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Abstract
The sample frequency spectrum is an informative and frequently employed approach for

summarizing DNA variation data. Under the standard neutral model the expectation of the

sample frequency spectrum has been derived by at least two distinct approaches. One

relies on using results from diffusion approximations to the Wright-Fisher Model. The other

is based on Pólya urn models that correspond to the standard coalescent model. A new

proof of the expected frequency spectrum is presented here. It is a proof by induction and

does not require diffusion results and does not require the somewhat complex sums and

combinatorics of the derivations based on urn models.

Introduction
A useful summary description of DNA sequence variation in samples from a population is the
sample frequency spectrum. The sample frequency spectrum for a sample of size n, is a vector,

fsðnÞi g; i ¼ 1; . . . ; n� 1, where sðnÞi is the number of polymorphic sites at which there are i cop-
ies of the mutant allele in the sample. This sample frequency spectrum has been the basis for
numerous estimators and test statistics for analyzing population genetics data. (See for example
section 6.4 of Charlesworth and Charlesworth [1].) Under the standard infinite-sites neutral
model with constant diploid population size, N, it is well known that:

EðsðnÞi Þ ¼ y
i
; i ¼ 1; . . . ; n� 1; ð1Þ

where E() denotes expectation and θ = 4Nu, where u is the neutral mutation rate (Fu [2]). A
polymorphic site at which there are i copies of the mutant allele will be referred to as a poly-
morphism of size i, and the mutation that generated that polymorphisms will be referred to as
a size imutation. Under the infinite-sites model of mutation, every mutation is assumed to
occur at a site not previously mutated, in which case the number of polymorphisms equals the

number of mutations in the genealogy of the sample. Thus sðnÞi denotes both the number of size
i polymorphisms in the sample and the number of size imutations in the genealogy of the sam-
ple. Although Eq (1) is written with an “=” sign, it is actually a limiting result for large N and
small n. Eq (1) has been derived previously in several ways. Ewens [3] and Tajima [4] obtained
essentially this equation based on diffusion methods. Fu [2] derived Eq (1) via somewhat
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complex sums and combinatorics based on Pólya urn models. Griffiths and Tavaré [5]
obtained a generalization of Eq (1) also based, at least in part, on the urn model approach. In
this note, we present a new proof of Eq (1) using induction that avoids these complications.

Before presenting our new proof of Eq (1), it is useful to review some elementary properties
of the standard coalescent for a sample of size n. We assume the standard coalescent model
with constant population throughout this note. An excellent description of this model and its
properties are provided by Wakeley [6]. First, the process is usually thought of as a backward
looking process, where the lineages leading to the sample, are traced backwards in time until
common ancestors are encountered. Initially, one traces n distinct ancestral lineages back in
time until a random pair of lineages have a common ancestor. We say that a coalescent event
has occurred at this time, as the two lineages with a common ancestor are merged into a single
ancestral lineage. The time interval from the present back to this coalescent event, denoted tn,
has an exponential distribution with mean equal to 4N

nðn�1Þ. The process is followed further back

in time, now following n − 1 lineages. (These n − 1 lineages consist of the n − 2 lineages not
involved in the first coalescent event and the single lineage ancestral to the two lineages that
have coalesced.) After a random interval of time, another coalescent event occurs, at which a
random pair of the n − 1 lineages coalesce. This process is continued until the number of ances-
tral lineages is reduced to one, at which point one has arrived at the most recent common
ancestor of the sample. The time intervals between coalescent events are independent exponen-
tially distributed random variables. The mean length of the interval during which there are i
distinct ancestral lineages is given by:

EðtiÞ ¼
4N

iði� 1Þ ; i ¼ 2; . . . ; n: ð2Þ

It follows from Eq (2) that the expected number of generations back to the most recent com-
mon ancestor of the sample, tMRCA, is

EðtMRCAÞ ¼ E
Xn
i¼2

ti

 !
¼ 4Nðn� 1Þ=n: ð3Þ

Under the infinite-sites model of mutation, it is assumed that the number of mutations that
occur along a lineage is Poisson distributed with mean ut, where t is the length of the lineage in
generations. From Eq (3) it follows, under the infinite-sites model, that the average number of
mutations that distinguish a sampled allele from the most recent ancestor of a sample is uE
(tMRCA) = θ(n − 1)/n. Similarly, the expected total number of polymorphic sites, denoted S(n), is
u times the expected sum of lengths of the branches of the gene tree. Then, using Eq (2) we
have:

EðSðnÞÞ ¼ u
Xn
i¼2

iEðtiÞ ¼ y
Xn�1

i¼1

1=i: ð4Þ

Note that SðnÞ ¼Pn�1

i¼1 s
ðnÞ
i .

Fig 1 shows two example coalescent trees produced by this coalescent process. The tree on
the left has two mutations on it, one of size three and one of size two. The tree on the right has
an additional mutation of size one.

Expected Frequency Spectrum
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Proof that EðsðnÞi Þ ¼ y
i

With these preliminaries out of the way, we now present our proof of Eq (1). For n = 2, all poly-

morphisms are of size 1, and so our result for expectation of S(n) applies directly to give Eðsð2Þ1 Þ.
That is, for n = 2, applying (4) we find:

Eðsð2Þ1 Þ ¼ EðSð2ÞÞ ¼ y; ð5Þ

and thus Eq (1) holds for n = 2.
We now show that if Eq (1) holds for n, that it is also true for n+1. To do this, we note that

one can generate a sample size n+1 gene tree with its mutations by first generating a sample
size n tree with its mutations and then extending it as follows. One picks a random tip of the
size n tree, splits that tip, and then extends all the tips by a random time. The random time
added to each of the tips is exponentially distributed with mean 4N

nðnþ1Þ. That is, the time exten-

sion is distributed like tn+1. Then each of the n+1 lineage extensions experience mutation
according to the infinite-sites model. This method of getting a sample size n+1 tree is shown in
Fig 1. This exact approach was used by Fu and Li [7] to derive other properties of this model.
(This approach to generating a sample size n+1 tree from a sample size n tree, is not to be con-
fused with idea of sampling an additional allele from a population after sampling n alleles, and
then examining how it coalesces into a lineage of the sample size n tree.)

With this method of generating a sample of size n+1, we can relate the polymorphisms of
size i in a sample of size n+1 to the polymorphisms of size i and i − 1 of the sample of size n
and its tree. The tree for the sample of size n and its mutations, we call the n-tree, and the
extended tree with its mutations the (n+1)-tree. We refer to the tip of the n-tree that is split as
the �-tip, and the mutations on the lineage from that tip back to the most recent common
ancestor of the n-tree we call �-mutations. If a �-mutation is of size i in the n-tree, then it will
be of size i+1 in the (n+1)-tree. If a mutation of size i in the n-tree is not a �-mutation, then it

Fig 1. Generating a sample size 6 tree by extending tip branches of a sample size 5 tree. The short
horizontal bars indicate mutations, and the asterisk indicates the branch which is split as described in the
main text. The dashed lines indicate the branch extensions also described in the main text. The mutation
labeled A is a size 3 mutation on both the (n = 5)-tree and the (n = 6)-tree. The mutation labeled B is a size 2
mutation on the (n = 5)-tree, but a size 3 mutation on the (n = 6)-tree. The mutation labeled C is a mutation on
a branch extension and is a size 1 mutation on the (n = 6)-tree.

doi:10.1371/journal.pone.0118087.g001
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will also be of size i in the (n+1)-tree. An illustrative example is shown in Fig 1. We designate

the number of size imutations that are �-mutations by sðnÞi;� .
From the above considerations, it follows that:

sðnþ1Þ
i ¼ sðnÞi � sðnÞi;� þ sðnÞi�1;�; i ¼ 2; . . . ; n; ð6Þ

providing that we define sðnÞn and sðnÞn;� to be zero. Note that all mutations of size 2 and larger in

the (n+1)-tree are due to mutations that are already present in the n-tree. The case of i = 1, is
special, and is treated later. Taking expectations of both sides of (6), and using our assumption
that (1) holds for sample size n, we find:

Eðsðnþ1Þ
i Þ ¼ y

i
� EðsðnÞi;� Þ þ EðsðnÞi�1;�Þ; i ¼ 2; . . . ; n: ð7Þ

To obtain EðsðnÞi;� Þ, we label the size i mutations of the n-tree from 1 to sðnÞi and write sðnÞi;� as
the sum of indicator variables:

sðnÞi;� ¼
XsðnÞi

j¼1

Xj; ð8Þ

where Xj is one if the size imutation labelled j is a �-mutation, i.e., if the �-tip is a descendant
of the size imutation labelled j, and zero otherwise. The probability that a specific size imuta-
tion is a �-mutation, is just i

n
, since the �-tip is a random tip, and there are i descendant tips of a

size imutation. It follows that the expectation of Xj is i
n
and that

EðsðnÞi;� Þ ¼ EðsðnÞi ÞEðXjÞ ¼
y
i
i
n
¼ y

n
; ð9Þ

which, surprisingly, does not depend on i. This means that the last two terms on the right hand
side of Eq (7) cancel each other, and that Eq (1) holds for sample size n+1 for i = 2, . . ., n.

We now consider size one mutations. From Eq (4) we know E(S(n+1)), and from the result
just obtained, we know the expected number of mutations with size 2 or greater, so we can
obtain the expected number of size one mutations by substraction:

Eðsðnþ1Þ
1 Þ ¼ EðSðnþ1ÞÞ �

Xn
i¼2

y
i
¼ y: ð10Þ

Alternatively, we could obtain Eðsðnþ1Þ
1 Þ by consider mutations that happen on the extensions

of the tip branches of the (n+1)-tree. Every such mutation results in a size one mutation in the
(n+1)-tree. There are (n+1) such tip branches that are extended on average 4N

ðnþ1Þn generations,

so an average of uðnþ 1Þ 4N
ðnþ1Þn ¼ y

n
new mutations are added to the tree. Thus for i = 1, we

have:

sðnþ1Þ
1 ¼ sðnÞ1 � sðnÞ1;� þ

y
n
: ð11Þ

Taking expectations, we see that the last two terms cancel again, and that Eq (1) holds for i = 1.
This completes the proof.
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