk of immunogenicity of an engineer T 

cell. By disrupting expression of the T cell’s MHC, or human leukocyte antigen (HLA), 

which is involved in presenting potential antigens on the surface of a cell for detection by 

other T cells [88] (Figure 4B). By removing HLA expression, a T cell would no longer be 

able to present potential epitopes at the surface, which would prevent an immunogenic 

response to any of the components involved in CAR expression or other circuitry.

Concluding remarks and future perspectives

Living cells are increasingly viewed as an attractive platform for designing the ultimate 

smart therapeutics [19] due to their extraordinarily sophisticated systems to sense and 

respond to challenges as well as their flexibility in accommodating genetic modification. 

Given that the genetic engineering strategies discussed in this review for improving adoptive 

immunotherapy are not mutually exclusive, an intriguing possibility is to combine several, 

or even all, of the technologies together to generate extremely sophisticated therapeutic 

agents for controlling when, where, how long, and how strong the therapeutic agents will 

engage tumors.
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Designing and implementing genetic circuits in immunotherapy may provide powerful tools 

for control over the therapy. However, there are several challenges in designing genetic 

circuits for this purpose. One of the potential limitations is the need for methods that can 

efficiently integrate large amounts of DNA in T cells. Viral integration can become 

inefficient as the size of the insert increases [73], and circuits that require the expression of 

several components can become large, making efficient transduction of these genes very 

challenging. Transposon-based systems such as PiggyBac and Sleeping Beauty, which can 

integrate large sequences of DNA, are a potential alternative to viral transduction [106, 107]. 

Sleeping Beauty has been used to integrate CARs into T cells in a clinical setting, making it 

a viable option for integrating larger circuits into cells for immunotherapy [108].

Many genetic circuits rely on proteins that are derived from other organisms. The expression 

of these foreign proteins in a cell has the potential to elicit an immune response against the 

engineered T cell, leading to the death of the cell and potentially reduced efficacy of the 

treatment. This immunogenic response was observed when HSK-KT was used as an 

inducible suicide gene in patients [63], and components in other circuits could also elicit this 

response. One option to avoid an immunogenic response is to disrupt the antigen 

presentation process in the T cell so that it can no longer present the foreign protein as a 

potential threat to other immune cells. This disruption might be achievable through genome 

editing to knock out expression of the major histocompatibility complex (MHC) [88], which 

is used to present protein epitopes to other T cells. With MHC expression disrupted, the 

engineered T cell can effectively hide the presence of foreign proteins from other immune 

cells, preventing an immunogenic response.

Although T cells, which already possess powerful machinery to kill cancer cells or foreign 

invading organisms, have captured the most attention in cell-based cancer therapy, other cell 

types and organisms are also being explored as potential therapeutic agents. For instance, 

adoptive T cell therapy is not a viable option for patients with a T cell deficiency. Induced 

pluripotent stem cells can potentially be used to derive cancer targeting T cells [89], and NK 

cells are a possible alternative to T cells. NK cells expressing a Her2-specific CAR are able 

to eliminate tumor cells in vivo [90, 91]. These cells can also trigger cytotoxicity to tumor 

cells through multiple receptors, and their limited life span may make them less dangerous 

for patients. The availability of the NK-92 cell line from Conkwest provides a platform for 

an “off-the-shelf” form of cell-based therapy that might provide further advantages to using 

NK cells for CAR-based therapy. In addition to NK cells, oncolytic viruses are showing 

promise in clinical trials against glioblastomas and multiple myeloma [92, 93]. Their 

specificity toward tumors may also be improved with micro-RNA-based classifiers [94]. 

Similar to the engineering strategies outlined here to advance T cell therapy, these other 

cells and organisms can be further modified to improve their performance, and this parallel 

emergence of immunotherapy, cellular engineering, and synthetic biology is creating a 

unique interface to usher in a new era of cell-based cancer therapy.
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Glossary

Chimeric antigen 
receptor (CAR)

Engineered receptor that fuses an extracellular single chain 

variable fragment (scFv) of an antibody to intracellular T cell 

signaling domains

Cytotoxic T-
lymphocyte-
associated protein 4 
(CTLA-4)

An inhibitory receptor that downregulates T cell response

Epitope Fragments of proteins expressed in a cell that are presented on 

the surface by the major histocompatibility complex (MHC) for 

detection by T cells. Epitopes that represent pathogenic 

organisms to the T cell trigger T cell activation upon binding

Fatty Acid Oxidation Cascade of β-oxidation reactions that converts fatty acids in the 

mitochondria to produce Acetyl-CoA

Hematopoietic stem 
cell transplant 
(HSCT)

Transplant of blood cells from the bone marrow that give rise to 

all other blood cells. HSCT is usually performed in patients with 

blood or bone marrow cancers

Immunogenicity The potential for a molecule to elicit an immune response. 

Proteins expressed in a cell can be processed into smaller 

fragments called epitopes to be presented at the surface of the 

cell as potential antigens by the MHC. T cells assess these 

MHC-peptide complexes through their T cell receptor (TCR), 

which are selected to distinguish epitopes derived from self-

proteins and those derived from foreign organisms. If the TCR 

recognizes an epitope as a foreign antigen, it will activate the T 

cell and drive the death of the antigen-presenting cell. In T cell 

therapy, engineered T cells can be targeted by other immune 

cells due to the expression of foreign proteins as part of the 

receptors or circuit components of non-human origin

Programmed Cell 
Death 1 (PD-1)

A cell surface receptor that negatively modulates T cell response 

by promoting apoptosis

Ribozyme RNA molecules that can act as catalytic agents in a reaction

T cell receptor (TCR) Receptors expressed on the surface of T cells to drive 

recognition of pathogenic organisms through epitope-MHC 

binding

Tumor-infiltrating 
lymphocytes (TILs)

T cells that have been able to penetrate the tumor
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Highlight

• Synthetic biology will play an important role in advancing adoptive T cell 

therapy.

• Engineered receptors and genetic circuits can make cell-based therapies safer 

and more powerful.

• Cellular engineering and genome editing can further improve the T cell as a 

chassis for therapy.
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Box 1

Genome editing for adoptive immunotherapy

Genome editing for targeted disruption of genes, such as HLAs or inhibitory receptors 

[95, 96], can render T cells safer and more powerful for adoptive immunotherapy. 

Several genome editing systems are available that rely on the same underlying 

mechanism: a nuclease targets a sequence and creates a double stranded break. The break 

is then repaired using either the error-prone non-homologous end joining (NHEJ) or 

homology directed repair (HDR), which will disrupt expression of the gene [95]. To 

contend with the potential of off-target cutting [97, 98], tools have been developed to 

predict off-target cleavage for several of these systems [99, 100].

Meganucleases are nucleases that belong to one of five families characterized by their 

sequence and structure motifs [101]. Due to their large recognition sites, meganucleases 

are very specific. They can also be engineered for new targets by combining domains of 

other meganucleases or mutating residues [101], but these techniques and other 

approaches to expand the meganuclease repertoire require large screens to find the 

optimal meganuclease. To facilitate this process, computational tools are being developed 

to predict meganuclease design for new targets [102].

Transcription activator-like effector nucleases (TALENs) are derived from the DNA-

binding domain of TAL effectors, bacterial proteins whose base specificity can be altered 

by changing two specific amino acids [95]. An array of these proteins can be generated to 

target a desired sequence and then fused to the catalytic domain of the Fok1 nuclease to 

confer the ability to cut the target sequence. [103].

Zinc Finger Nucleases (ZFNs) are composed of zinc finger proteins that bind to DNA 

nucleotide triplets. By combining zinc fingers with known binding sequences, a larger 

desired sequence can be targeted. Similar to TALENs, the zinc finger protein is fused to 

the Fok1 catalytic domain to enable targeted cutting [104].

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an RNA-

guided nuclease system derived from bacterial immune defenses. The nuclease Cas9 is 

targeted to a sequence through short complementary RNA sequences. The RNA guides 

Cas9 to the complementary target sequence, where it can then cut the DNA. RNA design 

with this system is very straightforward, making CRISPR a promising tool for genome 

editing [105].
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Figure 1. 
Adoptive T cell therapy for cancer treatment. (A) Several approaches for the adoptive 

transfer of a patient’s own T cells for cancer therapy. Tumor-infiltrating lymphocytes (TILs) 

involve extraction of T cells directly from the tumor, ex vivo expansion, and then transfusion 

back into the patient. For engineered receptor therapies, T cells are collected from the blood, 

genetically modified to express a cancer-targeting receptor, expanded, and then transfused 

back into the patient. (B) Receptors engineered to target cancer cells. T cell receptors 

(TCRs) naturally recognize protein epitopes presented by the major histocompatibility 
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complex of a target cell. Engineering a TCR to detect cancer epitopes “teaches” the T cell to 

detect cancer cells. Chimeric antigen receptors (CARs) are composed of a single-chain 

variable fragment (scFv) from an antibody fused to intracellular T cell signaling domains 

that trigger activation and proliferation of the T cell. CARs recognize markers expressed at 

the surface of a cell, and by choosing a cancer-specific scFv, can be made to trigger killing 

of the cancer cell upon binding to the target antigen. (C) Engineering T cells for 

improvement of adoptive T cell therapy. Generating novel receptors and circuits can enable 

increased control over cell-based therapies, and techniques to engineer the chassis, such as 

genome editing and cellular engineering, can drive the development of more powerful 

treatments.
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Figure 2. 
Receptor engineering for adoptive T cell therapy. (A) Development of CARs across three 

generations. The first generation CAR consisted of a scFv fused to the activating CD3ζ 

domain that drove activation upon antigen binding, but did not lead to sufficient persistence 

in clinical trials [116]. Second and third generation CARs have included the intracellular 

portions of proliferative signaling proteins, CD28 or 4-1BB. (B) Signaling of novel 

receptors for adoptive T cell therapy. First panel: In second and third generation CARs, 

binding of the antigen to the scFv triggers proliferation and activation of the T cell. Second 
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panel: With combinatorial activation, binding to the CAR and chimeric costimulatory 

receptor (CCR) is required to drive both activation and proliferation of the T cell [48]. Third 

panel: The GoCAR-T system requires binding to the target antigen for activation, but it also 

requires the addition of the drug rimiducid to dimerize the co-stimulatory domain for 

activation and proliferation [50] (http://www.bellicum.com/technology/gocart/). Fourth 

panel: Antibody-coupled T cell receptors (ACTR) express a CD16 domain at the T cell 

surface instead of a scFv. CD16 binds to antibodies, and choosing antibodies that bind to the 

surface of cancer cells will drive T cell activity against the cancer cell [51]. (C) Engineered 

receptor for chemotaxis [59]. RASSLs, an engineered G protein-coupled receptor, are 

activated at the surface of the T cell by a drug and drive chemotaxis of the cell along the 

drug gradient. Adding the drug to a tumor can direct T cells towards the tumor site.
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Figure 3. 
Synthetic genetic circuits to regulate T cell activity in patients. (A) Inducible suicide gene 

using iCasp9, a Caspase9 mutant (ΔCaspase9) fused to FKBP dimerizing domains [63, 66]. 

When the dimerizing drug AP1903 is added, ΔCaspase9 dimerizes and drives apoptosis. (B) 
Amplitude limiter using the bacterial virulence proteins OspF or YopH as effectors [70]. 

These effectors reduce T cell activation, and expressing them under an activation-responsive 

promoter creates a negative feedback loop that reduces T cell activation. (C) Pause switches 

using OspF or YopH as effectors [70]. Using a tetracycline-inducible promoter to control 
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effector expression, the addition of the drug will drive effector production, which will in 

turn shut off activation until the drug is removed. (D) A ribozyme switch to control T-cell 

proliferation [71]. Cytokine RNA is expressed with the ribozyme switch, which will drive 

self-cleavage of the transcript and lead to no cytokine expression without the addition of the 

appropriate drug. When drug is added, the cytokine transcript is preserved, leading to 

cytokine production and proliferation.
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Figure 4. 
Cellular engineering and genome editing for chassis engineering. (A) Targets to bias T cells 

towards a naïve state or development of the memory T cell phenotype. Limiting glycolysis 

can prevent T cells from differentiating into effector cells promote memory T cell 

development [75, 79]. In addition, memory T cell development can be increased by 

promoting fatty acid oxidation. Different components of these metabolic pathways can be 

targeted for these aims (labeled in red). Reducing expression of Glut1, the glucose 

transporter limits the intake of glucose, while expressing an Akt inhibitor limits glycolysis 
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due to Akt activation of mTOR through TSC2 and Rheb signaling [76, 77, 117]. Fatty acid 

oxidation can be promoted by overexpressing the fatty acid transporter Cpt-1 [79]. 

Activating AMPK with the drug metformin promotes fatty acid activation, both by 

repressing components involved in activating glycolysis and by indirectly overexpressing 

Cpt-1 [79]. (B) Genome editing for the production of an allogeneic, non-immunogenic T 

cell. Using targeted nucleases to disrupt expression of the T cell receptor (TCR) renders the 

T cell unable to detect targets until modification with an engineered receptor [87]. This 

process could be used to produce universal T cells from healthy donors that could be stored 

in a “T cell bank” for use in patients, as the lack of endogenous TCR expression would 

prevent graft-versus-host disease (GVHD). The expression of CARs and genetic circuits can 

involve the expression of components that elicit an immunogenic response. Disrupting 

major histocompatibility complex (MHC) expression prevents the T cell from presenting 

epitopes from these components, which would reduce the risk of an immunogenic response 

[88].
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