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BACKGROUND: Physicians frequently prescribe antibi-
otics to inpatients without knowledge of medication cost.
It is not well understood whether providing cost data
would change prescribing behavior.
OBJECTIVE: To evaluate the association between provid-
ing cost data alongside culture and antibiotic susceptibil-
ity results and prescribing of high-cost antibiotics.
DESIGN:Quasi-experimental pre-post analysis.
PARTICIPANTS: Inpatients diagnosed with bacteremia or
urinary tract infection in two tertiary care hospitals.
INTERVENTION: Cost category data for each antibiotic
($, $$, $$$, or $$$$) were added to culture and suscepti-
bility testing results available to physicians.
MAIN MEASURES: Average cost category of antibiotics
prescribed to patients after the receipt of susceptibility
testing results.
KEY RESULTS: There was a significant decrease in the
average cost category of antibiotics per patient after the
intervention (pre-intervention = 1.9 $ vs. post-
intervention = 1.7 $, where 1.5 $ would mean that the
average number of dollar signs for antibiotics prescribed
was between $ and $$, p=0.002). After adjusting for age,
insurance type, and prior length of stay, the odds ratio
(OR) of a patient’s average antibiotic being higher cost vs.
lower cost after the intervention compared to before the
intervention was 0.74 [95 % confidence interval (CI) 0.56,
0.98]. The intervention was associated with a 31.3 % re-
duction in the average cost per unit of antibiotics pre-
scribed (p<0.001).
CONCLUSIONS: Providing physicians with cost feedback
alongside susceptibility testing datawas associatedwith a
significant decrease in prescription of high-cost antibi-
otics. This intervention is intuitive, low cost, andmay shift
providers toward lower cost medications when equally
acceptable options are available.

KEY WORDS: infectious disease; hospital medicine; health care costs,

medical decision making.

J Gen Intern Med 30(8):1140–6

DOI: 10.1007/s11606-015-3253-2

© Society of General Internal Medicine 2015

INTRODUCTION

Health care costs in the USA have been growing at an unsus-
tainable rate.1 As a result, there has been interest in strategies
to reduce health care costs while preserving or improving
patient outcomes. One approach supported by federal health
policy is the use of electronic health records (EHRs).2 Propo-
nents argue that EHRs would lead to better quality at lower
cost by reducing inefficiencies, improving care coordination
and reducing medical errors.3,4

Despite enthusiasm for EHRs, evidence of their efficacy at
reducing health care costs is mixed.5–9 These data indicate that
simply implementing an EHR system is not sufficient to
control costs.10 Instead, EHRs may need to incorporate clini-
cal decision support to guide providers toward cost-saving
choices.
Previous interventions to reduce costs associated with

diagnostic tests by providing data related to the cost of
the test through the EHR have been successful.5,11,12

However, results from early attempts to encourage phy-
sicians to provide lower cost medications through deci-
sion support tools have had mixed success. A study by
Ornstein et al.13 reported that providing medication cost
information in the EHR of a family-practice clinic did
not change the overall cost of medications prescribed.
Decreased expenditures on certain classes of medications
counterbalanced an increased mean cost of other agents.
However, a study that examined the effect of providing a
computerized support tool to encourage appropriate anti-
biotic therapy for inpatients found that it reduced the
hospital’s antimicrobial costs,14 and a recent study of
community-based practices in Massachusetts showed that
a formulary decision support tool was associated with
significant cost savings overall.15 Real-time feedback
about cost data may be more effective in specific settings
and for certain drug categories.
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On May 26, 2010, we added a feature to the EHR to make
providers aware of antibiotic costs. The purpose of our anal-
ysis was to determine whether presenting cost data at the time
of antibiotic ordering was associated with a decrease in utili-
zation of high-cost antibiotics.

METHODS

Study Design and Setting

This study was a retrospective quasi-experimental pre-post
analysis conducted using records from Emory University
Hospital and Emory University Hospital Midtown, both urban
academic hospitals in Atlanta, Georgia. We collected records
of admitted patients diagnosed with bacteremia or urinary tract
infection (UTI) between May 26, 2009, through May 25,
2011—12 months before and 12 months after the deployment
of the computerized decision support tool. The Institutional
Review Board of Emory University approved the study
(IRB00061277).

Intervention

Since 2007, Emory University hospitals have used an EHR
and computerized order entry system (PowerChart, Cerner
Corporation). The system reports a table of antibiotic suscep-
tibility data alongside microbial culture results for all positive
cultures. Beginning May 26, 2010, cost category data for
antibiotics were added to the table. When physicians received
microbial culture results, the table of antibiotic susceptibilities
included a cost category ranking from $ to $$$$ for each drug
(Fig. 1, Supplementary Table 1). The number of symbols for
each antibiotic was assigned based on cut points determined
by the per unit cost of each antibiotic to the hospital at that
time. The decision to use cost categories rather than actual cost
was based on ease of implementation, simplicity, evidence
from the social sciences literature suggesting that cost scales
may facilitate decision-making,16 feedback from providers,
and the fact that while antibiotic cost may change frequently,
cost categories tend to be static. To implement the interven-
tion, a cost category indicator was appended to the antibiotic
name.
The pre-intervention period beganMay 26, 2009, and lasted

12 months. It was followed by the implementation of the cost
feature for all EHRs. The post-intervention observation period
began May 26, 2010, and lasted 12 months. During this
period, no changes were made to the cost categories.

Participants

Patients were eligible for the study if they had been diagnosed
with bacteremia (ICD-9 codes: 038.x, 022.3, 790.7, 054.5,

Fig. 1 Example of a cost feedback screen provided in susceptibility testing results

Table 1 Comparison of Characteristics of the Pre- and Post-
Intervention Groups

Characteristic Pre-
Intervention
(n=341)

Post-
intervention
(n =311)

p-value

No. (%) No. (%)

Age (mean ± SD) 58.3 (17.4) 58.7 (16.7) 0.724
Male 158 (46.3) 173 (49.2) 0.018
Race – – 0.347
White 172 (50.4) 168 (47.7) –
Black 141 (41.4) 112 (31.8) –
Other 28 (8.2) 31 (8.8) –

Insurance type – – 0.350
Public 214 (62.8) 209 (67.2) –
Private 110 (32.3) 92 (29.6) –
Other 17 (5.0) 10 (3.2) –

Time until susceptibility
results from date of
admission, days
(mean ± SD)

8.7 (10.4) 7.8 (10.6) 0.779

Total length of stay, days
(mean ± SD)

16.3 (15.1) 15.8 (17.2) 0.669

SOI on admission
(mean ± SD)

3.2 (0.7) 3.2 (0.9) 0.037

ROM on admission
(mean ± SD)

2.6 (0.9) 2.7 (1.0) 0.211

Non-antibiotic medications*

Anticoagulants† 56 (16.4) 42 (13.5) 0.298
Beta blockers 82 (24.6) 59 (19.0) 0.116
Calcium channel

blockers
44 (12.9) 30 (9.7) 0.190

Diabetes medications‡ 68 (19.9) 66 (21.2) 0.686
Diuretics§ 20 (5.9) 16 (5.1) 0.688
Other anti-

hypertensives∥
16 (4.7) 19 (6.1) 0.423

UTI diagnosis¶ 83 72 0.823
Antibiotics prescribed per
person after susceptibility
testing

– – –

1 261 (76.5) 246 (79.1) 0.364
2 62 (18.2) 55 (17.7) –
3 14 (4.1) 7 (2.3) –
4 4 (1.2) 2 (0.6) –
5 0 (0.0) 1 (0.3) –

Mean cost per person, $
(mean ± SD)

1.9 (0.7) 1.7 (0.6) 0.004

SD standard deviation, SOI severity of illness score, ROM risk of
mortality score, UTI urinary tract infection
*Number of individuals prescribed each class or category of medication
†Includes warfarin, heparin, factor Xa inhibitors, and direct thrombin
inhibitors
‡Includes insulin, sulfonylureas,meglitinides,metformin, andDPP-4 inhibitors
§Includes thiazides, loop diuretics, potassium-sparing diuretics, and
carbonic anhydride inhibitors
∥Includes clonidine, select vasodilators, angiotensin converting enzyme
inhibitors, and angiotensin II receptor blockers
¶Includes 84 individuals diagnosed with both bacteremia and urinary
tract infection
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036.2, 003.1, and 020.2) or UTI (ICD-9 codes: 599.x, 590.x,
595.x, and 597.x) during a hospitalization, had received sus-
ceptibility testing to confirm their diagnosis, had positive
culture results that indicated susceptibility to at least two cost
classes of antibiotics (e.g., $ and $$$), and had been prescribed
antibiotics following susceptibility testing results. These con-
ditions were selected because of their incidence and the variety
of prescribing options available. For patients with multiple
hospital stays during the period, we only included the first
visit in our analysis because patients may have been more
likely to receive the same drug regimen during subsequent
hospital stays. For patients with both bacteremia and UTI
diagnoses, we considered prescriptions after the second posi-
tive culture result to be eligible for inclusion, regardless of
sample type, to minimize inclusion of antibiotics prescribed
for prior infections. During diagnosis-stratified analyses, we
included dual-diagnosis individuals in both groups, but we
only included prescriptions from after the culture result spe-
cific to the stratum (i.e., urine for UTI, blood for bacteremia).

Outcome Measures and Data Collection

The primary outcome was the average cost of antibiotics pre-
scribed after susceptibility testing, asmeasured in the number of
$ symbols. Additional outcomes included the number of anti-
biotics prescribed and the prescription of high-cost versus low-
cost antibiotics ($ and $$ vs. $$$ and $$$$). For all outcomes,
we compared data before and following the intervention.
Sources of data for this study included administrative and

clinical data from the EHR and discharge data from the Uni-
versity Health SystemConsortium (UHC). Administrative and
clinical records were used to collect demographic, medication,
and laboratory data. UHC provided severity of illness (SOI)
and risk of mortality (ROM) data, as determined by the All
Patient Refined Diagnosis Group (APR-DRG) Grouper.17

Statistical Analysis

We used paired t-tests for continuous variables, χ2 tests for
categorical variables, and χ2 tests for trends for ordinal vari-
ables. Our primary analysis was a multivariable logistic re-
gression model to estimate the association between high-cost
antibiotic use ($$$ and $$$$) and the cost-feedback interven-
tion (pre vs. post), with low average cost of antibiotic pre-
scribing ($ and $$) as the reference group. We adjusted for
other possible exposures influencing prescribing, including
sex, race, age, insurance status, length of hospital stay prior
to antibiotic prescribing, creatinine, SOI, and ROM. Using the
estimated odds ratio (OR) from that model as the standard, we
removed exposure variables that increased the precision of our
estimate, as measured by the ratio of the 95 % confidence
interval (CI), but did not change the OR by more than 10 %
from the standard.18We evaluated for goodness of fit using the
Hosmer-Lemeshow test. We also compared the average cost
per unit of antibiotics prescribed pre- and post-intervention as
estimated using the median antibiotic cost per cost category.

SAS 9.3 (SAS Institute, Cary, NC) was used for all analyses.
P-values <0.05 were considered statistically significant.

Sensitivity Analyses

To assess our study results’ robustness, we conducted a sensi-
tivity analysis. To evaluate the impact of our primary metric
(average cost of antibiotics prescribed), we repeated our anal-
yses using the highest cost and then the lowest cost post-
sensitivity testing antibiotic prescribed for each individual.
Second, we stratified our data by diagnosis (bacteremia or
UTI) and repeated our analyses.

RESULTS

Cost Categorization

The antibiotics were each assigned to one of four cost catego-
ries. The median cost per unit for $ category antibiotics was
$2.64 (IQR: $0.81–$5.78). For $$ category antibiotics, the
median cost per unit was $7.66 (IQR: $6.09–$9.19). For $$$
category antibiotics, the median cost per unit was $15.19
(IQR: $12.10–$16.85). For $$$$ category antibiotics, the
median cost per unit was $87.43 (IQR: $67.48–$147.02).

Participant Characteristics

Of 1,471 individuals with diagnoses of bacteremia and pre-
scriptions for antibiotics, 581 people had a positive test result
susceptible to antibiotics from more than one cost category
and were prescribed antibiotics following that test, making
them eligible for inclusion (Fig. 2). Of 3,902 individuals with
diagnoses of UTI or related conditions and prescriptions for
antibiotics, 155 people were diagnosed with a UTI. Of the 581
eligible individuals with bacteremia, 84 were also diagnosed
with a UTI (Table 1). Of those diagnosed with both, 67 people
were diagnosed with bacteremia first and 17 were diagnosed
with a UTI first. The characteristics of participants in the pre-
and post-intervention periods were similar, although there
were significant differences in the proportion of males and
SOI on admission. Overall, their mean age was 58.5 years,
50.7 % were male, and 52.2 % were white. Most had public
insurance (64.9 %). Most had severe illnesses upon admission
(overall mean SOI=3.2), and their average length of stay was
long (overall mean=16.1 days), although individual durations
varied greatly (overall standard deviation (SD)=16.1 days).

Antibiotic Prescribing

The majority of patients (88.5 %, Fig. 2) were prescribed an
antibiotic after the receipt of their susceptibility testing results.
Prescribers were physicians from multiple departments and
services, including some services with resident physicians.
There was a significant decrease in the average cost of antibi-
otics per patient after the intervention (1.9 $ vs. 1.7 $, where
1.5 $ would mean that the average number of dollar signs for
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antibiotics prescribed was between $ and $$, pooled t-test t=
−3.1, p=0.002; Table 1). The change in the frequency of
antibiotic prescribing from each cost category was significant
(χ2=13.7, DF=3, p=0.003; Fig. 3) and showed a shift toward
$ antibiotic prescribing from all higher cost groups. There was
no change after the intervention in the proportion of patients
prescribed antibiotics to which their infection was resistant
(3.0% before intervention, 3.0% after intervention; p=0.945).

Multivariate Logistic Regression

In our initial model, we included intervention period (pre- or
post-cost feedback implementation) and eight other possible
exposures influencing prescribing: sex, race, age, insurance
status, length of hospital stay prior to antibiotic prescribing,
creatinine, SOI, and ROM. This model served as our standard,
provided an initial estimate of the odds of prescribing high-
cost antibiotics ($$$ or $$$$) after the intervention compared

Fig. 2 Flow chart of study inclusion criteria for patients with bacteremia or urinary tract infection (UTI)

Fig. 3 Histogram of antibiotics prescribed by cost category ($–$$$$) pre- and post-intervention, columns labeled with number of prescriptions.
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to before (OR=0.767, 95 % CI: 0.579, 1.016), and had no
evidence of poor fit (Hosmer-Lemeshow p=0.686, c-
statistic=0.670). We then ran models with combinations of
the exposure variables to identify models with increased pre-
cision but less than 10 % change in the estimated OR. Our
final estimated OR for the odds of prescribing high-cost anti-
biotics after the intervention compared to before was 0.741
(95 % CI: 0.564, 0.976), controlling for the effects of age,
length of stay prior to antibiotic prescribing, and insurance
type, indicating that the intervention resulted in a statistically
significant decrease (p=0.033; Table 2) in the odds of pre-
scribing high-cost antibiotics for inpatients diagnosed with
bacteremia or UTI.

Sensitivity Analysis

Based on our sensitivity analyses, our estimates for the
association between the intervention and high-cost antibi-
otic prescribing were robust (Supplemental Table 2). The
OR for the association between cost-feedback and the
highest cost antibiotic prescribed per person was 0.772
(p=0.039), controlling for age, length of stay prior to anti-
biotic prescribing, and insurance type. The OR for the
association between cost-feedback and the least expensive
antibiotic prescribed per person was 0.879 (p=0.078), con-
trolling for age, length of stay prior to antibiotic prescribing,
and insurance type.
When we stratified by diagnosis, the association between

the intervention and antibiotic prescribing remained constant,
indicating that the association was consistent for both diagno-
ses. The OR for the prescription of high-cost antibiotics in the
intervention period compared to the pre-intervention period
for individuals diagnosed with bacteremia was 0.765
(p=0.078), controlling for age, length of stay prior to antibiotic
prescribing, and insurance type. The OR for the intervention
for individuals diagnosed with UTI was 0.747 (p=0.218),
controlling for age and length of stay prior to antibiotic pre-
scribing. After reassessing both subanalyses using the highest
and lowest cost antibiotic prescribed, the ORs remained stable
for bacteremia and UTI.

Cost-Savings Estimates

Based on the number of antibiotics prescribed from each
category before and after the intervention and the median cost
per unit for antibiotics in each cost category, the estimated
average cost per unit of antibiotics prescribed before the
intervention was $11.13 (SD=$0.88). The estimated average
cost per unit of antibiotics prescribed after the intervention was
$7.65 (SD=$0.57). This savings of 31.3 % was significant
(p<0.0001). There was also a significant difference in the
estimated unit cost per patient before and after the intervention
($15.86 per patient vs. $8.75, p<0.0001). For the 311 patients
included in the post-intervention period, this amounts to an
estimated $2,211.21 or $7.11 per patient.

DISCUSSION

In this quasi-experimental study, adding cost data to culture
and antibiotic susceptibility results for inpatients diagnosed
with bacteremia or UTI was associated with a significant
decrease in the prescription of high-cost antibiotics. We ob-
served reductions in the percentage of antibiotics prescribed
from all cost categories greater than $, with the greatest pro-
portional reductions in the highest cost categories, resulting in
a significant decrease of approximately 30 % in the average
estimated per unit cost of antibiotics prescribed. Assuming a
similar savings could be expected to continue beyond the first
year following the intervention and may apply to individuals
with diagnoses aside from bacteremia or UTI, the potential
financial impact may be substantial, especially considering
that patients receive multiple antibiotic units per prescription.
Our study suggests that providers should incorporate cost data
into their prescribing practices.
Our study joins a growing body of literature demonstrating

the utility of making providers aware of drug cost at the time of
ordering. Although many factors besides cost influence phy-
sician prescribing habits,19 research demonstrates that many
physicians are unaware of drug pricing—overestimating inex-
pensive drugs and underestimating expensive ones.20 Howev-
er, physicians are receptive to using cost data to guide their
prescribing, particularly to minimize patients’ out-of-pocket
costs.21 An important difference between our studies and
previous ones is that we used cost categories rather than actual
cost.
Two differences between our study and other studies of

clinical decision support tools for inpatient prescribing were
our intervention’s goal and its simplicity. Many tools have
been developed to reduce inappropriate antibiotic prescrib-
ing. In general, they have been successful at reducing the
incidence of negative side effects of excessive or suboptimal
antibiotic prescribing, such as C. difficile infection, coloni-
zation with antibiotic-resistant organisms, and mortality.22

The goal of our intervention, however, was purely to reduce
cost without negatively impacting patient care. Second, clin-
ical decision support tools can be complex, incorporating

Table 2 Logistic Regression Model Results: Parameters, Odds
Ratios, and 95 % Confidence Intervals

Variable β* (SE) p-value OR (95 % CI)

Intervention (ref.
pre-intervention)

−0.299
(0.140)

0.033 0.741 (0.564, 0.976)

Age 0.016
(0.009)

0.084 1.016 (0.998, 1.034)

Length of stay prior
to antibiotic
prescription

0.019
(0.007)

0.006 1.020 (1.006, 1.034)

Insurance type
(public, ref. other)

−0.234
(0.510)

0.646 0.791 (0.291, 2.149)

Insurance type
(private, ref. other)

−0.025
(0.296)

0.934 0.976 (0.546, 1.743)

SE standard error, OR odds ratio, CI confidence interval, DF degrees of
freedom, ref. reference group *Parameter estimate
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new screens or requiring click-through to access all informa-
tion.14,23 Our interventionwas seamlessly integrated into the
existing EHR and did not change the general appearance of
the antibiotic susceptibility results screen with which pro-
viders were familiar. Despite its simplicity, the intervention
was associated with decreases in antibiotic costs, supporting
existing literature on the power of Bnudges^ in improving
medical care.24

Our study has several strengths. First, we were able to
implement our system with minimal information technology
(IT) support in a commercially available HER, and it is easily
exported to other EHR systems. Second, we coupled cost data
with susceptibility testing to ensure that patients received care
that was equivalent, from a susceptibility standpoint, but less
expensive. The effect of extending the intervention to antibi-
otics prescribed without sensitivity testing is unknown and
might face a variety of challenges. For example, in the absence
of sensitivity data, cost categories would have to be integrated
into other portions of the EHR and prescribing system. Third,
the intervention was both simple and scalable—it did not
increase the number of steps needed to order a prescription,
did not require any educational programs, and did not involve
any incentives. Lastly, although we were unable to do a
comprehensive analysis of patient outcomes before and after
the intervention, the intervention was not associated with any
increase in the average duration of hospital stay or in prescrib-
ing of medications to which the cultured pathogen was resis-
tant, suggesting that the antibiotics selected under the cost
feedback system may have been similarly effective to those
selected before the intervention.
This study also has several limitations. First, the study was a

pre-post quasi-experimental analysis; thus, it lacked a control
group and was sensitive to unmeasured bias. However, the
association was significant even upon sensitivity testing and
stratification, which indicates that the findings are robust.
Second, the follow-up period lasted 1 year. Its durability was
not tested, and wemay have instead observed regression to the
mean or the Hawthorne effect. Third, the practice setting (an
academic teaching institution and tertiary care hospital) may
have impacted the intervention. Providers in this setting may
have different responses to cost data than those in other
practice settings. Fourth, although no antibiotic shortages were
noted during the study period and no other cost-related inter-
ventions were implemented simultaneously, it is possible that
provider habits changed as a result of other social, cultural, or
technical factors. Unfortunately, we did not have information
on resident physician instruction regarding proper prescribing,
changes in the antibiotic stewardship program, or other factors
that may have impacted prescribers. Fifth, we did not evaluate
the total savings of the intervention across all diagnoses. This
remains a topic for future research. Lastly, the population seen
in this study had a relatively long length of stay in the hospital
and high severity of illness. The effect of the intervention on a
less severely ill patient population should be considered in
future research.

The intervention did not address the possibility of using cost
feedback to guide empiric treatment choices. It is possible that
a similar simple feedback mechanism could help guide pro-
viders toward selecting appropriate generic or other lower cost
treatment options while waiting for culture results. Indeed,
other researchers have found that clinical decision support
tools that guide physicians to appropriately prescribe antibi-
otics can have cost benefits and improve patient out-
comes.14,22 Additional future considerations include the im-
pact of cost feedback systems on readmission rates, clinical
failures, and antibiotic resistance patterns.

CONCLUSIONS

Providing cost data alongside antibiotic susceptibility data for
blood and urine culture results may change physicians’ order-
ing behavior. The intervention was low cost, effective, and
easy to implement. Whether broadening the intervention by
including cost information for all antibiotic prescribing would
be effective is a topic worthy of further study, so long as
adaptations are made to ensure that patients receive similarly
effective prescriptions.
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